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Abstract

Face synthesis has achieved advanced development by
using generative adversarial networks (GANs). Existing
methods typically formulate GAN as a two-player game,
where a discriminator distinguishes face images from the
real and synthesized domains, while a generator reduces
its discriminativeness by synthesizing a face of photo-
realistic quality. Their competition converges when the
discriminator is unable to differentiate these two domains.

Unlike two-player GANs, this work generates identity-
preserving faces by proposing FaceID-GAN, which treats a
classifier of face identity as the third player, competing with
the generator by distinguishing the identities of the real and
synthesized faces (see Fig.1). A stationary point is reached
when the generator produces faces that have high quality
as well as preserve identity. Instead of simply modeling the
identity classifier as an additional discriminator, FaceID-
GAN is formulated by satisfying information symmetry,
which ensures that the real and synthesized images are
projected into the same feature space. In other words, the
identity classifier is used to extract identity features from
both input (real) and output (synthesized) face images of
the generator, substantially alleviating training difficulty
of GAN. Extensive experiments show that FaceID-GAN is
able to generate faces of arbitrary viewpoint while preserve
identity, outperforming recent advanced approaches.

1. Introduction

Image generation has received much attention in recent
years [7, 10]. Among them, synthesizing a face image of
a different viewpoint but preserving its identity becomes an
important task, owing to its wide applications in industry,
such as video surveillance and face analysis.

Recently, this task has been significantly advanced by
generative adversarial networks (GANs). For example,
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Figure 1. (a.1) shows that an original GAN (dashed box) is
extended by an identity classifier C to predict identity label `id.
It is formulated as a two-player game, where C does not compete
with the generator G. G uses a real image xr as input and outputs
a synthesized image xs. z represents random noise. D is a
discriminator to differentiate real and synthesized domains. (a.2)
shows FaceID-GAN, which is a three-player GAN by treating C
as the third player to distinguish identities of two domains, `rid
and `sid. C collaborates together with D to compete with G,
making G produce identity-preserving and high-quality images
to confuse both C and D. FaceID-GAN is designed by using a
criterion of information symmetry, where C is employed to learn
idenity features for both domains. (b) visualizes some examples of
FaceID-GAN, showing its capacity to generate faces of arbitrary
viewpoint and expression, while preserving identity.

as shown in Fig.1 (a.1), previous methods [33, 28] are
typically built upon the original GAN [9], which is for-
mulated as a two-player game, including a discriminator
and a generator, denoted as D and G respectively. In the
conventional GAN, G employs a real image xr as input
and outputs a synthesized image xs, while D adopts these
two images as inputs and outputs whether they are real or



synthesized (fake). In training, D and G compete with each
other, where the discriminator maximizes its classification
accuracy, whereas the generator reduces accuracy of the
discriminator by synthesizing images of high quality. Their
competition converges when D is unable to distinguish the
fake data from the real data, indicating that the qualities of
images in these two domains are sufficiently close.

In order to produce identity-preserving face images,
existing methods extend the original GAN by using an
additional classifier, denoted as C, which employs both
xr and xs as inputs, and predicts their identity labels,
denoted as `id ∈ RN×1. This label represents a 1-of-
N vector of N subjects, where each entry indicates the
probability of an image belonging to a certain subject. In
other words, to preserve identity, G is expected to output
a face (synthesized) with the same identity label with its
cooresponding input (real) under the supervision of C, as
shown in Fig.1 (a.1).

In the above, althoughC is able to learn identity features,
it is unable to satisfy the requirement of preserving identity,
i.e. to push real and synthesized domains as close to each
other as possible. This is illustrated in Fig.2 (a). Given
two real images that have different identities, with identity
features frid1 and frid2, and a synthesized image, with identity
feature fsid1, which is expected to have the first identity. In
previous approaches, when the distance between fsid1 and
frid1 is smaller than the distances between fsid1 and all the
remaining identities, i.e. fsid1 locates next to the boundary
but slightly biases towards frid1, C is sufficient to assign
them the same label, but neglects how close they are in the
feature space, impeding the identity-preserving capacity.

This work argues that building on the conventional two-
player GAN as existing methods have done, is not sufficient
to preserve face identity. To this end, we present FaceID-
GAN, a novel deep generative adversarial network that is
able to synthesize face images of arbitrary viewpoint, while
well preserving identity as shown in Fig.1 (b). It has two
appealing properties.

First, FaceID-GAN provides a novel perspective by
extending the original two-player GAN to a GAN with three
players. Unlike previous methods that treatC as a spectator,
which does not compete with G, FaceID-GAN treats C as
the third player, which not only learns identity features, but
also differentiates two domains by assigning them different
identity labels `rid and `sid, as shown in Fig.1 (a.2). Intu-
itively, in FaceID-GAN,C competes withG and cooperates
with D. In particular, C and D distinguish two domains
with respect to face identity and image quality respectively,
whereasG tries to improve image generation to reduce their
classification accuracies. Training is converged whenC and
D are unable to differentiate the two domains, implying
that G is capable of producing face images that are photo-
realistic as well as identity-preserving.

(a) w/o competition (b) w/ competition
Figure 2. The merit of treating C as a competitor in FaceID-GAN.

Fig.2 (b) illustrates the merit of the above procedure,
where the notations are similar as Fig.2 (a). In FaceID-
GAN, C not only classifies between “id1” and “id2”, but
also between real “id1” and fake “id1”, by using 2N labels.
In this case, in order to confuse C, G has to synthesize
an image, whose identity feature, fsid1, is not only located
inside the boundary of frid1, but also moved towards frid1 as
much as possible, reducing the distance between them so as
to decrease classification accuracy of C. After competition,
G is able to substantially preserve face identity.

Second, this work designs FaceID-GAN by following
information symmetry, which is a general principle to
design the architectures of GANs. As shown in Fig.1
(a.2), C in FaceID-GAN extracts features from both xr

and xs, leading to symmetry of information, unlike (a.1)
where identity feature of xs is extracted by using C, but
that of xr is extracted by using G implicitly. Recall that
the network has to move fsid1 towards frid1 in attempt to
preserve identity, as shown in Fig.2. If these features are
extracted by usingG andC separately, the distance between
them is probably large, bringing training difficulty, because
these two modules represent two different feature spaces.
In contrast, since features of both domains are extracted by
usingC in FaceID-GAN, their distance could be close, even
at the beginning when the network is trained from scratch,
significantly reducing the training difficulty.

To summary, this work has three main contributions.
(1) The conventional two-player GAN is extended to three
players in FaceID-GAN, where the identity classifier col-
laborates together with the discriminator to compete with
the generator, producing face images that have high quality
and well preserved identity. (2) To design FaceID-GAN,
we present information symmetry to alleviate training dif-
ficulty. It can be treated as a general principle to design
the architectures of GANs. (3) Besides high visual quality,
FaceID-GAN is able to generate face images with high
diversity in viewpoints and expressions, surpassing the
recent advanced methods, which are carefully devised to
deal with pose variations.

2. Relations to Previous Work
This section summarizes previous works that synthesize

face images by using deep generative models, and compares
them to FaceID-GAN. In the literature, there are many
methods of image generation that do not employ GANs.
We would also like to acknowledge their contributions
[12, 39, 40, 32].



In general, existing deep models can be categorized into
three groups, based on their learned input-output image
mappings, including one-to-one, many-to-one, and many-
to-many as shown in Fig.3, where different networks have
different components. Besides those mentioned before, E
denotes an encoder that projects a real image into a hidden
feature space, and P is a facial shape feature extractor. In
this part, we just take viewpoints (poses) as an example.

One-to-one. Some works learn one-to-one mapping as
shown in Fig.3 (a), where a face of one style is transformed
to the other, such as from image to sketch [34], from low
to high resolution [8], and from visible to infrared spectrum
[20]. In the early stage, these tasks were often solved by
using encoder-decoder structures, where E encodes xr to
hidden feature h, G transforms this feature to xs, and C
predicts identity. In this setting, as shown by the red arrows
in (a), G is trained by minimizing the per-pixel difference
between xs and its ground truth image `sI .

Many-to-one. With GANs [9, 1, 36], the network in
(a) is extended to learn many-to-one mapping as shown in
(b), such as face frontalization [6, 15, 33], which transforms
multiview to frontal view. With the conventional GANs, G
andD are two competitors, whileC is a spectator that learns
facial identity. However, in this setting, since the input data
distribution has larger variations (multiview) than that of the
output (single view), the pose label of the real image, `rp, is
employed as conditional input to reduce training difficulty.

The above methods require the ground truth image `sI
as supervision, and the label `rp as input, impeding their
applications in a more challenging setting as shown in (c).
Given an image of arbitrary pose as input, the network in (c)
produces faces of different poses, while preserving identity
[16, 28, 29]. This problem is extremely challenging,
because both the input and output data distributions have
multiple modes.

Many-to-many. There are three major improvements
when comparing (c) to (b). First, a module of pose P
is used as a constraint, ensuring xs had the desired pose
`sp. Second, G has three inputs rather than two, where
h is the same but the other two are different, including a
vector of random noise, z, and the desired pose, `sp. In
fact, the network cannot be trained without them. For
example, if (xr, `rp) are fed into G just like what (b) does,
the network fails to produce xs of different poses, because
transforming the same input to multiple outputs has large
ambiguity. Instead, (xr, `sp, z) are used to reduce ambiguity
and improve diversity of the generated images. Third,
the ground truth image, `sI , is removed and the per-pixel
loss between xs and `sI is also removed, enabling training
with unpaired data. In other words, the network learns
to generate xs of different poses, no matter whether the
corresponding ground truth image exists or not.

Although these methods eliminate the paired data as-
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Figure 3. FaceID-GAN is compared to existing works, including
learning (a) one-to-one, (b) many-to-one, and (c) many-to-many
mappings for face generation. In all these four figures, the arrows
in dark represent forward computations, whilst the dashed arrows
in red represent backward supervisions. Better viewed in color and
zoom in 150%.

sumption, they still rely on label of pose, limiting their
generalization capacity. For example, since the label is
defined as a discrete 1-of-K vector, it is difficult to gener-
alize to a full spectrum of viewpoints, which is smooth and
continuous. Furthermore, as aforementioned, the methods
in (a-c) break the symmetry of information. For example,
in (c), xr is represented by h extracted by E, while xs

is represented by fsid extracted by C. Obviously, their
identity information are represented by features of different
spaces. In other words, before learning to produce xs

with preserved identity, G is required to learn a transition
between feature spaces, e.g. from h to fsid, bringing non-
negligible training difficulty.

FaceID-GAN. In (d), FaceID-GAN addresses these
weaknesses in two folds. First, all above methods are
based on two-player GANs, which have flat performances
in preserving identity. In contrast, FaceID-GAN introduces
a third player, making G to compete with C and D simul-
taneously, and hence synthesize faces with both preserved
identity and high quality. Second, FaceID-GAN follows
information symmetry criterion by replacing E with P and
C, where parameters of the two modules of P (or C) are
shared. In this case, xr and xs are represented by using
the same feature space, alleviating the training difficulty.
Moreover, G is directly supervised by features from two
domains instead of by certain labels, leading to a better
generation.

In this work, we use the well-known 3D Morph Model
(3DMM) [3] to help represent the facial shape feature fp,
including not only pose, but expression and general shape
information as well.
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Figure 4. The overall framework of FaceID-GAN. G is the generator that collects all information and synthesizes faces under certain
constraints. P is the facial shape estimator to provide shape information. C provides identity information and also competes with G with
respect to facial identity. D is the discriminator that competes with G from quality aspect. Better viewed in color.

3. Proposed Method
Fig.4 illustrates the overall framework of FaceID-GAN.

Given an input face xr of 128× 128, P estimates its facial
shape feature, frp ∈ R229, based on the 3D Morphable
Model [3], and then turns frp into the desired shape feature,
f ′p, by using a transformation denoted as g(·). We have f ′p =
g(frp ), which represents the desired pose and expression.
C is a face recognition module to extract identity feature,
frid ∈ R256. G employs f ′p, frid, and a random noise
z ∈ R128 as inputs, and synthesizes a face image xs of
size 128× 128, denoted as xs = G(f ′p, f

r
id, z).

Overview. As discussed before, FaceID-GAN has three
players, including D, C, and G, where the first two coop-
erate to discriminate real and synthesized domains, while
the last one reduces their discriminateness. In this work,
G is also supervised by P , so as to control viewpoint and
expression. The loss functions for the above components
are defined as

min
ΘD

LD = R(xr)− ktR(xs), (1)

min
ΘC

LC = φ(xr, `rid) + λφ(xs, `sid), (2)

min
ΘG

LG = λ1R(x
s) + λ2d

cos(frid, f
s
id) + λ3d

l2(f ′p, f
s
p ),

(3)

where R(·), φ(·, ·), dcos(·, ·), and dl2(·, ·) denote different
energy functions. λ, λ1, λ2, and λ3 are different weight
parameters between these functions. kt is a regularization
coefficient that balances between R(xr) and R(xs) at the
t-th update step. Intuitively, LD minimizes the energy
of R(xr) but maximizes that of R(xs) to distinguish two
domains according to their image quality. LC contains
identity classifier φ, which classifies faces of two domains
by using different identity labels as introduced before, to
differentiate two domains according to their identities. In
LG, G tries to compete with D by producing high-quality
face to minimize R(xs). G also is trained to minimize
the cosine distance between identity features of xr and
xs, denoted as dcos(frid, f

s
id), and to minimize l2 euclidean

distance between the synthesized shape feature fsp and the
desired shape feature f ′p, denoted as dl2(f ′p, f

s
p ), in order

to preserve identity and change pose and expression. We
discuss details of these components in the following.

3.1. Discriminator D

The conventional way [9] to to discriminate the real
and synthesized domains is by using a binary classifier.
However, it is infeasible for image generation because of its
sparse supervision. To incorporate per-pixel supervisions
[1, 35], this work employs an auto-encoder as discriminator
D, which is introduced in [2]. In other words, D works on
reconstructing an input image by minimizing the pixel-wise
distance between input and output. We have R(x) = ||x−
D(x)||1 and LD = R(xr)− ktR(xs), which differentiates
two domains by minimizing the reconstruction error of real
image, but maximizing that of synthesized image.

Following [2], to keep balance between R(xr) and
R(xs), we introduce a regularization term kt, which is
dynamically updated in the training process,

kt+1 = kt + λk(γR(x
r)−R(xs)), (4)

where λk is the learning rate and γ represents a diversity
ratio of xs. We set λk = 0.001 and γ = 0.4 in this work.

3.2. Classifier C

To retain identity, C learns identity features of the real
and synthesized images, xr and xs, whose features are
denoted as frid and fsid. C discriminates two domains by
classifying them using different labels. We formulate C
as a 1-of-2N classification problem, with the purpose of
classifying xr to first N labels and xs to the last N labels,
by using the cross-entropy loss

φ(xr, `rid) =
∑
j

−{`rid}j log({C(xr)}j),

φ(xs, `sid) =
∑
j

−{`sid}j log({C(xs)}j),
(5)



where j ∈ [1, 2N ] is the j-th index of identity classes.
However, treating these 2N classes equally is unreason-
able, because in the identity feature space, a synthesized
face should be closer to its corresponding real input face
when comparing with the other identities. Therefore, we
introduce a loss weight λ as shown in Eqn.(2), to balance
the contribution of the synthesized faces, making C learn
more accurate identity representation.

3.3. Shape Estimator P

We incorporate the 3D Morphable Model (3DMM) [3] to
project facial images into a shape feature space, represent-
ing pose and expression. The 3DMM of faces is formulated
as

S = S+Aidαid +Aexpαexp,

V(p) = f ∗R(θx, θy, θz) ∗ S+ [tx, ty, tz]
T
,

p = [αid
T ,αexp

T , θx, θy, θz, tx, ty, tz]
T
,

fp = [αid
T ,αexp

T , θy]
T
,

(6)

where S is a mean shape of a 3D face, Aid and Aexp are the
PCA bases for shape [23] and expression [4] respectively.
Therefore, S is the 3D shape of certain shape and expression
in the 3DMM coordinate system, which can be uniquely de-
fined by the coefficients αid ∈ R199 and αexp ∈ R29. Here
V(·) is a 3D shape in the image coordinate system, which is
obtained by transforming S using scaling coefficient f , ro-
tation coefficients [θx, θy, θz]T , and translation coefficients
[tx, ty, tz]

T . p denotes the complete set of parameters in
3DMM. Among these parameters, αid provides the general
shape information, which differs between identities, while
αexp and θy control expression and pose respectively.

To achieve end-to-end training, we incorporate a network
P to learn the shape feature. Before training, we follow
[38] to prepare the 3DMM coefficients for all the images
xr, denoted as f

r

p. Similar to [37], P is trained to minimize
the weighted distance function

min
ΘP

LP = (P (xr)− f
r

p)
T
W(P (xr)− f

r

p), (7)

where W is an importance matrix whose diagonal elements
are the weights.

Different from C that preserves identity of two domains,
this work requires pose and expression to be varied but not
preserved. Therefore, given an input real image xr, we use
P to extract its shape feature frp = [αr

id
T ,αr

exp
T , θry]

T
and

transform this feature by using

f ′p = g(frp ,α
′
exp, θ

′
y) = [αr

id
T ,α′exp

T
, θ′y]

T , (8)

where αr
id represents the original shape information of xr,

and α′exp and θ′y represent the desired pose and expression.

In other words, we disentangle frp into facial shape, pose,
and expression by using the network P , and use function
g(·) to introduce randomness to shape feature. Meanwhile,
G is trained to generate faces under the supervision of P by
keeping f ′p remained, no matter what α′exp and θ′y are. In
this way, G is able to synthesis faces of arbitrary pose and
expression.

3.4. Generator G

As shown in Eqn.(3), besides minimizing R(xs) to
compete with D, G is also trained by minimizing two
distances

dcos(frid, f
s
id) = 1− frid

T fsid
||frid||2||f

s
id||2

, (9)

dl2(f ′p, f
s
p ) = ||fsp − f ′p||22, (10)

where identity is preserved by minimizing the cosine dis-
tance between identity features of the real and synthesized
images, whereas pose and expression are changed by mini-
mizing the euclidian distance between shape feature of the
synthesized face and the desired shape.

3.5. Implementation Details

Before training, all faces used in this work are aligned by
using [26] to image size 128× 128. C employs ResNet-50
[13] by changing the active function from “BN+ReLU” to
“SELU” [18]. P employs ResNet-18, on top of which we
add three more fully-connected layers following [24]. G
and D use BEGAN structure [2].

At the training stage, z is sampled from a uniform
distribution with range [−1, 1]. λ1, λ2, λ3 are set to balance
the initial losses of generator G, corresponding to D, C
and P respectively. λ is 1 at the beginning and gradually
decreases as training proceeds. The batch size is 96, equally
distributed to 8 GPUs. We use Adam optimizer [17] for all
four components, and the parameters are updated for 200k
steps. The initial learning rate (lr) of G and D is 0.0008,
and drops 0.0002 for every 50k steps. The initial lr of C
is 0.0008, and drops to 0.0005 at 150k-th step. Except P
is well pre-trained, all other three modules in this work are
trained from scratch.

4. Experiments
FaceID-GAN aims at synthesizing high-quality identity-

preserving faces, but with high diversity in poses and
expressions. Extensive experiments are conducted to com-
pare FaceID-GAN with existing face generation methods,
including face synthesis and face verification.

Datasets. FaceID-GAN is trained on CASIA-WebFace
[31] and evaluated on multiple different datasets, including
LFW [14], IJB-A [19], CelebA [21], and CFP [25]. We
briefly introduce these datasets in the following.



1) CASIA-WebFace. It consists of 494, 414 images
of 10, 575 subjects. We employ it for training. 2) LFW.
It consists of 13, 233 images of 5, 749 subjects. With
LFW, existing works [38, 33] evaluate their performances
on the tasks of face frontalization and verification. FaceID-
GAN is also applicable to these tasks by generating faces
with frontal viewpoint and neutral expression, though it
is not specially designed for this purpose. We evaluate
FaceID-GAN on these tasks following existing protocols
and compare it to previous works. 3) IJB-A. It consists of
25, 808 images of 500 subjects. Following previous works,
we evaluate the identity-preserving capacity of FaceID-
GAN on this dataset. 4) CelebA. This is a large-scale
dataset that contains 202, 599 images of 10, 177 subjects,
where the face images have large diversity, making it an
appropriate test set for face image synthesis. 5) CFP. It
consists of 500 subjects, each of which has 10 images in
frontal view and 4 images in profile view. Following prior
work [29], we evaluate the effectiveness of FaceID-GAN to
generate faces under different viewpoints.

The above evaluation sets (2-5) consist of nearly 250K
images from a wide spectrum of viewpoints and subjects.
The overlapping ratio between the subjects in training and
evaluation sets is smaller than 0.1%. The experimental
setting used in this work is challenging, substantially char-
acterizing the superiorities over existing algorithms.

4.1. Face Synthesis

This section evaluates FaceID-GAN from three aspects,
including image quality, control of pose and expression, and
ability to preserve identity.
Frontalization and Identity. Generating faces of canonical
viewpoint is an important task, because it reduces facial
variations that hinder face verification. Unlike previous
approaches that are specially designed to address this
problem, such as HPEN[38] and FF-GAN [33], FaceID-
GAN treats it as a subtask by synthesizing faces with the
desired pose of 0◦. Fig.5 visualizes results of four images
selected from LFW by following [33]. On the left corner
of each synthesized image is a score, which indicates the
similarity of identity between the input and output images.
To compute these scores, we employ a face recognition
model [27] trained on MS-Celeb-1M [11], which is totally
independent of this work, making the results convincing.
This model is also applied to the remaining experiments.

From Fig.5, we see that faces generated by FaceID-GAN
outperform others in following aspects. First, FaceID-GAN
produces faces of exactly frontal viewpoint, which benefits
from the shape controlling module P , while previous meth-
ods produced distortions. Second, FaceID-GAN generates
a new face, instead of just learning an interpolation. This
is because we filter out extraneous information by passing
identity feature into generator instead of the full image.

(a)

(b)

(c)

(d)
Figure 5. Face frontalization results on LFW. (a) Input. (b) HPEN
[38]. (c) FF-GAN [33]. (d) FaceID-GAN (ours). On the top-
left corner of each frontalized face, a score indicates the identity
similarity between the input and the generated face.

Input 15°0° GT30° 45°

Figure 6. Face rotation results on CFP. Odd rows are the rotation
results from DR-GAN [29], and even rows are results from
FaceID-GAN (ours).

Third, FaceID-GAN makes a better synthesis from the view
of both image quality and identity maintenance, owing to
the three-player competition.
Rotation and Identity. In this part, we evaluate the
effectiveness of FaceID-GAN when generating faces under
different viewpoints, while maintaining face identity. We
compare our method with DR-GAN [29], which is a recent
advanced method to solve this task. Both methods are
trained on CASIA-WebFace and then directly evaluated on
CFP without fine-tuning the models on the CFP dataset. We
select a set of testing images that are the same as [29]. Fig.6
shows the comparison results by rotating face from 0◦ to
45◦. In this case, the identity similarity is computed by
using ground truth image as reference.



(a)

(c)

(b)

(d)

1 2 3 4 5 6 7 8 9 10 11 12 13Input

Figure 7. Face synthesis results of different datasets, including (b) CelebA, (c) LFW, and (d) IJB-A. (a) shows the 3D templates with the
desired poses and expressions. In (b-d), the first column is the input image, whilst the remaining columns show the synthesized results.

As shown in Fig.6, several evidences suggest that our
method has a strong ability for face synthesis. First,
FaceID-GAN produces faces with higher resolution than
DR-GAN, which is trained on images of 96×96, but
FaceID-GAN is able to train with 128×128 face images.
Second, FaceID-GAN preserves identity much better than
DR-GAN, especially when large pose is presented. Third,
in DR-GAN, the image quality drops rapidly when rotating
the faces, while FaceID-GAN demonstrates stableness and
robustness. Finally, besides the angles reported in Fig.6,
FaceID-GAN can actually rotate face with arbitrary angle
as shown in Fig.7.
Pose, Expression and Identity. We further evaluate the
generalization capacity of FaceID-GAN by controlling pose
and expression, and maintaining identity simultaneously.
Fig.7 visualizes results on multiple datasets, including
CelebA, LFW, and IJB-A. Note that we do not fine-tune
the model to adapt these datasets.

In Fig.7 (a), we illustrate the 3D templates of the
desired poses and expressions. From (b) to (d), we see
that the synthesized images exactly match the templates in
(a), while preserving the face identity. We also observe
that the face characteristics can be preserved for different
identities. For example, under the 8-th face template, smil-
ing is presented differently in different identities, showing
that FaceID-GAN can learn to change expression while
preserving identity’s characteristics. However, synthesized
faces don’t vary much in expressions. This is attributed to
the fact that most faces in training set are with neutral or
smile expression. Just like other GAN-based framework,

FaceID-GAN generates images by learning the underlying
distribution of input data. A training set with larger diversity
in expressions will likely alleviate this issue.

In summary, FaceID-GAN can synthesize high-quality
facial images by maintaining identity and controlling pose
and expression.

4.2. Face Verification

Here we evaluate FaceID-GAN on LFW and IJB-A for
face verification, to further verify its identity preserving
ability. The identity features of both real and synthesized
images are extracted by module C in FaceID-GAN and the
cosine distance is used as the metric for face verification.
Evaluation on LFW. By following existing works [12,
38, 33], we frontalize all the images in LFW and then
evaluate face verification performance on the frontalized
images, to verify whether FaceID-GAN retains the identity
information properly. Tab.1 compares our results to the
state-of-the-art methods. The improvement demonstrates
that FaceID-GAN can synthesis both realistic and identity-
preserving face images.
Evaluation on IJB-A. We further evaluate the verification
performance on IJB-A dataset. IJB-A defines a different
protocol by matching templates, where each template con-
tains a variant amount of images. We define a confidence
value of each image to be the reciprocal of its correspond-
ing reconstruction error estimated by D. This value can
describe image quality to some extent. We fuse the features
of images in a template with their confidence values as
weights, and use the fused result to represent such template.



Tab.2 shows the verification accuracy on IJB-A. Com-
paring to the state-of-art methods, FaceID-GAN achieves
superior results both at FAR 0.01 and at FAR 0.001, which
suggests that by competing with G, C and D in FaceID-
GAN also perform well in their respective tasks, i.e. identity
reprensentation learning and image quality evaluation.

4.3. Ablation Study

FaceID-GAN consists of four components, C, P , D
and G, where G is necessary for a generative model. To
evaluate the contributions of other three parts, we train
three models by removing these components respectively,
while keeping the training process and all hyper-parameters
the same. Among them, the model without D diverges.
Meanwhile, FaceID-GAN advances existing methods by
proposing 3-player competition and information symmetry,
so we train two extra models to evaluate these two improve-
ments. Among them, the convergence of the model without
following information symmetry is slow and instable.

Fig.8 shows the visual results generated by remaining
three models as aforementioned, as well as the full model.
Our proposed FaceID-GAN outperforms the others in the
following aspects: visual effect (image quality), identity
preservation, and the capability to control pose and expres-
sion. For example, the images in (b) have exactly the same
facial shape with the inputs, demonstrating the ability of
3DMM to represent pose and expression. However, only
providing shape information to the generator is not suffi-
cient to preserve identity. This problem is greatly alleviated
with the help of a face recognition engine. Images in (c)
show better results by retaining more identity information.
But it still fails when dealing with large poses, and the pose
of synthesized faces becomes uncontrollable. Images in (d)
are generated by incorporating the elements of both (b) and
(c). By comparing (c) and (d), we conclude that besides
controlling pose, 3DMM also plays an important role by
providing general facial shape information, especially for
inputs with extreme poses. The comparison of (d) and (e)
shows that by introducing the third player, FaceID-GAN
achieves better synthesis from the aspects of both image
quality and identity preservation. To better illustrate the
improvement from (d) to (e), we pick 10,000 face pairs,
which are generated by (d) and (e) respectively, and ask
annotators to vote which one is better in terms of visual
quality and similarity of identity. As a result, (e) beats
(d) with 56% votes for higher quality and 72% for better
preserving identity.

5. Conclusion
In this work, we propose an end-to-end deep framework,

FaceID-GAN, with the ability to synthesize photo-realistic
face images of arbitrary viewpoint and expression, while
preserving face identity. FaceID-GAN is formulated as a

Table 1. Performance comparison on LFW

Method Verification Accuracy

3D [12] 93.62± 1.17
HPEN [38] 96.25± 0.76
FF-GAN [33] 96.42± 0.89

FaceID-GAN (ours) 97.01± 0.83

Table 2. Performance comparison on IJB-A

Verification Accuracy

Method @FIR=0.01 @FIR=0.001

Wang et al. [30] 72.9± 3.5 51.0± 6.1
PAM [22] 73.3± 1.8 55.2± 3.2
DCNN [5] 78.7± 4.3 −
DR-GAN [28] 77.4± 2.7 53.9± 4.3
FF-GAN [33] 85.2± 1.0 66.3± 3.3

FaceID-GAN (ours) 87.6± 1.1 69.2± 2.7

(a)

(b)

(c)

(d)

(e)

Figure 8. Visual results from abliation study. (a) Input. (b) FaceID-
GAN w/o C. (c) FaceID-GAN w/o P . (d) FaceID-GAN w/o the
competition between G and C. (e) FaceID-GAN (ours).

three-player GAN by introducing an identity classifier C as
an additional competitior to the conventional GAN. C co-
operates together with the discriminator D to compete with
the generator G from two different aspects, facial identity
and image quality respectively. An information symmetry
criterion is also presented to design the architecture of
FaceID-GAN, improving the performance and stability by
alleviating training difficulty. We believe this work is
promising as a general method for effectively solving other
conditional generative problems.
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