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Abstract

Context is important for accurate visual recognition. In
this work we propose an object detection algorithm that not
only considers object visual appearance, but also makes use
of two kinds of context including scene contextual informa-
tion and object relationships within a single image. There-
fore, object detection is regarded as both a cognition prob-
lem and a reasoning problem when leveraging these struc-
tured information. Specifically, this paper formulates object
detection as a problem of graph structure inference, where
given an image the objects are treated as nodes in a graph
and relationships between the objects are modeled as edges
in such graph. To this end, we present a so-called Struc-
ture Inference Network (SIN), a detector that incorporates
into a typical detection framework (e.g. Faster R-CNN) with
a graphical model which aims to infer object state. Com-
prehensive experiments on PASCAL VOC and MS COCO
datasets indicate that scene context and object relationships
truly improve the performance of object detection with more
desirable and reasonable outputs.

1. Introduction

Object detection is one of the fundamental computer vi-
sion problems. Recently, this topic has enjoyed a series of
breakthroughs thanks to the advances of deep learning, and
it is observed that prevalent object detectors predominantly
regard detection as a problem of classifying candidate boxes
[16, 15, 33, 24, 7]. While most of them have achieved im-
pressive performance in a number of detection benchmarks,
they only focus on local information near an object’s region
of interest within the image. Usually an image contains rich
contextual information including scene context and object
relationships [10]. Ignoring these information inevitably
places constraints on the accuracy of objects detected [3].

To illustrate such constraints, considering the practical

Figure 1. Some Typical Detection Errors of Faster R-CNN. (a)
Some boats are mislabeled as cars on PASCAL VOC [12]. (b) The
mouse is undetected on MS COCO [26].

examples in Fig. 1, detected by Faster R-CNN [33]. In
the first case where is a river field, some of the boats are
mislabeled as cars, since the detector only concentrates on
object’s visual appearance. If the scene information in this
image was taken into account, such banana skin could have
been easily avoided. In the second case, though a laptop and
person have been detected as expected, no further object is
found any more. It is quite common that mouse and laptop
usually co-occur within a single image. If using object rela-
tive position and co-occurrence pattern, more objects within
the given image could be detected.

Many empirical studies [10, 14, 19, 41, 30, 29, 36] have
suggested that recognition algorithms can be improved by
proper modeling of context. To handle the problem above,
two types of contextual information model have been ex-
plored for detection [4]. The first type incorporates con-
text around object or scene-level context [3, 43, 37], and the
second models object-object relationships at instance-level
[18, 4, 30]. While these two types of models capture com-
plementary contextual information, they can be combined
together to jointly help detection.

We are thus motivated to intuitively conjecture that vi-
sual concepts in most of natural images form an organism
with the key components of scene, objects and relation-
ships, and different objects in the scene are organized in a



Figure 2. Graph Problem. Detection basically aims to answer:
what is where. From a structure perspective, it can be formulated
as a reasoning problem of a graph involving the mutually comple-
mentary information of scene, objects and relationships.

structured manner, e.g. boats are on the river, mouse is near
laptop. Sequentially object detection is regarded as not only
a cognition problem, but also an inference problem which
is based on contextual information with object fine-grained
details. To systematically solve it, a tailored graph is for-
mulated for each individual image. As described in Fig. 2,
objects are nodes of the graph, and object relationships are
edges of the graph. These objects interact with each other
via the graph under the guidance of scene context. More
specifically, an object will receive messages from the scene
and other objects that are highly correlated with it. In such a
way, object state is not only determined by its fine-grained
appearance details but also effected by scene context and
object relationship. Eventually the state of each object is
used to determine its category and refine its location.

To make the above conjecture computationally feasible,
we propose a structure inference network (SIN) to reason
object state in a graph, where memory cell is the key mod-
ule to encode different kinds of messages (e.g. from scene
and other objects) into object state, and a novel way of us-
ing Gated Recurrent Units (GRUs) [5] as the memory cell
is presented in this work. Specifically, we fix object rep-
resentation as the initial state of GRU and then input each
kind of message to achieve the goal of updating object state.
Since SIN can accomplish inference as long as the inputs
to it covers the representations of object, scene-level con-
text and instance-level relationship, our structure inference
method is not constrained to specific detection framework.

2. Related Work

Object detection. Modern CNN based object detection
methods can be divided into two groups [25, 35]: (i) re-
gion proposals based methods (two-stage detectors) and (ii)
proposal-free methods (one-stage detectors).

With the resurgence of deep learning, two-stage detec-
tors quickly come to dominate object detection during the
past few years. Representative methods include R-CNN
[16], Fast R-CNN [15], Faster R-CNN [33] and so on.
The first stage produces numbers of candidate boxes, and
then the second stage classifies these boxes into foreground

classes or background. R-CNN [16] extracts CNN features
from the candidate regions and applies linear SVMs as the
classifier. To obtain higher speed, Fast R-CNN [15] pro-
poses a novel ROI-pooling operation to extract feature vec-
tors for each candidate box from shared convolutional fea-
ture map. Faster R-CNN [33] integrates proposal genera-
tion with the second-stage classifier into a single convolu-
tion network. More recently, one-stage detectors like SSD
[27] and YOLO [31] have been proposed for real-time de-
tection with satisfactory accuracy. Anyway, detecting dif-
ferent objects in an image is always considered as some iso-
lated tasks among these state-of-the-art methods especially
in two-stage detectors. While such methods work well for
salient objects most of the time, they are hard to handle
small objects by using vague feature associated only with
the object itself.

Contextual information. Consequently, it is natural to
use richer contextual information. In early years, a number
of approaches have explored contextual information to im-
prove object detection [29, 19, 1, 10, 40, 6, 41]. For exam-
ple, Mottaghi et al. [29] propose a deformable part-based
model, which exploits both local context around each can-
didate detection and global context at the level of the scene.
The presence of objects in irrelevant scenes is penalized in
[41]. Recently, some works [3, 43, 37] based on deep Con-
vNet have made some attempts to incorporate contextual in-
formation to object detection. Contextual information out-
side the region of interest is integrated using spatial recur-
rent neural network in ION [3]. GBD-Net [43] proposes
a novel gated bi-directional CNN to pass message between
features of different support regions around objects. Shri-
vastava et al. [37] use segmentation to provide top-down
context to guide region proposal generation and object de-
tection. While context around object or scene-level context
has been addressed in such works [3, 43, 37] under the deep
learning-based pipeline, they make less progress in explor-
ing object-object relationships. On the contrary, a much re-
cent work [4] proposes a new sequential reasoning architec-
ture that mainly exploits object-object relationships to se-
quentially detect objects in an image, however, with only
implicit yet weak consideration of scene-level context. Dif-
ferent from these existing works, our proposed structure in-
ference network has the capability of jointly modeling both
scene-level context and object-object relationships and in-
ferring different object instances within an image from a
structural and global perspective.

Structure inference. Several interesting works [28, 34,

, 39, 21,9, 2, 22, 42] have been proposed to combine
deep networks with graphical models for structured predic-
tion tasks that are solved by structure inference techniques.
A generic structured model is designed to leverage diverse
label relations including scene, object and attributes to im-
prove image classification performance in [21]. Deng et al.
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Figure 3. SIN: The Framework of Our Method. Firstly we get a fixed number of ROIs from an input image. Each ROI is pooled into a

fixed-size feature map and then mapped to a feature vector by a fully connected layer as node. We extract the whole image feature as scene
in the same way, and then we concatenate the descriptors of every two ROIs into edges. To iteratively update the node state, an elaborately
designed structure inference method is triggered, and the final state of each node is used to predict the category and refine the location of
the corresponding ROI. The whole framework is trained end-to-end with the original multi-task loss (this study exploits Faster R-CNN as

the base detection framework).

[9] propose structure inference machines for analyzing re-
lations in group activity recognition. Structural-RNN [22
combines the power of high-level spatio-temporal graphs
and sequence learning, and evaluates the model ranging
from motion to object interactions. In [42], a graph in-
ference model is proposed to tackle the task of generating
structured scene graph from an image. While our work
shares similar spirit as [42] to formulate the object detec-
tion task as a graph structure inference problem, the two
works have essential differences in their technical sides,
such as the graph instantiation manners, inference mecha-
nisms, message passing schemes, efc, which highly depend
on the specific task domains.

3. Method

Our goal is to improve the detection models by ex-
ploring rich contextual information. To this end, different
from existing methods that only make use of visual appear-
ance clues, our model is designed to explicitly take object-
object relationships and scene information into considera-
tion. Specifically, a structure inference network is devised
to iteratively propagate information among different objects
as well as the whole scene. The whole framework of our
method is depicted in Fig. 3, which will be detailed in the
following sections.

3.1. Graphical Modeling

Our structure inference network (SIN) is agnostic to the
choice of base object detection framework. In this work
we build SIN based on Faster R-CNN as a demonstration,
which is an advanced method for detection. We present a
graph G = (V, E,s) to model the graphical problem as
shown in Fig. 2. The nodes v € V represent the region
proposals, while s is the scene of the image, and e € E'is

h,(nodes)

X
(scene/edge

h;,1(nodes")

Figure 4. An illustration of GRU. The update gate z selects
whether the hidden state h;y is to be updated with a new hid-
den state k. The reset gate r decides whether the previous hidden
state h is ignored.

the edge (relationship) between each pair of object nodes.

Specifically, after Region Proposal Network (RPN [33]),
thousands of region proposals that might contain objects are
obtained. We then use Non-Maximum Suppression (NMS
[13]) to choose a fixed number of ROIs (Region of Interest).
For each ROI v;, we extract the visual feature f” by an FC
layer that follows an ROI pooling layer. For scene s about
the image, since there is no ground-truth scene label for the
image, the whole image visual feature f° is extracted as
the scene representation through the same layers’ operation
as nodes. For directed edge e;_,; from node v; to v;, we
use both the spatial feature and visual feature of v;,v; to
compute a scalar, which represents the influence of v; on v;,
as will be detailed in Sec. 3.3. With such modeling, how
to drive them to interact in the graph? It will be delineated
in the following.

3.2. Message Passing

For each node, the key of interaction is to encode the
messages passed from the scene and other nodes to it. Due
to that each node needs receiving multiple incoming mes-
sages, it is necessary to design an aggregation function that



can remember the node details itself and then fuse incom-
ing messages into a meaningful representation. Consider-
ing this function behaves like a memory machine, we ex-
plore RNNs. As is well known, an RNN can in principle
map from the entire history of previous inputs to each out-
puts. The key point is that the recurrent connections allow
a memory of previous inputs to persist in the network’s in-
ternal state, and thereby influence the network output [17].
Since that GRU[5] as a special kind of RNN is lightweight
and effective, it is used to act like memory machines in this
work.

Let us review how a GRU cell works in Fig. 4. First, the
reset gate r is computed by

T = U(W,-[l‘,ht]), (1)

where o is the logistic sigmoid function, and [,] denotes the
concatenation of vectors. W, is a weight matrix which is
learned. h; is the previous hidden state, by the way, the
input z and h; have the same dimensions. Similarly, the
update gate z is computed by

z = o(W,[x, h]). 2)

The actual activation of the proposed unit h1 is then com-
puted by ~
hit1 = zhy + (1 — 2)h, 3)
where ~
h=¢Wx+U(roh)). 4)

¢ denotes tanh activate function, W and U are weight ma-
tries which are learned. © denotes the element-wise mul-
tiplication. As stated in [5], in the above formulations, the
memory cell allows the hidden state to drop any informa-
tion that is found to be irrelevant with input later through
the reset gate r. On the other hand, the memory cell can
control how much information from the previous state will
carry over to the current hidden state, thus, allowing a more
compact representation through the update gate z.

Generally, GRU as an effective memory cell can remem-
ber long-term information, where the initial state of GRU
is empty or a random vector and the input is a sequence
of symbols. In this paper, we use GRU to encode differ-
ent kinds of messages to object state. To encode message
from scene, we take the fine-grained object details as ini-
tial state of GRU, and take the message from scene as input.
GRU cell could choose to ignore some parts of object state
which are not relative with this scene context, or use scene
context to enhance some parts of object state. To encode
message from other objects, we also take the object de-
tails as initial state of GRU, and take an integrated message
from other nodes as input. The memory cell would also
play a same role to choose relative information to update the
hidden state of objects. When the state of object updated,
the relationships among objects will also change, then more
time steps of updating make the model more stable.
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Figure 5. Structure Inference. For object v;, the input of scene
GRU is scene context message m;, and the initial hidden state
is the node v; feature f;. For message m{_,; from node v; to
node v; is controlled by edge e;_,;. These messages from all other
objects are integrated as my to input the edge GRU. The initial
hidden state of edge GRU is also f;. Then these two sets of GRU
output ensemble together as eventual updated node state.

3.3. Structure Inference

To encode two kinds of messages above, a set of scene
GRUs and edge GRUs are designed to propagate message
from scene and other objects to node. Then nodes are up-
dated according to the graph, as shown in Fig. 5.

The scene GRU takes nodes visual feature f as initial
hidden states, and takes scene message m?® as input, which
is exactly scene context f° as shown in the left part of Fig.
5. As described above, the scene GRU would learn its key
gates function to choose information to update nodes.

The edge GRU is used to encode messages from many
other objects, there we need to calculate an integrated mes-
sage m. in advance, or we need take a long sequence of
messages from every other object as inputs, which will cost
very much. For each node, the edge GRU will choose parts
of the integrate message to update this node. For the mes-
sages passed from other objects to node v;, various objects
contribute differently. So we model every object-object re-
lationship e;_,; as a scalar weight, which represents the in-
fluence of v; on v;. It is reasonable that object-object re-
lationship e;_,; is common determined by relative object
position and visual clues, e.g. a mouse is more important to
the keyboard than a cup and more close mouse is more im-
portant to the keyboard. As shown in the right part of Fig.
5, the integrated message to node v; is calculated by

mg§ = r}g};pooling(emi « f7), 5)

where
€ji = relu(WpRé.’_”-) « tanh(W, [f{, f7]).  (6)
W, and W, are learnable weight matrixes. Using max-
pooling can extract the most important message, while if us-



Table 1. Detection Results on VOC 2007 test. Legend: 07+12: 07 trainval + 12 trainval.

Method Train | mAP | aero bike bird boat bottle bus  car cat chair cow table dog horse mbike person plant sheep sofa train  tv
Fast R-CNN [15] 07+12 | 70.0 | 77.0 78.1 693 594 383 81.6 78.6 867 428 788 689 847 820 766 699 31.8 70.1 748 804 704
Faster R-CNN [33] | 07+12 | 732 | 765 79.0 709 655 521 83.1 847 864 520 819 657 848 84.6 71.5 76.7 388 736 739 83.0 726
SSD500 [27] 07+12 | 75.1 | 798 795 745 634 519 849 856 872 566 80.1 700 854 849 809 782 490 784 724 846 755
ION [3] 07+12 | 75.6 | 79.2 831 776 656 549 854 851 870 544 806 738 853 822 822 744 471 758 727 842 804
SIN (ours) 07+12 | 76.0 | 77.5 80.1 750 67.1 622 832 869 886 577 845 705 866 856 777 783 466 716 747 823 711
Table 2. Detection Results on VOC 2012 test. Legend: 07++12: 07 trainval + 12 trainval + 07 test.
Method Train | mAP | aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Fast R-CNN [15] 07++12 | 684 | 823 784 70.8 523 387 778 71.6 893 442 730 550 875 805 80.8 72.0 351 683 657 804 642
SSD300 [27] 07++12 | 703 | 842 763 69.6 532 40.8 785 73.6 88.0 505 735 617 858 80.6 81.2 715 443 732 667 8l.1 658
Faster R-CNN [33] | 07++12 | 704 | 849 798 743 539 498 775 759 885 456 771 553 869 817 809 796 401 726 609 812 615
HyperNet [38] 07++12 | 714 | 842 785 736 556 537 787 798 877 496 749 521 86.0 817 833 818 486 735 594 799 657
SIN (ours) 07++12 | 731 | 848 795 745 59.7 557 795 788 899 519 768 582 87.8 829 818 816 512 752 639 818 678
Table 3. Detection Results on COCO 2015 test-dev. Legend: trainval35k: COCO train + 35k val. *Baseline our trained.
Method [ Tain | AP_AP™ AP | APS _APY APY [ AR AR™ AR™ [ AR® AR™ ARF
Fast R-CNN [15] train 20.5 399 19.4 4.1 20.0 358 | 21.3 295 30.1 7.3 32.1 52.0
Faster R-CNN* [33] train 21.1 409 19.9 6.7 22.5 323 | 215 304 30.8 9.9 334 494
YOLOV2 [32] trainval35k [3] | 21.6  44.0 19.2 5.0 224 355 | 207 316 33.3 9.8 365 544
ION [3] train 23.0 42.0 23.0 6.0 23.8 373 | 23.0 324 33.0 9.7 37.0 535
SIN (ours) train 23.2 445 22.0 7.3 245 363 | 226 316 32.0 105 347 513

ing mean-pooling, message might be disturbed by the large
number of ROIs from irrelevant regions. The visual rela-
tionship vector is formed by concatenating visual feature
f{ and f7. R% ., denotes the spatial position relationship,
which is represented as

Ti —Zj) \Yi —Yj
Rf_” :[wivhjasiawjvhjvsja( ])a ( ])7
w; hj (7)
(@i —25)? (i —y;)* ,  wi hi
log(—),log(—

where (x;,y;) is the center of ROI b;, while w;, h; are the
width and height of b;, and s; is the area of b;.

For node v;, it receives messages both from the other
nodes and scene context. Eventually we get the compre-
hensive representation h;y1, which denotes the node state.
In our current study, we empirical find that (details in Sec.
5.3) mean-pooling is the most effective, compared to max-
pooling and concatenation, so
hisa +hip
f ) (8)
where hy, ; is the output of scene GRU, and h{, ; denotes
the output of edge GRU.

In the following iterations, scene GRUs will put the new
(updated) node state as their hiddens, and take fixed scene
feature as input, then compute next node states. Edge GRUs
would take the new object-object message as new input,
then compute the next hidden states. Finally, the eventual
integrated node representations are used to predict object
category and bounding box offsets.

hiy1 =

4. Results

In this part, we comprehensively evaluate SIN on two
datasets including PASCAL VOC [12] and MS COCO [26].

4.1. Implementation Details

We use a VGG-16 model pre-trained on ImageNet [&].
During training and testing stage, we use NMS [13] to se-
lect 128 boxes as object proposals. Faster R-CNN is trained
by ourself as baseline, where all parameters are set accord-
ing to the original publications. For our method, since we
find that smaller learning rate is more suitable, consequently
the number of train iterations is increased. The momen-
tum, weight decay and batch size are all the same as base-
line. Specifically, when training on VOC 2007 trainval com-
bined with VOC 2012 trainval and testing on VOC 2007
test, we use a learning rate of 5 x 10~ for 80k iterations,
and 5 x 1075 for the next 50k iterations. When training
on VOC 2007 trainvaltest combined with VOC 2012 train-
val and testing on VOC 2012 test, we use a learning rate
of 5 x 10~ for 100k iterations, and 5 x 10~° for the next
70k iterations. When training on COCO train and testing on
COCO 2015 dev-test, we use a learning rate of 5 x 10~* for
350k mini-batches, and 5 x 1072 for the next 200k mini-
batches. Our method and baseline are both implemented
with Tensorflow! [11].

4.2. Overall Performance

PASCAL VOC. VOC involves 20 categories. VOC
2007 dataset consists of about 5k trainval images and 5k
test images, while VOC 2012 dataset includes about 11k
trainval images and 11k test images. We set two kinds of
train dataset, and the evaluations were carried out on the
VOC 2007 and VOC 2012 test set (from VOC 2012 evalua-
tion server) respectively in Tab. 1 and Tab. 2. Applying our
method, we get a higher mAP of 76.0% on VOC 2007 and
a mAP of 73.1% on VOC 2012 test. Especially to deserve

'Our source code is available at http:/vipl.ict.ac.cn/resources/codes.
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to be mentioned, our method is also better than ION [3] on
VOC 2007 test, which is a multi-scale network with explicit
modeling of context using a recurrent network.

MS COCO. To further validate our method on a larger
and more challenging dataset, we conduct experiments on
COCO and report results from test-dev 2015 evaluation
server in Tab. 3. The evaluation metric of COCO dataset
is different from VOC. The overall performance AP aver-
ages mAP over different IOU thresholds from 0.5 to 0.95.
This places a significantly larger emphasis on localization
compared to the VOC metric with only requires IOU of 0.5.
In this more challenging dataset, our SIN achieves 23.2% on
test-dev score, again verifying the advantage of our method.

5. Design Evaluation

In this section, we explore the effectiveness of our
model, including two main modules of using scene contex-
tual information named as Scene and using object relative
relationships named as Edge. Additionally, we conduct in-
depth analysis of the performance metrics of our method.

5.1. Scene Module

In this experiment, only scene contextual information is
considered to update nodes feature. In other words, just a
set of scene GRUs is used in structure inference.

Performance. As shown in Tab. 4, for the simplify to do
ablation study, all methods are trained on VOC 2007 train-
val and test on VOC 2007 test. Scene module achieves a
better mAP of 70.23% compared with baseline on VOC.
Interestingly, it is found that Scene gets a prominent aver-
age precision on some categories including aeroplane, bird,
boat, table, train, tv and so on, especially the average pre-
cision of boat increases by more than 6%. This result is ac-
tually not surprising since one can find that such categories
generally have pretty high correlations with the scene con-
text. For instance, planes and birds are mostly in the sky,
while boats are commonly in the river.

Small, vague or occluded object. To further examine
the differences between baseline and Scene, we look at a
detailed breakdown of results of VOC 2007. We use the de-
tection analysis tool from [20]. Fig. 6 provides a compact
summary of the sensitivity to each characteristic and the po-
tential impact of improving robustness on seven categories
selected by [20]. Overall, our method is more robust than
baseline against occlusion, truncation, area size and part.
Efforts to improve these characteristics are explicit. The
further specialized analysis on area size is shown in Fig.
7. Our method gets a distinct improvement on extra-small
bird, boat and cat category, and achieves better performance
on other size. Besides, the AP® of COCO test depicted in
Tab. 5 which represents the performance of small objects
also gets improved compared with baseline.
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Figure 6. Summary of Sensitivity and Impact of Object Char-
acteristics. We show the average (over 7 categories) Normalized
AP(APx [20]) of the highest performing and lowest performing
subsets within each characteristic (occlusion, truncation, bounding
box area, aspect ratio, viewpoint, part visibility). Overall APy is
indicated by the dashed line. The difference between max and min
indicates sensitivity. The difference between max and overall in-
dicates the impact. Red: Scene. Green: baseline.
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Figure 7. Sensitivity and Impact of BBox Area on VOC 2007
test. Each plot shows APy [20] with standard error bars (red).
Black dashed lines indicate overall APy. The plot shows the ef-
fects of BBox Area per category. Key: BBox Area: XS=extra-
small; S=small; M=medium; L=large; XL=extra-large. The top
figure is for baseline, and the bottom one is for Scene.

Qualitative results of Scene. Additionally, a couple of
examples of how Scene module can help improve the de-
tection performance are shown in Fig. 8. In the first case,
some boats are mislabeled as car by the baseline of Faster
R-CNN, while our method correctly labeled these vague ob-
jects as boats. In the second case, nothing is detected by
the baseline, however a chair is detected using scene con-
textual information. The third one is a failure case, where
an aeroplane is truly detected in a quite rare situation (on
the river) by the baseline but it is misclassified as a boat
by our model. This sample suggests us further improve our
method to flexibly balance the general cases and rare ones
by weighting the importance of global scene context.



Table 4. Ablation Study on VOC 2007 test. All methods are trained on VOC 2007 trainval. Baseline: Faster R-CNN our trained. Scene:
only using scene context. Edge: only using object-object relationships.

Method | mAP | aero bike bird boat  bottle  bus car cat chair cow  table dog  horse mbike person plant sheep sofa  train tv
Bascline | 68.79 | 68.86 77.70 67.52 5400 53.84 7598 80.07 79.89 4931 7398 6580 77.15 8021 7652 7688 3872 6675 6548 7554 71.53
Scene | 7023 | 70.11 78.38 69.33 60.88 53.09 7698 79.64 86.01 49.86 7502 68.00 78.66 80.66 7470 7734 4121 6828 6538 76.59 7447
Edge 70.31 | 70.08 7820 67.46 57.64 56.04 7854 80.02 79.89 5110 7412 70.17 77.99 80.58 7754 77.60 4107 69.04 6833 7620 74.60
Table 5. Ablation Study on COCO test-dev 2015. All meth- e
ods are trained on COCO train set. Baseline: Faster R-CNN our d
trained. Scene: only using scene context. Edge: only using object-
object relationships.
Method \ AP AP0 ApPT0 \ APS APM  ApPT Cor: 70% Cor: 1%
Baseline | 21.1  40.9 19.9 6.7 22.5 32.3
Scene 22.5 439 21.1 7.1 24.1 349
Edge 227 433 21.6 7.0 24.2 35.7

(b) nothing dete
y iz

(d) boats are detected (e) chair is detected

(f) only a boat
Figure 8. Qualitative results of Baseline vs. Scene on VOC. In

every pair of detection results (top vs. bottom), the top is based on
baseline, and the bottom is detection result of Scene.

5.2. Edge Module

We evaluate the effectiveness of only Edge module in
this part. Like Scene module, only a set of edge GRUs is
used to direct the nodes updating according to relative ob-
jects. From Tab. 4 and 5, its advantage over the baseline is
again verified.

Localization. To understand the effectiveness of Edge
in more details, we use the detection analysis tool in [20]
again. It is found that most categories have enjoyed more
accurate localization compared with the baseline. Fig. 9
takes two example categories (i.e., aeroplane and bus) to
show the frequency and impact on the performance of each
type of false positive. One can see that the localization error
has been largely decreased. More results are provided in
supplementary material. By further checking the results of
COCO in Tab. 5, the AP™ improves greatly, which means
that our method provides more accurate results.

Qualitative results of Edge. Comparing qualitative re-
sults between baseline and Edge module, we find a com-
mon type of detection error of Faster R-CNN that one ob-
ject would be detected by two or more boxes labeled as
similar categories, because Faster R-CNN predicts a spe-
cific regression box for each possible category given a can-

(a) aeroplane on baseline (b) aeroplane on Edge

Cor: 72%

Cor: 70%

(c) bus on baseline (d) bus on Edge

Figure 9. Analysis of Top-Ranked False Positives. Pie charts:
fraction of detections that are correct (Cor) or false positive due
to poor localization (Loc), confusion with similar objects (Sim),
confusion with other VOC objects (Oth), or confusion with back-
ground or unlabeled objects (BG). Left: results of the baseline
Faster R-CNN. Right: results of Edge. Loc errors are fewer than
baseline on aeroplane and bus.

didate region. It would record all high score categories with
the specific boxes. Namely, one candidate box would pro-
duce numbers of close detection results. As shown in Fig.
10(a)(c), the multiple box results of one object detected by
baseline are redundant. This kind of errors can be largely
reduced by Edge, due to that object relationships between
those overlapping nodes make them homogenized. Not only
a higher accuracy is achieved, detection results also look
more comfortable by using Edge in Fig. 10(b)(d).

Relative object visualization. As described above in
Sec. 3.3, the input of edge GRU is an integrated mes-
sage from relative nodes for one object. In this part, we
check whether the relative object-object relationship has re-
ally been learned. For this purpose, we visualize object re-
lationship in an image by edges e¢;_,;. For each node v;,
we find the maximum e;_,;. If node % and node j are truly
detected objects, we draw a dashed line to concatenate box
1 and j to represent that object ¢ and j have a highly corre-
lated relationship. The results are shown in Fig. 11.

5.3. Ensemble

At this moment, we have evaluated the effectiveness of
two key modules. Then we explore how to conduct an ef-



(a) cars are redundant (b) results of Edge

(c) the sheep is redundant

(d) results of Edge

Figure 10. Qualitative results of Baseline vs. Edge on VOC. In
every pair of detection results, the left is based on baseline, and
the right is detection result of Edge.

=

WL e’ .
Figure 11. Relative Object Visualization on COCO. Those ob-
jects connected by red dashed line are most relative. Left: person -
tennis racket & tennis racket - sports ball. Right: person® - frisbee

& person® - person®.

Table 6. Performance on VOC 2007 test Using Different En-
semble Ways and Time Steps. All methods are trained on VOC
07 trainval.

Ensemble Way | Time Steps | mAP

concatenation 2 70.2
max-pooling 2 70.4
mean-pooling 2 70.5
mean-pooling 1 69.8
mean-pooling 3 69.6

fective fusion of the two separated updated hidden state h°
and h° of nodes respectively obtained by the modules of
Scene and Edge.

Way of ensemble. We explore three ways to integrate
these two modules, including max-pooling, mean-pooling
and concatenation: W, [h®; h¢]. From Tab. 6, it can be ob-
served that mean-pooling performs the best.

Time steps of updating. We explore the performance
of different numbers of time step. As shown in Tab. 6,
our final model achieves the highest performance at training
with two time steps, and gradually gets worse afterwards.
One possible reason is that the graph can form a close loop
of message communication after 2 time steps. While with

0.9 — Ppaseline === Rbaseline

=== Rscene

Pedge === Regge

0.8 1 ——- Row

0.7 1

061 ----::::::;;===

0.5

0.4

0?0 0?2 0j4 Ojﬁ 018

Figure 12. PR curves. Legend: solid line: precision curve,
dashed line: recall curve, red: baseline. coral: Scene, green:
Edge, blue: SIN. SIN yields the highest the precision curve, while
at the meantime obtains an almost same recall curve compared
with the baseline.

more than 3 time steps, noisy messages start to permeate
through the graph.

Performance of PR curves. In this part, we detailedly
discuss the performance metrics of our method. At detec-
tion score of [0: 0.1: 0.9], we calculate the global precision
and recall of detection results by baseline, Scene, Edge and
SIN (Scene & Edge). Then we plot the PR curves in Fig. 12.
The results show that SIN is able to reach higher precision
than the baseline and meanwhile performs almost the same
recall, suggesting that when recalling almost the same num-
ber of positive instances, our detection results are fewer and
more accurate. The limited recall rate might be attributed to
the additional relationship constraints which make it more
difficult to detect rare samples in a specific scene e.g. a boat
lies on a street. However, detection results using context
information are more accurate and confident. This obser-
vation exactly manifests the major characteristics of using
context information.

6. Conclusion

In this paper, we propose a detection method to jointly
use scene context and object relationships. In order to effec-
tively leverage these information, we propose a novel struc-
ture inference network. Experiments show that scene-level
context is important and useful for detection. It particularly
performs well on the categories which are highly correlated
with scene context, though rare failure cases might happen
in case of uncommon situations. As to instance-level rela-
tionships, it also plays an important role for object detec-
tion, and it could especially improve object localization ac-
curacy. From our current evaluations on VOC to COCO, it
is believed that our method has great potential to be applied
to larger realistic datasets with more of categories.
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