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Abstract

Point clouds are an efficient data format for 3D data.
However, existing 3D segmentation methods for point
clouds either do not model local dependencies [21] or re-
quire added computations [14, 23]. This work presents a
novel 3D segmentation framework, RSNet1, to efficiently
model local structures in point clouds. The key compo-
nent of the RSNet is a lightweight local dependency mod-
ule. It is a combination of a novel slice pooling layer, Re-
current Neural Network (RNN) layers, and a slice unpool-
ing layer. The slice pooling layer is designed to project
features of unordered points onto an ordered sequence of
feature vectors so that traditional end-to-end learning algo-
rithms (RNNs) can be applied. The performance of RSNet is
validated by comprehensive experiments on the S3DIS[1],
ScanNet[3], and ShapeNet [34] datasets. In its simplest
form, RSNets surpass all previous state-of-the-art methods
on these benchmarks. And comparisons against previous
state-of-the-art methods [21, 23] demonstrate the efficiency
of RSNets.

1. Introduction

Most 3D data capturing devices (like LiDAR and depth
sensors) produce point clouds as raw outputs. However,
there are few state-of-the-art 3D segmentation algorithms
that use point clouds as inputs. The main obstacle is that
point clouds are usually unstructured and unordered, so it is
hard to apply powerful end-to-end learning algorithms. As a
compromise, many researchers transform point clouds into
alternative data formats such as voxels [31, 33, 16, 22, 32]
and multi-view renderings [22, 30, 19].

Unfortunately, information loss and quantitation artifacts
often occur in data format transformations. These can lead
to 3D segmentation performance drops as a result due to
loss of local contexts. Moreover, the 3D CNNs [31, 33,
16, 22, 13] and 2D multi-view CNNs [30, 22] designed for

1Codes are released here https://github.com/qianguih/RSNet
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Figure 1: The RSNet takes raw point clouds as inputs and
outputs semantic labels for each point.

these data formats are often time- and memory- consuming.
In this paper, we approach 3D semantic segmentation

tasks by directly dealing with point clouds. A simple net-
work, a Recurrent Slice Network (RSNet), is designed for
3D segmentation tasks. As shown in Fig.1, the RSNet takes
as inputs raw point clouds and outputs semantic labels for
each of them.

The main challenge in handling point clouds is model-
ing local geometric dependencies. Since points are pro-
cessed in an unstructured and unordered manner, powerful
2D segmentation methods like Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNNs) can-
not be directly generalized to them.

In RSNets, the local context problem is solved by first
projecting unordered points into ordered features and then
applying traditional end-to-end learning algorithms. The
projection is achieved by a novel slice pooling layer. In this
layer, the inputs are features of unordered points and the
output is an ordered sequence of aggregated features. Next,
RNNs are applied to model dependencies in this sequence.
Finally, a slice unpooling layer assigns features in the se-
quence back to points. In summary, the combination of the
slice pooling layer, RNN layers, and the slice unpooling
layer forms the local dependency module in RSNets. We
note that the local dependency module is highly efficient.
As shown in Section 3.2, the time complexity of the slice
pooling/unpooling layer is O(n) w.r.t the number of input
points and O(1) w.r.t the local context resolutions.

The performances of RSNets are validated on three chal-
lenging benchmarks. Two of them are large-scale real-
world datasets, the S3DIS dataset [1] and the ScanNet
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dataset [3]. Another one is the ShapeNet dataset [34], a syn-
thetic dataset. RSNets outperform all prior results and sig-
nificantly improve performances on the S3DIS and ScanNet
datasets.

In following parts of the paper, we first review related
works in Section 2. Then, details about the RSNet are pre-
sented in Section 3. Section 4 reports all experimental re-
sults and Section 5 draws conclusions.

2. Related Works
Traditional 3D analysis algorithms are based on hand-

crafted features [19, 18, 20, 17, 7, 26, 25, 24, 9, 10, 11].
Recently, there are some works that utilize end-to-end learn-
ing algorithms for 3D data analysis. They are categorized
by their input data formats as follows.

Voxelized Volumes. [33, 16, 22, 12, 13] made the early
attempts of applying end-to-end deep learning algorithms
for 3D data analysis, including 3D shape recognition, 3D
urban scene segmentation [13]. They converted raw point
cloud data into voxelized occupancy grids and then applied
3D deep Convolutional Neural Networks to them. Due to
the memory constraints of 3D convolutions, the size of in-
put cubes in these methods was limited to 603 and the depth
of the CNNs was relatively shallow. Many works have been
proposed to ease the computational intensities. One direc-
tion is to exploit the sparsity in voxel grids. In [4], the
authors proposed to calculate convolutions at sparse input
locations by pushing values to their target locations. Ben-
jamin Graham designed a sparse convolution network [5, 6]
and applied it for 3D segmentation tasks [36]. [15] tried to
reduce computation by sampling 3D data at sparse points
before feeding them into networks. In [27], the authors
designed a memory efficient data structure, hybrid grid-
octree, and corresponding convolution/pooling/unpooling
operations to handle higher resolution 3D voxel grids (up
to 2563). In [31], the authors managed to consume 3D
voxel inputs of higher resolution (1003) and build deeper
networks by adopting early down-sampling and efficient
convolutional blocks like residual modules. While most of
these works were focusing on reducing computational re-
quirements of 3D voxel inputs, few of them tried to deal
with the quantitation artifacts and information loss in vox-
elization.

Multi-view Renderings. Another popular data repre-
sentation for 3D data is its multi-view rendering images.
[19] designed a multi-view CNN for object detection in
point clouds. In [29], 3D shapes were transformed into
panoramic views, i.e., a cylinder project around its princi-
pal axis. [30] designed a 2D CNN for 3D shape recogni-
tion by taking as inputs multi-view images. In [22], the au-
thors conducted comprehensive experiments to compare the
recognition performances of 2D multi-view CNNs against
3D volumetric CNNs. More recently, multi-view 2D CNNs

have been applied to 3D shape segmentation and achieved
promising results. Compared to volumetric methods, multi-
view based methods require less computational costs. How-
ever, there is also information loss in the multi-view render-
ing process.

Point Clouds. In the seminal work of PointNet [21],
the authors designed a network to consume unordered and
unstructured point clouds. The key idea is to process points
independently and then aggregate them into a global feature
representation by max-pooling. PointNet achieved state-of-
the-art results on several 3D classification and segmentation
tasks. However, there were no local geometric contexts in
PointNet. In the following work, PointNet++ [23], the au-
thors improved PointNet by incorporating local dependen-
cies and hierarchical feature learning in the network. It was
achieved by applying iterative farthest point sampling and
ball query to group input points. In another direction, [14]
proposed a KD-network for 3D point clouds recognition. In
KD-network, a KD-tree was first built on input point clouds.
Then, hierarchical groupings were applied to model local
dependencies in points.

Both works showed promising improvements on 3D
classification and segmentation tasks, which proved the im-
portance of local contexts. However, their local context
modeling methods all relied on heavy extra computations
such as the iterate farthest point sampling and ball query
in [23] and the KD-tree construction in [14]. More impor-
tantly, their computations will grow linearly when higher
resolutions of local details are used. For example, higher
local context resolutions will increase the number of clus-
ters in [23] and result in more computations in iterative far-
thest point sampling. And higher resolutions will enlarge
the kd-tree in [14] which also costs extra computations. In
contrast, the key part of our local dependency module, the
slice pooling layer, has a time complexity of O(1) w.r.t the
local context resolution as shown in Section 3.2.

3. Method
Given a set of unordered point clouds X =

{x1, x2, ..., xi, ..., xn} with xi ∈ Rd and a candidate la-
bel set L = {l1, l2, ..., lK}, our task is to assign each of
input points xi with one of the K semantic labels. In
RSNets, the input is raw point clouds X and output is
Y = {y1, y2, ..., yi, ..., yn} where yi ∈ L is the label as-
signed to xi.

A diagram of our method is presented in Fig.2. The in-
put and output feature extraction blocks are used for inde-
pendent feature generation. In the middle is the local de-
pendency module. Details are illustrated below.

3.1. Independent Feature Extraction

There are two independent feature extraction blocks in
an RSNet. The input feature block consumes input points
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Figure 2: Diagram of an RSNet. The three parallel branches
denote the slicing direction along x, y, and z axis.

X ∈ Rn×din

and produce features F in ∈ Rn×din

. Output
feature blocks take processed features F su ∈ Rn×dsu

as in-
puts and produce final predictions for each point. The super-
script in and su indicate the features are from the input fea-
ture block and the slice unpooling layer, respectively. Both
blocks use a sequence of multiple 1 × 1 convolution lay-
ers to produce independent feature representations for each
point.

3.2. Local Dependency Module

The key part of an RSNet is the local dependency mod-
ule which is a combination of a slice pooling layer, RNN
layers, and a slice unpooling layer. It supports efficient and
effective local context modeling. The slice pooling layer is
designed to project features of unordered points onto an or-
dered sequence. RNNs are then applied to model dependen-
cies in the sequence. In the end, the slice unpooling layer

reverses the projection and assigns updated features back to
each point.

Slice Pooling Layer. The inputs of a slice pool-
ing layer are features of unordered point clouds F in =
{f in

1 , f in
2 , ..., f in

i , ..., f in
n } and the output is an ordered se-

quence of feature vectors. This is achieved by first grouping
points into slices and then generating a global representa-
tion for each slice via aggregating features of points within
the slice.

Three slicing directions, namely slicing along x, y, and
z axis, are considered in RSNets. We illustrate the de-
tails of slice pooling operation by taking z axis for exam-
ple. A diagram of the slice pooling layer is presented in
Fig.3. In a slice pooling layer, input points X are first
split into slices by their spatial coordinates in z axis. The
resolution of each slice is controlled by a hyper-parameter
r. Assume input points span in the range [zmin, zmax] in
z axis. Then, the point xi is assigned to the kth slice,
where k = b(zi − zmin)/rc and zi is xi’s coordinate in
z axis. In total, there are N slices where N = d(zmax −
zmin)/re. Here d e and b c indicate the ceil and floor func-
tion. After this process, all input points are grouped into
N slices. They are also treated as N sets of points S =
{S1, S2, ..., Si, ..., SN}, where Si denotes the set of points
assigned to ith slice. In each slice, features of points are
aggregated into one feature vector to represent the global
information about this slice. Formally, after aggregation, a
slice pooling layer produces an ordered sequence of feature
vectors F s = {fs1, fs2, ..., fsi, ..., fsN}, where fsi is the
global feature vector of slice set Si. The max-pooling oper-
ation is adopted as the aggregation operator in RSNets. It is
formally defined in equation (1).

fsi = max
xj∈Si

{f in
j } (1)

The slice pooling layer has several important properties:

1. Order and Structure. F s is an ordered and struc-
tured sequence of feature vectors. In the aforemen-
tioned case, F s is ordered in the z axis. fs1 and
fsN denote the feature representations of the bottom-
most and top-most set of points, respectively. Mean-
while, fsi and fs(i−1) are features representing adja-
cent neighbors. This property makes traditional local
dependency modeling algorithms applicable as F s is
structured and ordered now.

2. Efficiency. The time complexity of the slice pooling
layer is O(n) (n is the number of the input points).
And it is O(1) w. r. t the slicing resolution r.

3. Local context trade-off. Given a fixed input, smaller
r will produce more slices with richer local contexts
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(a) Illustration of the slice pooling operation. A set of points
from a chair is used for illustration purpose here.
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(b) Illustration of the slice unpooling operation. Global feature
representation for one point set is replicated back to all points
in the set.

Figure 3: Illustration of slice pooling and slice unpooling
operation and RNN modeling for slices.

preserved while larger r produces fewer slices with
coarse local contexts;

RNN Layer. As mentioned above, the slice pooling
layer is essentially projecting features of unordered and un-
structured input points onto an ordered and structured se-
quence of feature vectors. RNNs are a group of end-to-end
learning algorithms naturally designed for a structured se-
quence. Thus, they are adopted to model dependencies in
the sequence. By modeling one slice as one timestamp, the
information from one slice interacts with other slices as the
information is flowing through timestamps in RNN units.
This enables contexts in slices impact with each other which
in turn models the dependencies in them.

In an RSNet, the input of RNN layers is F s. In order
to guarantee information from one slice could impact on all
other slices, RSNets utilize the bidirectional RNN units [28]
to help information flow in both directions. After process-
ing the inputs with a stack of bidirectional RNNs, the final
outputs are F r = {fr1, fr2, ..., fri, ..., frN} with super-
script r denoting the features are from RNN layers. Com-
pared with F s, F r has been updated by interacting with
neighboring points.

Slice Unpooling Layer. As the last part of an RSNet’s
local dependency module, the slice unpooling layer takes
updated features F r as inputs and assigns them back to
each point by reversing the projection. This can be easily
achieved by storing the slice sets S. A diagram of the slice
unpooling layer is presented in Fig.3. We note that the time
complexity of slice unpooling layer is O(n) w. r. t the num-
ber of input points and is O(1) w. r. t slicing resolution as
well.

4. Experiments
In order to evaluate the performance of RSNets and com-

pare with state-of-the-art, we benchmark RSNets on three
datasets, the Stanford 3D dataset (S3DIS) [1], ScanNet
dataset [3], and the ShapeNet dataset [34]. The first two
are large-scale realistic 3D segmentation datasets and the
last one is a synthetic 3D part segmentation dataset.

We use the strategies in [21, 23] to process all datasets.
For the S3DIS and ScanNet datasets, the scenes are first di-
vided into smaller cubes using a sliding window of a fixed
size. A fixed number of points are sampled as inputs from
the cubes. In this paper, the number of points is fixed as
4096 for both datasets. Then RSNets are applied to segment
objects in the cubes. Note that we only divide the scene on
the xy plane as in [21]. During testing, the scene is similarly
split into cubes. We first run RSNets to get point-wise pre-
dictions for each cube, then merge predictions of cubes in
the same scene. Majority voting is adopted when multiple
predictions of one point are present.

We use one unified RSNet architecture for all datasets.
In the input feature extraction block, there are three 1 × 1
convolutional layers with output channel number of 64, 64,
and 64, respectively. In the output feature extraction block,
there are also three 1 × 1 convolutional layers with output
channel number of 512, 256, and K, respectively. Here K
is the number of semantic categories. In each branch of
the local dependency module, the first layer is a slice pool-
ing layer and the last layer is a slice unpooling layer. The
slicing resolution r varies for different datasets. There is a
comprehensive performance comparison of different r val-
ues in Section 4.2. In the middle are the RNN layers. A
stack of 6 bidirectional RNN layers is used in each branch.
The numbers of channels for RNN layers are 256, 128, 64,
64, 128, and 256. In the baseline RSNet, Gated Recurrent
Unit (GRU) [2] units are used in all RNNs.

Two widely used metrics, mean intersection over union
(mIOU) and mean accuracy (mAcc), are used to mea-
sure the segmentation performances. We first report the
performance of a baseline RSNet on the S3DIS dataset.
Then, comprehensive studies are conducted to validate var-
ious architecture choices in the baseline. In the end, we
show state-of-the-art results on the ScanNet and ShapeNet
dataset. Through experiments, the performances of RSNets
are compared with various state-of-the-art 3D segmentation
methods including 3D volumes based methods [31], spec-
tral CNN based method [35], and point clouds based meth-
ods [21, 23, 14].

4.1. Segmentation on the S3DIS Dataset

We first present the performances of a baseline RSNet
on the S3DIS dataset. The training/testing split in [31] is
used here to better measure the generalization ability of all
methods. The slicing resolutions r along the x, y, z axis are



Method mIOU mAcc ceiling floor wall beam column window door chair table bookcase sofa board clutter
PointNetA [21] 41.09 48.98 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52,61 58.93 40.28 5.85 26.38 33.22
3D-CNN [31] 43.67 - - - - - - - - - - - - - -

3D-CNNA [31] 47.46 54.91 90.17 96.48 70.16 0.00 11.40 33.36 21.12 76.12 70.07 57.89 37.46 11.16 41.61
3D-CNNAC [31] 48.92 57.35 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60

Ours 51.93 59.42 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64.

Table 1: Results on the Large-Scale 3D Indoor Spaces Dataset (S3DIS). Superscripts A and C denote data augmentation and
post-processing (CRF) are used.

Figure 4: Sample segmentation results on the S3DIS
dataset. From left to right are the input scenes, results pro-
duced by the RSNet, and ground truth. Best viewed with
zoom in.

all set at 2cm. And the block size in x and y axis of each
cube is 1m × 1m. Given these settings, there are 50 slices
(N = 50) in x and y branch in an RSNet after the slice
pooling layer. As we do not limit the block size in z axis,
the number of slices along z axis varies on different inputs.
In the S3DIS dataset, most of the scenes have a maximum
z coordinate around 3m which produces around 150 slices.

During testing, the sliding stride is set at 1m to generate
non-overlapping cubes. The performance of our baseline
network is reported in Table.1. Besides the overall mean
IOU and mean accuracy, the IOU of each category is also
presented. Meanwhile, some segmentation results are visu-

alized in Fig.4.
Previous state-of-the-art results [21, 31] are reported in

Table.1 as well. In [31], the data representation is voxelized
3D volumes and a 3D CNN is built for segmenting objects
in the volumes. Several geometric data augmentation strate-
gies and end-to-end Conditional Random Filed (CRF) are
utilized in their work. The PointNet [21] takes the same in-
puts, point clouds, as our method. It adopted rotation along
z axis to augment data. In contrast, our baseline RSN does
not use any data augmentations.

The results in Table.1 show that the RSNet has achieved
state-of-the-art performances on the S3DIS dataset even
without using any data augmentation. In particular, it im-
proves previous 3D volumes based methods [31] by 3.01 in
mean IOU and 2.07 in mean accuracy. Compared with prior
point clouds based method [21], it improves the mean IOU
by 10.84 and mean accuracy by 10.44. The detailed per-
category IOU results show that the RSNet is able to achieve
better performances in more than half of all categories (7
out of 13).

We argue that the great performance improvements come
from the local dependency module in the RSNet. While
PointNet only relies on global features, the RSNet is
equipped with local geometric dependencies among points.
In summary, the significant performance gains against
PointNet demonstrate: 1). local dependency modeling is
crucial for 3D segmentation; 2). the combination of the
novel slice pooling/unpooling layers and RNN layers is able
to support effective spatial dependencies modeling in point
clouds. Moreover, the performance improvements against
3D volumes based methods prove that directly handling
point clouds can boost the 3D segmentation performances
a lot as there are no quantitation artifacts and no local de-
tails lost anymore.

4.2. Ablation Studies

In this section, we validate the effects of various archi-
tecture choices and testing schemes. In particular, several
key parameters are considered: 1). the slicing resolution r
in RSNets; 2). the size of the sliding block; 3). the sliding
stride during testing; 4). the type of RNN units. All set-



rx (cm) ry (cm) rz (cm) mIOU mAcc
2 2 1 49.12 56.63
2 2 2 51.93 59.42
2 2 5 51.20 58.97
2 2 8 49.16 56.91
1 1 2 49.23 56.90
2 2 2 51.93 59.42
4 4 2 48.97 57.10
6 6 2 47.86 56.82

.

Table 2: Varying slice resolutions for RSNs on the S3DIS
dataset. rx, ry , and rz indicate the slicing resolution along
x, y, and z axis, respectively.

bs (m) rx (cm) ry (cm) rz (cm) mIOU mAcc

1

2 2 2 51.93 59.42
4 4 2 48.97 57.10
6 6 2 47.86 56.82

2

2 2 2 44.15 52.39
4 4 2 44.59 52.62
6 6 2 43.15 53.07

3

2 2 2 39.08 49.61
4 4 2 37.77 47.89
6 6 2 37.55 49.01
8 8 2 37.21 46.35
16 16 2 35.25 44.70

.

Table 3: Varying sizes of sliding blocks for RSNs on the
S3DIS dataset. bs indicates the block size.

sliding stride during testing mIOU mAcc
0.2 52.39 60.52
0.5 53.83 61.81
1.0 51.93 59.42

.

Table 4: Varying the testing stride on the S3DIS dataset

RNN unit mIOU mAcc
vanilla RNN 45.84 54.82

GRU 51.93 59.42
LSTM 50.08 57.80

.

Table 5: Varying RNN units for RSNs on the S3DIS dataset

tings remain unchanged as the baseline RSNet in following
control experiments except explicitly specified.

Slicing resolution. The slicing resolution r is an impor-
tant hyper-parameter in RSNets. It controls the resolution of
each slice which in turn controls how much local details are

kept after slice pooling. By using a small slicing resolution,
there are more local details preserved as the feature aggre-
gation operation is executed in small local regions. How-
ever, a small slicing resolution will produce a large number
of slices which requires RNN layers to consume a longer
sequence. This may hurt the performance of RSNets as the
RNN units may fail to model dependencies in the long se-
quence due to the “gradient vanishing” problem [8]. On the
other hand, a large slicing resolution will eliminate a lot of
local details in input data as the feature aggregation is con-
ducted on a wide spatial range. Thus, there is a trade-off of
selecting the slicing resolution r.

Several experiments are conducted to show the impacts
of different slicing resolutions. Two groups of slicing reso-
lutions are tested. In the first group, we fix the slicing reso-
lutions along x and y axis to be 2cm and vary the resolution
along the z axis. In the second group, the slicing resolu-
tion along z axis is fixed as 2cm while varying resolutions
along x and y axis. Detailed performances are reported in
Table.2. Results in Table.2 show that the slicing resolution
of 2cm, 2cm, 2cm along x, y, z axis works best for the
S3DIS dataset. Both larger or smaller resolutions decrease
the final performances.

Size of sliding block. The size of the sliding block is
another key factor in training and testing. Small block sizes
may result in too limited contexts in one cube. Large block
sizes may put RSNets in a challenging trade-off between
slicing resolutions as large block size will either produce
more slices when the slicing resolution is fixed or increase
the slicing resolution. In Table.3, we report the results of
three different block sizes, 1m, 2m, and 3m, along with
different slicing resolution choices. The results show that
larger block sizes actually decrease the performance. That
is because larger block sizes produce a longer sequence
of slices for RNN layers, which is hard to model using
RNNs. Among various settings, the optimal block size for
the S3DIS dataset is 1m on both x and y axis.

Stride of sliding during testing. When breaking down
the scenes during testing, there are two options, splitting it
into non-overlapping cubes or overlapping cubes. In Pon-
intNet [21] , non-overlapping splitting is used while Point-
Net++ [23] adopted overlapping splitting. For RSNets, both
options are tested. Specifically, we set the sliding stride
into three values, 0.2m, 0.5m, and 1m. The first two
produce overlapping cubes and the last one produces non-
overlapping cubes. All results are reported in Table.4. Ex-
perimental results show that using overlapped division can
slightly increase the performance (0.4∼1.9 in mean IOU
and 1.1∼2.4 in mean accuracy on the S3DIS dataset). How-
ever, testing using overlapped division requires more com-
putations as there are more cubes to process. Thus, we se-
lect the non-overlap sliding in our baseline RSNet.

RNN units. Due to the “gradient vanishing” problem in



Method mIOU mAcc wall floor chair table desk bed
book-
shelf sofa sink

PointNet [21] 14.69 19.90 69.44 88.59 35.93 32.78 2.63 17.96 3.18 32.79 0.00
PointNet++ [23] 34.26 43.77 77.48 92.50 64.55 46.60 12.69 51.32 52.93 52.27 30.23

Ours 39.35 48.37 79.23 94.10 64.99 51.04 34.53 55.95 53.02 55.41 34.84

Method bathtub toilet curtain counter door window
shower
curtain

refrid-
gerator picture cabinet

other
furniture

PointNet [21] 0.17 0.00 0.00 5.09 0.00 0.00 0.00 0.00 0.00 4.99 0.13
PointNet++ [23] 42.72 31.37 32.97 20.04 2.02 3.56 27.43 18.51 0.00 23.81 2.20

Ours 49.38 54.16 6.78 22.72 3.00 8.75 29.92 37.90 0.95 31.29 18.98

Table 6: Results on the ScanNet dataset. IOU of each category is also reported here.

the vanilla RNN unit, two RNN variants, LSTM and GRU,
are proposed to model long-range dependencies in inputs.
The effects of different RNN units are compared in Table.5.
They show that GRU has the best performance for RSNets.

4.3. Segmentation on the ScanNet dataset

We now show the performances of RSNets on the Scan-
Net dataset. The exact same RSNet as Section 4.1 is used to
process the ScanNet dataset. The performance of the RSNet
is reported in Table.6.

In the ScanNet dataset, the previous state-of-the-art
method is PointNet++ [23]. It only uses the xyz informa-
tion of point clouds as inputs. To make a fair comparison,
we also only use xyz information in the RSNet. [23] only
reported the global accuracy on the ScanNet dataset. How-
ever, as shown in the supplementary, the ScanNet dataset is
highly unbalanced. In order to get a better measurement, we
still use mean IOU and mean accuracy as evaluation metrics
as previous sections. We reproduced the performances of
PointNet[21] and Pointnet++[23] (the single scale version)
on the ScanNet dataset 2 and report them in Table.6 as well.
As shown in Table.6, the RSNet has also achieved state-of-
the-art results on the ScanNet dataset. Compared with the
PointNet++, the RSNet improves the mean IOU and mean
accuracy by 5.09 and 4.60. Some comparisons between dif-
ferent methods are visualized in Fig.5. These visualizations
show that as a benefit of the local dependency module, the
RSNet is able to handle small details such the chairs, desks,
and toilets in inputs.

4.4. Segmentation on the ShapeNet Dataset

In order to compare the RSNet with some other meth-
ods [14, 34, 35], we also report the segmentation results
of RSNets on the ShapeNet part segmentation dataset.

2 We reproduced the PonitNet and PointNet++ training on ScanNet by
using the codes here and here which are published by the authors. The
global accuracy of our version of PointNet and PointNet++ are 73.69%
and 81.35%, respectively.

The same RSNet as in Section 4.1 is used here. It only
takes the xyz information as the convention. Its perfor-
mance are reported in Table.7. Table.7 also presents the
results of other state-of-the-art methods including Point-
Net [21], PointNet++ [23], KD-net [14], and spectral CNN
[35]. The RSNet outperforms all other methods except the
PointNet++[23] which utilized extra normal information as
inputs. However, the RSNet can also outperform Point-
Net++ when it only takes xyz information. This validates
the effectiveness of the RSNet.

4.5. Computation Analysis

We now demonstrate the efficiency of RSNets in terms of
inference speed and GPU memory consumption. We follow
the same time and space complexity measurement strategy
as [23]. We record the inference time and GPU memory
consumption of a batch of 8 4096 points for vanilla Point-
Net and the RSNet using PyTorch on a K40 GPU. Since
[23] reported the inference speed in TensorFlow, we use the
relative speed w.r.t vanilla PointNet to compare speeds with
each other. The speed and memory measurements are re-
ported in Table.8.

Table.8 show that the RSNet is much faster than Point-
Net++ variants. It is near 1.6 × faster than the single scale
version of PointNet++ and 3.1 × faster than its multi-scale
version. Moreover, the GPU memory consumption of the
RSNet is even lower than vanilla PointNet. These prove
that the RSNet is not only powerful but also efficient.

5. Conclusion
This paper introduces a powerful and efficient 3D seg-

mentation framework, Recurrent Slice Network (RSNet).
An RSNet is equipped with a lightweight local dependency
modeling module which is a combination of a slice pooling,
RNN layers, and a slice unpooling layer. Experimental re-
sults show that RSNet can surpass previous state-of-the-art
methods on three widely used benchmarks while requiring
less inference time and memory.

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2


Figure 5: Sample segmentation results on the ScanNet dataset. From left to right are the input scenes, results produced by
PointNet, PointNet++, RSNet, and ground truth. Interesting areas have been highlighted by red bounding boxes. Best viewed
with zoom in.

Method mean aero bag cap car chair
ear

phone guitar knife lamp laptop motor mug pistol rocket
skate
board table

Yi [34] 81.4 81.0 78.4 77.7 75.7 87.9 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
KD-net [14] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PN [21] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PN++ * [23] 84.6 80.4 80.9 60.0 76.8 88.1 83.7 90.2 82.6 76.9 94.7 68.0 91.2 82.1 59.9 78.2 87.5
SSCNN [35] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
PN++ [23] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Ours 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2

Table 7: Results on the ShapeNet dataset. PN++ * denotes the PointNet++ trained by us which does not use extra normal
information as inputs.

PointNet
(vanilla) [21] PointNet [21] PointNet++

(SSG) [23]
PointNet++
(MSG) [23]

PointNet++
(MRG) [23] RSNet

Speed 1.0 × 2.2 × 7.1 × 14.1 × 7.5 × 4.5 ×
Memory 844 MB - - - - 756 MB

.

Table 8: Computation analysis between PointNet, PointNet++, and RSNet.
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