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Abstract

Global Structure-from-Motion (SfM) techniques have
demonstrated superior efficiency and accuracy than the
conventional incremental approach in many recent stud-
ies. This work proposes a divide-and-conquer framework
to solve very large global SfM at the scale of millions of im-
ages. Specifically, we first divide all images into multiple
partitions that preserve strong data association for well-
posed and parallel local motion averaging. Then, we solve
a global motion averaging that determines cameras at par-
tition boundaries and a similarity transformation per par-
tition to register all cameras in a single coordinate frame.
Finally, local and global motion averaging are iterated un-
til convergence. Since local camera poses are fixed during
the global motion average, we can avoid caching the whole
reconstruction in memory at once. This distributed frame-
work significantly enhances the efficiency and robustness of
large-scale motion averaging.

1. Introduction
Structure-from-Motion (SfM) has been intensively in-

vestigated in computer vision. Earlier methods are mostly
incremental, where images are reconstructed one by one [1,
34, 35, 37, 42, 50] . Recent studies [3, 5, 6, 7, 17, 18, 20, 27,
33] suggest that a global approach, reconstructing all im-
ages together, leads to better accuracy and efficiency. How-
ever, global SfM has so far only been demonstrated with
relatively small-scale data-sets at the order of a few thou-
sand images [9, 11, 21, 33, 49]. This work is the first to
push global SfM to the scale of millions of input images,
larger than all previous works.

The key to the global SfM methods is motion averag-
ing. The time and spatial complexity of state-of-the-art
motion averaging methods [3, 5, 6, 7, 17, 18, 20, 27, 33]
following the gradient and Hessian-based optimization ap-
proach is cubic and square respectively in the number of in-
put images [2]. Therefore, global motion averaging quickly
reaches the memory and efficiency bottleneck as the num-
ber of input images drastically increases.
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To conquer the problems above, we propose a distributed
and robust motion averaging method which is inspired by
the nested dissection algorithm [25]. We formulate the
large-scale motion averaging problem on a camera graph,
where each camera is a vertex and cameras with relative
motion constraints are linked by edges. By dividing the
original camera graph into multiple small-scale sub-graphs,
we group the variables of each sub-graph and order them
first in the Hessian matrix, while variables called separa-
tors [25] which connect multiple sub-graphs are ordered
second. Since sub-graphs excluding separators are inde-
pendent with each other, we can first solve the Cholesky
factorization of each sub-graph excluding separators in a
distributed manner and then the factorization of separators.
To further reduce the communication overhead among sub-
graphs, we iterate each sub-graph till convergence before
solving the separators. In this paper, we call the opti-
mization process of each sub-graph as local motion aver-
aging and that of separators as global motion averaging.
We also introduce a similarity transformation to parame-
terize the camera poses of each sub-graph, so that the lin-
earization stays the same in global motion averaging. Since
only the separators, namely the cameras connecting multi-
ple sub-graphs, and the similarity transformations are con-
sidered in global motion averaging, the entire reconstruc-
tion is avoided to be cached in core memory at once.

Dividing the camera-graph into strongly associated sub-
graphs also improves the robustness of global SfM. Previ-
ous motion averaging methods often assume uniform ac-
curacy of relative poses, which degrades reconstruction ac-
curacy when there are both strong and weak associations
among cameras. Our framework clusters strong affiliated
cameras together and fixes their relative motions in the
global motion averaging, which can be applied to many pre-
vious motion averaging algorithms, like [11, 28, 33, 45,
48], to further improve their performance.

In experiments, we demonstrate our framework on se-
quential, Internet, and challenging city-scale data-sets. Re-
markably, we are even able to average the camera poses
of a city-scale data-set with more than one million high-
resolution images in parallel. We further apply our frame-
work to enhance the previous prestigious motion averaging
works [33, 45, 48] on both efficiency and robustness.
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2. Related Works
Thanks to the massive image data, city-scale 3D recon-

struction [1, 16, 15, 39, 38, 47, 51, 53, 54, 55, 56, 57, 58]
has been a hot research topic in computer vision, in which
Structure-from-Motion (SfM) is the pivotal point. The in-
cremental SfM methods [1, 34, 35, 37, 43, 50] progressively
recover the camera pose of the next-best-view [13, 19].
However, the redundant intermediate bundle adjustment
leads to low efficiency and drifting errors. In comparison,
the global SfM methods compute all the camera poses si-
multaneously from the available epipolar geometry [3, 5, 6,
7, 17, 18, 20, 27, 33] or trifocal tensor [8, 21, 28, 41]. Such
global methods are highly efficient and can compensate for
severe drifting errors. A hybrid formulation [4, 44, 58]
exploiting incremental SfM to initialize partitions of accu-
rate and robust local camera poses and motion averaging to
globally merge them together is naturally presented.

Most of global SfM methods solve camera rotations and
translations separately. Govindu et al. [17] simultaneously
compute all the camera rotations while this work is limited
by the fact that the rotation manifold has a non-trivial topol-
ogy [20]. Martinec et al. [27] ignore the manifold constraint
and obtain a linear algorithm. On the other hand, the trans-
lation averaging method is divided into two types. The es-
sential matrix based methods [3, 5, 17, 33] suffers from the
fact that essential matrices can only determine the direc-
tions of relative translations and is limited to a parallel rigid
graph [33]. The trifocal tensor based methods [8, 21, 28, 40]
require strong association among images. To address this
issue, some other methods optimize camera poses together
with scene points [9, 23, 27, 36, 41, 49].

However, a standard motion averaging problem that con-
siders all the relative poses at once gradually becomes both
memory and time consuming as the number of relative
motions rises sharply. This problem becomes more obvi-
ous in translation averaging [10, 11, 21, 28, 49] that con-
siders the relative translations between cameras and 3D
points as well. To address the large scale motion averaging
problem in a distributed manner, we propose a divide-and-
conquer framework similar to nested dissection [25]. Some
works [14, 29, 54] also try to solve the large scale bundle
adjustment problem in an out-of-core or distributed manner.

To guarantee robust motion averaging, the work in [18]
adopts a `1 optimization [7] and follows the Lie-algebra
rotation representation to achieve better rotation averaging
results. The works in [11, 33] also apply a `1 solver to
translation averaging. Meanwhile, other works focus on
the filters [11, 22, 49, 52] to effectively discard erroneous
epipolar geometry and feature correspondences and provide
well-posed initialization for motion averaging. In contrast,
we first solve the well-conditioned sub-problems of strongly
affiliated images and then globally merge them together to
obtain a robust system.
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Figure 1: The comparisons of the estimated peak memory
and time cost of motion averaging given different numbers
of partitions. The line chart is estimated on the city-scale
data-set. If all the cameras are in one partition, our approach
degenerates to the traditional motion averaging.

3. Motion Averaging Review
We first give the notations and definitions of this paper.

We specify the absolute pose of a cameraCi as Pi=[Ri|ti],
where Ri ∈ R3×3 is a 3D rotation matrix denoting the cam-
era orientation, ti =−Rici specifies a 3D translation vec-
tor, and ci ∈ R3×1 is the position of the camera optical
center. For each pair of cameras Ci and Cj , there are two
relative motion constraints:

Rij = RjR
>
i , (1)

λij t̂ij = Rj(ci − cj), (2)

where Rij ∈R3×3 denotes a relative rotation matrix, t̂ij ∈
R3×1 represents a unit vector of the relative translation di-
rection, and λij is a scale factor. We also denote the sparse
3D points as X ={xi}, where xi∈R3×1 is the 3D position
of a scene point.

Given a reference frame and a set of relative rotations
Rrel = {Rij}, a global rotation averaging algorithm obtains
the camera rotations R = {Ri} by solving the following
minimization problem:

argmin
R

∑
Rij∈Rrel

dR(Rij ,RjR
>
i )

p, (3)

where the variable p= 1, 2 chooses `1 or `2 norm and the
distance measure dR(S,R) is defined on SO(3), e.g. angu-
lar distance, chordal distance, quaternion distance etc. [20].

Given the fixed global orientations R= {Ri} and some
known camera-to-camera relative translations Trel = {tij}
and camera-to-point relative translations Urel = {uij}, a
translation averaging problem computes global camera po-
sitions T ={ci} by minimizing the following function,

argmin
T

∑
tij∈Trel

dT(tij ,Rj(ci − cj))
p

+
∑

uij∈Urel

dT(uij ,R
>
i (xj − ci))

p,
(4)

where the dissimilarity measure dT(u,v) can be a
Euclidean distance, angular distance, chordal distance



(a) Camera partitions (b) Intra and inter-variables

Camera 3D point Relative pose

Figure 2: An illustration of intra and inter variables (cam-
eras, relative poses, and 3D points), where (b) shows the in-
tra and inter variables corresponding to the camera partition
in (a). The blue and red dots in (b) represent intra-cameras,
and the green dots are inter-cameras. The blue and red tri-
angles represent intra-3D-points, and the green triangles are
inter-3D-points. The solid and dashed lines represent intra-
relative-poses and inter-relative-poses respectively.

etc. [49], and different norms p = 1, 2 can be considered.
The relative translations between cameras and 3D points are
also introduced to avoid generating disconnected models in
less photographed scenes [10, 49].

The above two minimization problems are often solved
by gradient and Hessian-based optimization methods,
which have a computational complexity of O((m + n)3)
for each iteration and a memory requirement ofO(mn(m+
n)) [2], where m is the number of cameras and n is the
number of scene points in translation averaging. The com-
putational complexity and memory requirement gradually
become the bottleneck for very large-scale motion averag-
ing, especially when solving problems that involve millions
of images. Figure 1 demonstrates the growth of peak mem-
ory and time cost of motion averaging along with the num-
ber of input cameras.

4. Distributed Motion Averaging
4.1. Problem Formulation

Our goal is to compute the global poses P = {Pi} of a
great number of cameras C = {Ci} from the relative rota-
tions Rrel = {Rij} and translations Trel = {tij} in a dis-
tributed manner. We assume that most of the erroneous
epipolar geometry and feature correspondences have been
discarded by the epipolar filters [11, 22, 49, 52].

Some terminologies are necessary to facilitate our fol-
lowing discussion, which are better explained by referring
to Figure 2. In this figure, we define a camera graph
G = {V, E}, where each vertex Vi ∈ V is a camera Ci, an
edge Eij ∈E will link two cameras Ci and Cj if the relative
motion between them is known. Figure 2 (a) shows a cam-
era partition, where cameras in the same partitions have the
same color. If a camera is only linked to the cameras in the
same partition, we name it as intra-camera. The set of all
these cameras is Cintra. The edges among cameras in Cintra
are referred as intra-relative-poses. If a camera is linked to

G
lo

ba
l r

ot
at

io
n 

av
er

ag
in

g

G
lo

ba
l t

ra
ns

la
ti

on
 a

ve
ra

gi
ng

LRA LTA

LRA LTA

LRA LTA

LRA LTA

G
lo

ba
l c

am
er

a 
po

se
s

C
am

er
a 

pa
rt

it
io

ni
ng

Figure 3: The system architecture of our distributed motion
averaging. We abbreviate local rotation averaging to “LRA”
and local translation averaging to “LTA”.

those in other partitions, we name it inter-cameras, which
are the separators in the nest dissection [25]. They form
a set Cinter. The edges involving a camera in Cinter are re-
ferred as inter-relative-poses. Moreover, the 3D points vis-
ible only by intra-cameras are defined as intra-3D-points
denoted by Xintra, and the others as inter-3D-points termed
as Xinter. Such a categorization of cameras and points is
illustrated in Figure 2 (b).

After camera partitioning, each partition is reconstructed
by a local motion averaging, whose complexity can be
easily controlled by the number of partitions. A com-
pact parameterization is necessary to make the following
global motion averaging manageable. For a camera parti-
tion Ck = {Cki }, the intra-cameras and 3D points within it
are parametrized by a similarity transformation:

Sk=[αkQk | lk], (5)

where αk is the scale factor, Qk is the rotation matrix, and
lk is the translation vector. In this way, the global opti-
mization is simplified to consider only inter-cameras and
the similarity transformations of different partitions, which
significantly reduces the number of involved parameters.

Now we can have the following notations. The rota-
tion and position of an intra-camera Cki ∈ Ckintra is de-
noted by Rk

i and cki respectively within a local coordi-
nate frame. This local coordinate frame is registered to
the global coordinate frame by a similarity transformation
Sk = [αkQk | lk]. Therefore, the rotation and position of
Cki in the global coordinate frame are Ri = Rk

iQ
kT and

ci=α
kQkcki +lk respectively. The rotation and position of

an inter-camera Cj ∈ Cinter are denoted as Rj and cj with
respect to the global coordinate frame.

4.2. System Architecture

Figure 3 shows our system architecture. We first divide
the input images into some partitions based on the associ-
ation among them (Section 4.3). Then the motion averag-
ing will be completed by two steps, namely rotation aver-
aging (Section 4.4) and translation averaging (Section 4.5).
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Figure 4: The accuracy of relative rotations and translations
measured by the median angular distance in degrees for dif-
ferent numbers of feature correspondences of camera pairs.
The statistics are based on the Internet data-set [49].

In each step, our system iterates between the distributed lo-
cal motion averaging and the global motion averaging until
the convergence criterion is reached. In the first iteration of
local motion averaging, we follow the traditional motion av-
eraging pipeline revisited in Section 3 to reconstruct camera
rotations or translations of each partition. From the second
iteration, we optimize the intra-camera poses while fixing
all the inter-camera poses and similarity transformations.
In the global motion averaging, the inter-camera poses and
similarity transformations associated with each partition
are optimized by the inter-relative-poses with all the intra-
camera poses fixed in their local coordinate frames.

4.3. Camera Partitioning

We start with the camera graph G = {V, E} and recur-
sively apply normalized-cut [12] to partition the camera
graph into two sub-graphs until the local motion averag-
ing corresponding to each sub-graph can be solved by a
single computer. Normalized-cut [12] also encourages a
balanced partition for a high degree of parallelism. Next,
we define the edge weight w(eij) between two cameras
Ci and Cj as the number of their inlier feature correspon-
dences. As shown in Figure 4, camera pairs with strong
association indicate robust relative poses. In this way, cam-
era pairs with more accurate relative motions tend to be
grouped together. Finally, we have a set of camera parti-
tions {Ck | Ck = {Cki }}. A sample partition is shown in
Figure 5 (a).

4.4. Rotation Averaging

Local rotation averaging For every partition of cam-
eras Ck = {Cki }, we fix the rotations of similarity trans-
formations Q = {Qk} and the rotations of inter cameras
Rinter = {Rj}, and obtain associate rotations of intra-
cameras Rintra = {Rkintra |Rkintra = {Rk

i }} with respect to
their local coordinate frames by the minimization problem:

∀Ck : LR(Rk) = LR
intra(Rk) + LR

betw(Rk). (6)

First, LR
intra(Rk) is the local rotational error function of

intra-cameras, which is defined as:

LR
intra(Rk) =

∑
Rk

i ,R
k
j∈Rk

intra

dR(Rij ,R
k
jR

k
i

T
)p. (7)

(a) (b)

(c) (d)

Figure 5: The intermediate results of the City-B data-set. (a)
The partitions of cameras. (b) The camera poses after the
first global motion averaging. (c) The camera poses after
the second local motion averaging. (d) The final camera
poses and sparse 3D points after bundle adjustment.

Second, LR
betw(Rk) is the local rotational error function be-

tween intra-cameras and inter-cameras. Given that Ri =

Rk
iQ

kT , we can define LR
betw(Rk) as:

LR
betw(Rk) =

∑
Rk

i ∈R
k
intra

Rj∈Rinter

dR(Rij ,Rj(R
k
iQ

kT )
T

)p. (8)

Global rotation averaging With the rotations of intra-
cameras Rintra = {Rkintra |Rkintra = {Rk

i }} fixed, we define
the global rotational error GR(S,R) as:

GR(S,R) = GR
betw(S,R) +GR

inter(R). (9)

First, GR
betw(S,R) is the rotational error function between

intra-cameras and inter-cameras. Since we have Ri =

Rk
iQ

kT , GR
betw(S,R) is defined by:

GR
betw(S,R)=

∑
k

∑
Rk

i ∈R
k
intra

Rj∈Rinter

d(Rij ,Rj(R
k
iQ

kT )
T

)p. (10)

Moreover, GR
inter(R) is the global rotational error function

of inter-cameras and it is defined as:

GR
inter(R) =

∑
Ri,Rj∈Rinter

d(Rij ,RjR
T
i )
p. (11)

We set the rotation of any one camera Ri = I3×3 to fix the
gauge freedom.

4.5. Translation Averaging

After obtaining the global rotations, we continue to aver-
age camera translations while regarding all the rotations as
known parameters.



Local translation averaging With inter-camera positions
Tinter = {cj} and similarity transformations S = {Sk |Sk =
[αkQk | lk]} fixed, we can obtain the positions of intra-
cameras Tintra = {T kintra | T kintra = {cki }} with respect to their
local coordinate frames by minimizing the following error
function considering both camera-to-camera and camera-
to-point relative translations in terms of camera partitions
{Ck | Ck={Cki }}. That is

∀Ck : LT(T k) = LT
intra(T k) + LT

betw(T k). (12)

Specifically, the local positional error function of intra-
cameras denoted by LT

intra(T k) is defined as:

LT
intra(T k) =

∑
ck
i , c

k
j∈T k

intra

dT(tij ,R
k
j (c

k
i − ckj ))

p. (13)

Since we have ci=αkQkcki +lk, the local positional error
function between intra-cameras and inter-cameras denoted
by LT

betw(T k) is defined as:

LT
betw(T k) =

∑
ck
i ∈T

k
intra

cj∈Tinter

dT(tij ,Rj((α
kQkcki +lk)−cj))p (14)

Here, we omit the camera-to-point relative translation con-
straints, which take a similar form as the camera-to-camera
constraints in Equation 13 and 14.

Global translation averaging Fixing the intra-camera
positions Tintra={T kintra | T kintra={cki }}, we define the global
positional error function GT(S, T ) as:

GT(S, T ) = GT
betw(S, T ) +GT

inter(T ). (15)

Here,GT
betw(S, T ) is the global positional error function be-

tween intra-cameras and inter-cameras. Given that ci =
αkQkcki +lk, the global positional error is defined as:

GT
betw(S, T )=

∑
k

∑
ck
i ∈T

k
intra

cj∈Tinter

dT(tij ,Rj((α
kQkcki+l

k)−cj))p. (16)

Finally, we define the global positional error of inter-
cameras as:

GT
inter(T ) =

∑
ci,cj∈Tinter

dT(tij ,Rj(ci−cj))p. (17)

Likewise, we omit the camera-to-point relative translation
constraints in Equation 16 and 17. We fix the gauge free-
dom by setting the position of any one camera ci = 03×1
and the scale of any one similarity transformation αk = 1.

4.6. Implementation Details

This section briefly expounds on the implementation of
our large-scale motion averaging system. It needs to be em-
phasized that the proposed distributed and robust motion av-
eraging framework is also applicable to the state-of-the-art
motion averaging approaches [3, 5, 6, 7, 17, 18, 20, 27, 33]
with different choices of distance measures and norms.
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Figure 6: The comparison of the motion averaging running
time between the traditional and our distributed approaches
with different numbers of partitions. The time of one par-
tition corresponds to that of the traditional method. The
running time is calculated on the city-scale data-sets on the
average of 10 runs using our distributed computing system.

Camera partitioning Figure 1 shows that as the number
of camera partitions increases, both the memory and time
consumption first remarkably decrease and then stabilize.
That means over-partitioning does not bring additional ben-
efits. Therefore, the data-sets handled by a single computer
are partitioned according to the computer core number. In
our experiments, we limit the number of cameras within a
partition (≤ 3000) so that each partition can be fit into a
single computer for the subsequent operations.

Relative motions In each partition, we follow the work
in [4, 58] and utilize robust local incremental SfM to ob-
tain a partial reconstruction and associate relative poses.
The introduction of local incremental SfM is helpful in
two aspects. First, incremental SfM employs RANSAC
based filters [24, 30] and repeated intermediate bundle ad-
justment [46] to discards most of the erroneous epipolar
geometry and feature correspondences. More importantly,
the relative translation between cameras Cki and Ckj with
the baseline length can be obtained, and we denote it as
tkij . Since tkij is also up to the similarity transformation
Sk = [αkQk | lk] in the global coordinate frame, we have
tij = αktkij . Therefore, we can directly use the Euclidean
distance between two relative translations as the dissimilar-
ity measure of translation averaging. To introduce the con-
straints of camera-to-point relative translations into transla-
tion averaging, we choose a subset of scene points by greed-
ily selecting 3D points visible by the most number of cam-
eras until each camera sees at least 20 points [49].

Distance measures Given that most of the erroneous rela-
tive motions have been discarded by local incremental SfM,
we directly refer to the robust non-linear loss function for a
fast and robust convergence. First, we use the angular dis-
tance, the most natural metric on SO(3) [20], to measure
the distance between two rotation matrices S and R, namely
dR(R,S) = || log(RST )||2. Moreover, we solve the trans-
lation averaging by minimizing Euclidean distances be-
tween relative translations with baseline lengths, which is
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Figure 7: The convergence rate of the rotational and posi-
tional errors provided different numbers of partitions. The
line chart is obtained on the city-scale data-sets [49] on the
average of 10 runs.

a much well-posed similarity averaging according to [11].
That measures the distance between two vectors u,v as
dT(u,v) = Lδ(u−v) and Lδ(x) = δ(

√
1 + (xδ )

2−1) is
the Pseudo-Huber loss function with slope δ (δ = 0.1). The
slope is set according to the real GPS scale and we fix the
scale of one relative translation of two cameras which have
real GPS positions from the EXIF tag.

Non-linear optimization To solve all the non-linear least
square objective functions defined in Equation (6), (9), (12)
and (15), we use the standard Levenberg-Marquardt algo-
rithm [32]. The efficient package [2] is adopted as the
solver. To initialize the similarity transformations, we fol-
low the work in [4] that uses sampled epipolar geometry
across partitions to roughly merge partial sparse reconstruc-
tions together.

Since the local motion averaging reaches convergence
before global motion averaging, we have a very small num-
ber of iterations of local and global motion averaging before
convergence. More importantly, the communications are re-
markably reduced, and local motion averaging becomes in-
herently highly parallel. We use a standard stopping criteria
adopted in non-linear optimization. In both rotation aver-
aging and translation averaging, an iteration stops when the
root mean square error of their corresponding distance mea-
surement decreases by less than 1%. The histogram in Fig-
ure 6 shows that our approach with 32 partitions takes only
15% of the time of the traditional approach.

As shown in Figure 7, we regard the residual of the tra-
ditional motion averaging (i.e. 1 partition) as the baseline.
We can see that our algorithm converges in two global it-
erations with 2 and 4 partitions and three global iterations
with 8, 16 and 32 partitions. After the first iteration, the
rotational and positional residuals drop to approximately
0.012% − 2.2% and 0.90% − 8.6% above the minimum
residuals respectively. After the second iteration, the rota-
tional and positional residuals are about 0.012% − 0.57%
and 0.34%− 0.57% above the minimum residuals.

5. Experiments
The experiments of the city-scale data-sets are run on

a distributed computing system consisted of 12 comput-

ers with 12 core 3.6 GHz processors and 64 GB RAM.
The Internet data-set [49] and the sequential data-set [22]
are run on a single computer with the same configuration.
We also use a computer with 40 core 3.6 GHz processors
and 512 GB RAM to test the traditional methods on the
city-scale data-sets. As for the implementation of our SfM
pipeline, we use SIFT [26] to detect scale-invariant fea-
tures, the method in [31] to retrieve candidate image pairs
for putative feature matching, and distributed bundle adjust-
ment [54] for the final non-linear optimization of both cam-
era poses and 3D points.

Internet data-sets Table 1 demonstrates the statistical
comparison between the global SfM methods [33, 45, 49]
and our implementation with and without the proposed dis-
tributed formulation on the Internet data-set [49]. After
applying our framework to the global SfM methods [33,
45, 49], they obviously reconstruct more cameras. We
can verify that the divide-and-conquer optimization, where
the well-posed subproblems are tackled first and subse-
quently merged together, encourages a robust convergence
indeed, especially for the data-set consisted of images cap-
tured in a wild. The improvement of efficiency is signifi-
cant after adopting our distributed formulation. The works
in [33, 45, 49] and our implementation (denoted as T ∗MA)
under the proposed framework are 2.6− 9.9 times more ef-
ficient than the original methods (TMA). We further test the
robustness of our pipeline on the challenging ArtsQuad6K
and Dubrovnik6K data-sets. The overview and zoom-in fig-
ures of these data-sets are shown in Figure 9.

Sequential data-sets In Figure 8, we further demonstrate
the robustness of our method on the Temple of Heaven data-
set [22] with 341 sequential images under different levels of
Gaussian noise in the relative motions. The sparse recon-
struction from the traditional motion averaging approach
is regarded as the ground-truth for the absolute measure-
ment of rotational and positional errors. A Gaussian noise
N (0, σ2

r) is added to the relative rotations, more specifically
to the angle of the angle-axis representation, where σr = 1
(in degrees). Another Gaussian noise N (0, σ2

t ) is added
to the relative translations, where σt = 1 (in centimeters).
At the noise level of 7σr and 16σt, our approach succeeds
to reconstruct the close-loop while the traditional method
fails. Figure 8(e) and (f) also show the absolute camera ro-
tation and position error curves. The errors of the traditional
method fluctuate largely as the noise level increases, while
those of our method increase much more stably. In the Fig-
ure 10, we add an experiments to confirm the necessity of
intra variables.

City-scale data-sets Finally, we turn to the challenging
city-scale data-sets, in which the largest City-A data-set
contains 1.21 million images of 50 mega-pixels. The peak
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Figure 8: The results of the sequential data-set. (a) are camera poses from our method at the rotational Gaussian noise level
of 7σr and (b) are from traditional methods. (c) are camera poses from our method at the positional Gaussian noise level of
16σt and (d) are from traditional methods. (e) and (f) are comparisons of the absolute rotational and positional errors given
different levels of rotational and positional Gaussian noises.

Datasets
Number of reconstructed cameras Motion averaging time (sec)

# images LUD [33] 1DSfM [49] Sweeney [45] Ours LUD [33] 1DSfM [49] Sweeney [45] Ours
Nc N∗c Nc N∗c Nc N∗c Nc N∗c TMA T ∗MA TMA T ∗MA TMA T ∗MA TMA T ∗MA

Alamo 577 547 551 529 542 533 547 549 559 133 20 752 97 892 112 173 24
Ellis Island 227 207 213 214 221 203 217 221 224 76 11 139 25 155 20 26 13
Metropolis 341 288 287 291 307 272 291 298 322 120 19 201 28 233 32 88 16

Montreal N.D. 450 435 442 427 439 416 433 445 445 167 29 1135 142 1236 156 167 27
Notre Dame 553 536 538 507 504 501 519 514 542 126 24 1445 184 1596 200 246 32
NYC Library 332 320 327 295 307 294 304 290 312 54 11 392 56 437 57 79 12

Piazza del Popolo 350 305 321 308 327 302 331 334 342 31 12 191 31 224 31 72 16
Piccadilly 2152 1953 2077 1956 2099 1928 2047 2114 2122 2224 284 2425 303 3455 433 932 173

Roman Forum 1084 901 1021 989 1042 966 959 1079 1079 1243 157 1245 161 1415 192 604 89
Tower of London 572 425 482 414 504 409 507 458 510 86 18 606 79 643 82 320 64

Union Square 789 698 717 710 704 701 712 720 732 264 33 340 45 442 60 145 35
Vienna Cathedral 836 750 786 770 792 771 803 793 807 208 34 2837 360 3135 395 712 72

Yorkminster 437 404 417 401 417 409 422 407 413 148 23 777 102 876 109 199 29

Table 1: The statistics of the Internet data-sets [49]. Here, N∗c and Nc denote the number of reconstructed cameras from an
approach with and without the the proposed distributed and robust framework. T ∗MA and TMA represent the time of motion
averaging with and without the proposed framework. We implement the work [33, 45] and obtain the statistics.
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Figure 9: The SfM results of the challenging ArtsQuad6K
and Dubrovnik6K data-sets from our pipeline.

memory of the traditional motion averaging approach de-
noted as “TMA” on the City-A data-set is 134.01 GB, which
runs out of memory on our distributed computing system
with 64 GB RAM, and it takes 86.7 hours on a single com-
puter to finish a traditional motion averaging. In contrast,
our approach completes motion averaging in 9.44 hours
with only 7.06 GB peak memory on the distributed com-
puting system. As shown in the table of Figure 12, the

Folded 
structure

(a) Overview (c) Without intra-variables(b) With intra-variables

Figure 10: The sparse reconstruction from motion averag-
ing with and without intra variables. As (c) shows, the
sparse reconstruction without intra variables (merged by
similarity transformations) will introduce folded structures,
namely poor camera poses.

peak memory of our approach on the city-scale data-sets
is only 4.2% − 7.7% of the traditional motion averaging
method, and the time cost is 10.9% − 26.0% of the tradi-
tional method.

Limitations We can see from the plot in Figure 12 that as
the number of images drastically increases, more partitions
are introduced and the global optimization gradually domi-
nates the memory requirement. Although the peak memory
of our largest City-A data-set is only 7.06 GB and there is
still a lot of headroom left, global motion averaging comes
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Figure 11: The visual SfM results of our city-scale data-sets. Figures from left to right are respectively camera partitions, the
final SfM results after bundle adjustment, and the detailed SfM results visualized from different viewpoints.
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Data-set # images Resolution # partitions # cameras # relative poses # points Peak memory [GB] Time [hours]
TMA Ours TMA Ours

City-A 1210106 50 Mpixel 364 1207472 263.4M 1.72B 134.01 7.06 86.70 9.44
City-B 138200 24 Mpixel 35 138193 29.3M 100.2M 13.76 0.72 17.85 2.45
City-C 91732 50 Mpixel 24 91714 21.3M 76.2M 9.12 0.38 10.95 1.95
City-D 36480 36 Mpixel 13 36428 8.1M 27.8M 3.62 0.28 3.65 0.95

Table 2: SfM statistics for the city-scale data-sets. TQC , TMA, TBA and T∑ denotes binary tree construction time, motion averaging time,
bundle adjustment time and total time respectively.
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Figure 12: Left: the statistics of the city-scale data-sets. “Traditional motion averaging” is abbreviated as “TMA”. Right: the
peak memory of local and global motion averaging given different numbers of partitions on the City-A data-set.

to be the bottleneck of scalability of our approach along
with the continuously enlarged reconstruction scale.

6. Conclusion

Finally, the contributions of this paper can be summed
up in two points. First, we introduce a divide-and-conquer
framework to handle large-scale motion averaging problems
in a distributed manner with almost a magnitude reduction
in both memory and computation time. Second, the recur-
sive partitioning reorders the optimization of camera poses
in a more robust manner. Remarkably, the proposed frame-
work is applicable to the majority of the state-of-the-art

motion averaging methods to boost their scalability and ro-
bustness. Future work includes further investigation of the
numerical methods of parallel and distributed computation.
We also intend to propose a truly distributed SfM system
with acceptable machine-machine communications able to
handle more large-scale motion averaging problems.
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