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Abstract

Ordinal regression is a supervised learning problem
aiming to classify instances into ordinal categories. It is
challenging to automatically extract high-level features for
representing intraclass information and interclass ordinal
relationship simultaneously. This paper proposes a con-
strained optimization formulation for the ordinal regres-
sion problem which minimizes the negative loglikelihood
for multiple categories constrained by the order relation-
ship between instances. Mathematically, it is equivalent to
an unconstrained formulation with a pairwise regularizer.
An implementation based on the CNN framework is pro-
posed to solve the problem such that high-level features can
be extracted automatically, and the optimal solution can be
learned through the traditional back-propagation method.
The proposed pairwise constraints make the algorithm work
even on small datasets, and a proposed efficient implemen-
tation make it be scalable for large datasets. Experimental
results on four real-world benchmarks demonstrate that the
proposed algorithm outperforms the traditional deep learn-
ing approaches and other state-of-the-art approaches based
on hand-crafted features.

1. Introduction
Ordinal regression, also named as ordinal classification,

lies between multi-class classification and metric regres-
sion. Its problem setting is exactly same as that of multi-
class classification, which is to predict the category label
for an input instance. However, the categories in the or-
dinal regression problem have ordinal relationship. Ordi-
nal regression also can be viewed as a discrete version of
metric regression, but the difference is that the number of
categories in ordinal regression is finite and the distances
between categories are undefined. An example of ordinal
regression is movie rating, which grades movies based on
an ordinal scale such as 1 star to 5 stars, and a movie with 4
stars has a better rating than those with 3 stars.

Recently, a number of machine learning approaches have

been proposed for ordinal regression. Most approaches re-
solve the ordinal regression problem either from regres-
sion prospective or from classification prospective. The ap-
proaches from regression prospective aim to learn a func-
tion mapping the instances to a real line and predict multi-
ple boundaries to discretize the mapped value. For exam-
ple, the max-margin based approaches [19][4] adapted the
support vector regression to predict contiguous boundaries
splitting the ordinal classes. The approaches from classifi-
cation prospective embed ordinal information between class
labels into the traditional classification methods. For exam-
ple, neural network based approaches [8][2] use different
coding schemes to encode the ordinal information of class
labels into the output vectors of the networks. However, few
of existing work combine classification and regression parts
in the optimization objective explicitly.

In literature, most of existing ordinal regression ap-
proaches are based on handcrafted features, which are
labor-intensive and highly rely on the prior knowledge. In
these several years, deep neural networks (DNNs) have at-
tracted great attention due to being able to automatically
extract high-level features from raw data and performing
very well on many classification tasks. However, very few
works use DNNs for ordinal regression problem. Niu et al.
(2016) [16] claimed that their method is the first work to
adapt DNNs for ordinal regression. Generally speaking, a
large training dataset is necessary to train a deep neural net-
work, but many real-world ordinal regression problems are
in fact small data problems. For example, for disease rating
in medical images, in many cases large training image sets
are not available because collecting such data is difficult,
expensive and invasive. Learning deep neural networks on
small datasets is challenging, and to design a method suit-
able for small datasets and also scalable for large datasets at
the same time is another challenging task.

In the traditional deep learning approaches, the learn-
ing objectives are formulated as unconstrained optimization
problems. Usually, the objective function is a loss designed
for the task. This paper first formulates the ordinal regres-
sion problem as a constrained optimization problem and an



equivalent unconstrained formulation is derived. Based on
this formulation, CNN can be adapted to solve it. A CNN
can be viewed as a combination of multiple convolution
layers which map instances to a high dimensional feature
space and multiple fully-connected layers which perform as
a classifier. The proposed method aims to learn the mapping
function to maximize the probability of training instances
belong to their category under constraints that in the high
dimensional space, the instances from ordered ranks are
mapped to a real line in order. The proposed constrained
optimization problem can be converted to an unconstrained
problem with two terms in the objective function: one is a
logistic regression loss for classification and the other is a
pairwise hinge loss for regression. Therefore, the proposed
approach optimizes classification and regression objectives
simultaneously, which targets to the problem setting of or-
dinal regression more directly.

The contributions of this paper are summarized as fol-
lowing: 1) The proposed approach adapts DNNs to solve a
constrained optimization problem for ordinal regression. 2)
The proposed approach is an end-to-end approach without
any preprocessing such as feature extraction or any postpro-
cessing such as decoding for predictions. 3) The proposed
pairwise regularizer makes deep learning on small datasets
possible. 4) The proposed approach is suitable for small
datasets and scalable for large datasets.

The rest of this paper is organized as follows. Section
2 reviews the literature of ordinal regression. Section 3 de-
scribes the proposed objective function and the CNN archi-
tecture adapted for solving the optimization problem. Sec-
tion 4 reports the experimental results. Section 5 gives con-
clusive remarks.

2. Related Work
As the problem setting of ordinal regression lies be-

tween multi-class classification and metric regression, the
approaches in the literature can be divided into two cate-
gories: approaches from regression prospective and from
classification prospective. In Gutierrez et al.’s survey [7],
the first category of approaches is named as threshold ap-
proaches. These approaches assume that there is a latent
function mapping the instances to a real line, and the ranks
of instances are intervals on the line. The target of the
threshold approaches is to learn the latent function and the
boundaries of the intervals. For example, SVOR [4], a SVM
based method, estimates the weight w for input vectors x
and boundaries b, and the decision criteria is that the rank
of x is k if and only if wTx ∈ [bk−1, bk], where bk is the
boundary separating rank k and rank k+1. Another method
GPOR [3] assumes that the latent function f(x) is a Gaus-
sian process. A likelihood function p(y|f(x)) is proposed
for ordinal regression and the hyperparameters including
the boundaries b are estimated by MAP or EP algorithms.

The threshold approaches are not able to predict the rank
labels directly from the learned latent function without the
boundaries b, but it is challenging to learn the boundaries
especially when the number of ranks is large.

The second category of the approaches transform the or-
dinal regression problem to classification problems. Frank
and Hall [6] propose to address the m-rank ordinal regres-
sion problem by usingm−1 standard binary classifiers, and
the k-th classifier is trained to predict the probability of the
rank yt > k for an instance xt. Then all the outputs from
m − 1 binary classifiers are combined to produce the deci-
sion of the rank of xt. Cardoso and Pinto da Costa [1] and Li
and Lin [12] propose two similar data replication methods
independently to convert the ordinal regression problem to
a binary classification problem. The RED-SVM approach
in [12] extends a labeled instance (x, y) to m − 1 binary
instances for a m-rank ordinal regression problem by trans-
formation: xk = (x; ek) ∈ Rd+m−1; yk = 1 − 2[y ≤ k],
where d is the dimension of x, ek ∈ Rm−1 is an indicator
vector for rank k, and [·] is the indication function. Based
on the new dataset, a single binary classifier f(xk) is trained
based on SVM to answer the question “Is the rank of an in-
stance greater than k?”. And the rank of xt is predicted as
m−1∑
k=1

[f(xkt ) = 1] + 1.

All the above methods rely on handcrafted features. In
recent years, deep learning has achieved great success on
classification problems, but there are very few works to ap-
ply DNNs on ordinal regression problems. Niu et al. [16]
have recently adopted CNN for age estimation. They trans-
form the m-rank ordinal regression problem to m − 1 bi-
nary classifiers and the k-th classifier answers the question
“Is the rank yt of an instance greater than k”? The idea is
very similar to RED-SVM, but they adapt a single CNN to
combine all classifiers and output the k − 1 predictions at
the same time. However, a post-processing step is required
to decode the final predicted rank for a testing instance xt
from possible contradictory outputs. For example, the out-
puts of the CNN predicts that yt is greater than k + 1 and
smaller than k − 1. In [16], Niu et al. follow the decoding

strategy of RED-SVM to assign yt =
m−1∑
k=1

[fk(xt) = 1]+1,

where fk(xt) is the k-th output of the CNN for xt.

In terms of ranking order, a related research topic is
learning to rank for information retrieval. Its target is to
learn the relevance between a document and a given query,
and to predict the relative order of the documents based on
the relevance. However, learning to rank is different from
ordinal regression because it is not able to predict the exact
ranks of documents. A comprehensive survey [13] summa-
rizes the approaches of learning to rank as pointwise, pair-
wise and listwise approaches. RankingSVM [9], an pair-
wise approach, introduced the ranking constraints into SVM



as shown in Eq. 1:

min
w,ξ

1

2
‖ w ‖22 +C

∑
i,j

ξi,j

s.t. w · φ(q, di) ≥ w · φ(q, dj) + 1− ξi,j
ξi,j ≥ 0 (1)

where q is a query, di and dj are two documents, w is
the weight vector and φ(q, di) is a mapping function. This
paper adapts the pairwise constraints in Eq. 1 for ordinal re-
gression and solves the proposed optimization problem un-
der the deep learning framework.

3. The Proposed Algorithm
An ordinal regression problem with m ranks denoted by

Y = {1, 2, · · · ,m} is considered, where the natural order
of the numbers in Y indicates the order of the ranks. A train-
ing set with labeled instances T = {(xi, yi)|xi ∈ X, yi ∈
Y } is given, where X is the input space. The target is to
predict the rank yt ∈ Y of an input xt ∈ X . Let Xk ⊆ X
be the subset of training instances whose rank labels are k
and Ik = {i|xi ∈ Xk} be the index set of Xk. Denote
xki ∈ Xk as an input from rank k. In the rest of this section,
the outline of the proposed approach will be provided first,
and then the DNN architecture used to solve the optimiza-
tion problem will be presented.

3.1. The Proposed Optimization Formulation
The intuition of the proposed approach is to learn a

multi-class classifier by constraining the instances being
mapped to a real line in order. Eq. 2 shows the optimization
problem:

min
f,φ,w,ξ

−
m∑
k=1

∑
i∈Ik

log
efk◦φ(x

k
i )

m∑
r=1

efr◦φ(x
k
i )

+ C

m−1∑
k=1

∑
i∈Ik
j∈Ik+1

ξki,j

s.t. w · φ(xk+1
j )− w · φ(xki ) ≥ 1− ξki,j ,

ξki,j ≥ 0, k = 1...m− 1, i ∈ Ik, j ∈ Ik+1 (2)

where m is the number of ranks, and Ik is the index set
of Xk. fk(·) and φ(·) are mapping functions, and ◦ is the
function composition operator. w is the weight vector map-
ping φ(x) to a real line. φ(·) can be considered as a feature
extractor and fk(·) is a classifier for label k. The first term
of the objective function in Eq. 2 is the composition of soft-
max function and multinomial logistic regression loss, and
the second term is the sum of slack variables ξki,j where C is
a hyperparameter. The constraints in Eq. 2 define the con-
dition that the mapped values of instances from rank k + 1
should be equal or larger than those of instances from rank
k with an margin of 1 and tolerance ξki,j . Once the opti-
mal solution of Eq. 2 is obtained, the rank label of a test
instance xt is predicted as the category with the maximum
likelihood. More precisely, Eq. 3 is the decision function:

ŷt = argmax
k

efk◦φ(xt)∑m
j=1 e

fr◦φ(xt)
= argmax

k
fk ◦ φ(xt) (3)

The constraints in the proposed approach enforce that all
pairs of instances from adjacent ranks are mapped in or-
der with a tolerance, and they are similar to those in Rank-
ingSVM [9] as shown in Eq. 1. However, the proposed
optimization problem is different from RankingSVM in the
following four prospectives: 1) Given a query, the target of
RankingSVM is to predict the order of test instances based
on relevance. It is not able to predict the exact rank of a test
instance. 2) The objective of RankingSVM is to minimize
the margin (i.e, ‖ w ‖22) based on the large-margin theory
in support vector regression. However, the objective of the
proposed approach is to maximize the loglikelihood which
is always used for classification problems. 3) The con-
straints of RankingSVM are applied to all possible pairs for
a given query, but the proposed constraints applied to pairs
of instances from adjacent ranks. 4) The mapping function
φ(·) in RankingSVM is predefined by a kernel function, but
in the proposed approach φ(·) is learned automatically by a
deep neural network. In the proposed optimization problem,
the constraints only count on pairs of instances from adja-
cent ranks, but other pairs of instances, such as instances
from rank k and rank k + 2, are not considered explic-
itly. The reason is that if both (w · φ(xk1), w · φ(xk+1

2 )) and
(w · φ(xk+1

2 ), w · φ(xk+2
3 )) are in order, it can be inferred

that (w · φ(xk1), w · φ(xk+2
3 )) are also in order.

The slack variables in Eq. 2 and the slack variables in
SVM have the same meaning. They both are used as toler-
ances for non-separable instances. In Eq. 2, ifw·φ(xk+1

j )−
w · φ(xki ) ≥ 1, the error ξki,j should be 0. Otherwise, the er-
ror ξki,j should be 1− (w ·φ(xk+1

j )−w ·φ(xki )). Therefore,
the proposed optimization problem can be rewritten as an
unconstrained optimization problem in Eq. 4.

min
f,φ,w

−
m∑
k=1

∑
i∈Ik

log
efk◦φ(x

k
i )∑m

r=1 e
fr◦φ(xki )

+ C

m−1∑
k=1

∑
i∈Ik
j∈Ik+1

max(0,

1 + w · φ(xki )− w · φ(xk+1
j )) (4)

The first term in Eq. 4 is same as the the first term in
Eq. 2 and the second term can be viewed as a pairwise
hinge loss for regression. Therefore, the proposed approach
optimizes the weighted combination of classification loss
and regression loss explicitly, which directly represents the
definition of ordinal regression problem.

3.2. The Proposed CNN based Optimization

Traditional feature based large-margin approaches often
employ a function ψ(xi) mapping the input feature vector
xi to a high dimensional space. And a predefined kernel is
used to represent the mapping function based on the kernel
trick. The form of the kernel function and its hyperparame-
ters affect the performance a lot. Deep neural networks are
able to learn the high level features and weights of classi-
fiers simultaneously. Therefore, a deep neural network is



Figure 1: The architecture of CNNPOR for a 3-rank ordinal regression problem.

designed to learn the mapping function φ(·), the weight w
and fk(·) in the proposed optimization problem in Eq. 4.
Since convolutional neural networks are used in the cur-
rent implementation, the proposed method is named con-
volutional neural network with pairwise regularization for
ordinal regression (CNNPOR).

The new loss function defined in Eq. 4 is implemented
in CNNPOR, which is a weighted combination of a soft-
max logistic regression loss and a pairwise hinge loss. It
should be pointed out that the scales of the two losses are
not same. Therefore, a new training set is constructed by
pairing up the instances from adjacent ranks, i.e, X ′ =
{(xks , xk+1

s )|xks ∈ Xk, x
k+1
s ∈ Xk+1, k = 1, ...,m − 1}.

Define Pk = {(xks , xk+1
s )}, and Ipk = {s|(xks , xk+1

s ) ∈ Pk}
as the index set of Pk. All the elements xks and xk+1

s in
the pairs are used as input. Using this training set, the two
losses are scaled automatically i.e. Eq. 5.

min
f,φ,w

−
m−1∑
k=1

∑
s∈Ip

k

log
efk◦φ(x

k
s )

m∑
r=1

efr◦φ(x
k
s )

−
∑

s∈Ipm−1

log
efm◦φ(x

m
s )

m∑
r=1

efr◦φ(x
m
s )

+ C

m−1∑
k=1

∑
s∈Ip

k

max(0, 1 + w · φ(xks )− w · φ(xk+1
s )) (5)

Fig. 1 shows the architecture of CNNPOR for a 3-rank
ordinal regression problem. The input instances are orga-
nized in a list, as (x1i , x

2
i , x

3
i ) in the figure, where x1i , x

2
i , x

3
i

are from rank 1, 2 and 3, respectively. They are individ-
ually inputted to the convolution net Gh, which represents
the mapping function φ(·) in Eq. 5. The outputs of Gh

as the high dimensional features are passed to the fully-
connected layer Gc, which represents the mapping function
fk(·). There is a softmax logistic regression loss and the
number of output neurons equals to the number the ranks.
The combination of the convolution net Gh and the fully-
connected layerGc is a standard multi-class CNN. Then the
instances from adjacent ranks (i.e, x1i and x2i , x2i and x3i ) are
paired up and inputted into the convolution netsG11 toG22.
The outputs of all G11 to G22 are mapped into one dimen-
sional space by the mapping vector w, and then the pair-
wise hinge loss layer receives all the outputs to calculate
the last term in Eq. 5. The final loss layer sums up the two

losses at weights 1:C. All the convolution nets (Gh,G11-
G22) have the same architecture which consists of layers
before the last fully-connected layer in a standard CNN, and
they share the same weights. In the training phase, the stan-
dard backprobagation technique is used and the loss is back
propagated to all the convolution nets. In the testing phase,
a testing point xt is inputted into Gh and the output of the
Gc is the prediction. Therefore, CNNPOR is different from
other pairwise methods such as Niu et al.’s method [16],
RED-SVM [12] and Liu et al.’s method [14], because it is
an end-to-end approach for ordinal regression, which does
not require any postprocess step to achieve the predictions.

3.3. Scalability of the Proposed Algorithm

The proposed pairwise constraints as a regularizer make
learning CNNPOR on small datasets possible, while the
proposed architecture is also computationally feasible for
large datasets. It should be emphasized that, for a training
set with n images, the number of input images of CNNPOR
is n not n2. As shown in Fig. 1, all the convolution layers
Gh, G11, G12, G21 and G22 share weights, meaning that
there is only one unique standard CNN to be trained. The
pairwise constraints which require quadratic number of op-
erations are applied on the features inputted to the pairwise
loss layer, not on the raw input images.

Algorithm 1 describes the implementation of one train-
ing iteration in CNNPOR, which reorganizes the instances
as each batch having d images from each rank (i.e., set Dr

in Algorithm 1) and n images from all ranks randomly (i.e.,
set Dc). The training set is shuffled per epoch to make in-
stances in mini-batches random. Assume that a standard
CNN structure such as the VGG [20] or the LeNet [10] is
used. All layers before the last fully-connected layer are
named as Gh, which also represents for G11 to G22 in Fig.
1, and the last fully-connected layer is named asGc. In CN-
NPOR, one more fully-connected layer Gr with one output
node is connected to Gh, and its weights are the w in Fig.
1. As shown in line 1-2 of Algorithm 1, all instances of D
are propagated to Gh. Then the instances of Dc are propa-
gated toGc to calculate the softmax loss l1 and the instances
of Dr are propagated to Gr to calculate the pairwise hinge



Algorithm 1 Pseudo code of one training iteration in CN-
NPOR
Input: Training set D = Dc ∪Dr with n instances in Dc

and m× d instances in Dr, where Dr = D1 ∪D2 · · · ∪
Dm, Dk ⊆ Xk and the size of Dk is d.
Output: Update the network weights.

1: Initialize or update all weights in a CNN consisting of
convolution net Gh and two fully-connected layers Gc

and Gr both connected to Gh.
2: Forward propagate all instances of D into Gh.
3: Forward propagate instances of Dc into Gc.
4: Calculate the softmax loss l1 of Dc.
5: Forward propagate instances of Dr into Gr.
6: procedure PAIRWISEHINGELOSS
7: Initialize pairwise hinge loss l2 ← 0.
8: Ok ← the outputs of Gr for Dk.
9: for k = 1 to m− 1 do

10: l2 = l2 + SUM(MAX(0, 1 +Ok −Ok+1))
11: end for
12: end procedure
13: Backward propagate of l1 + C × l2.

loss l2 in line 6-12. Finally, the weighted loss l1 + C × l2
is back propagated to the whole network. Ok in line 8 is
a vector where each element is the one-dimensional out-
put of Gr for one instance of Dk, i.e., w · φ(xks) in Eq. 5.
The operations ‘−’, MAX and SUM in line 10 are elemen-
twise substraction, maximum and summation. Therefore,
comparing to a standard m-class CNN, for a mini-batch
with n+m× d instances, CNNPOR does not calculate the
softmax loss for m × d instances but calculates the hinge
loss for them by using m− 1 element-wise vector substrac-
tion, maximum and summation operations instead. Thus,
although CNNPOR introduces the pairwise regularizer, by
employing the proposed architecture and implementation, it
is scalable for large scale datasets.

4. Evaluation

The proposed CNNPOR approach is evaluated on four
benchmarks - a historical color image dataset [17], an im-
age retrieval dataset MSRA-MM1.0 [21], an image aes-
thetic dataset [18] and the Adience Face Dataset [11]. Ac-
curacy and mean absolute error are used as performance in-
dexes. Accuracy is defined by 1

|T |
∑

xt∈T
[ŷt = yt], where T

is a testing set and |T | is its size, [·] is the indicator func-
tion, yt is the ground truth of xt, and ŷt is its predicted label.
Mean absolute error (MAE) is defined by 1

|T |
∑

xt∈T
|ŷt − yt|.

Three baseline methods are employed for comparison: the
state-of-the-art handcarfted feature based ordinal regression
method - RED-SVM [12], the traditional CNN method for

multi-class classification - CNNm and the CNN based ordi-
nal regression method - Niu et al.’s method [16].

4.1. Results on the Historical Color Images Dataset

The historical color image dataset [17] is a benchmark
to evaluate algorithms predicting when a historical color
image was photographed in the decade scale. The dataset
stores images collected from five decades, 1930s to 1970s
corresponding to five ordinal categories, and each category
has 265 images. Fig. 2 shows samples in the dataset. The
evaluation protocol reported in [17] is taken in this study for
fair comparison. In each category, 215 images are employed
for training and the rest 50 images are for testing.

Table 1 lists the experimental results on the historical
color image dataset. Besides the results of the three baseline
methods, i.e, RED-SVM, CNNm and Niu et al.’s method,
the results from the previous methods on this dataset are
also reported. Palermo et al.’s method [17] and Martin
et al.’s method [15] are proposed for this particular task,
and Frank and Hall’s method [6] and Cardoso and Pinto
da Costa’s method [1] are for general ordinal regression
problems. Palermo et al. [17] designed 8168 features
for this task. In the experiments, all handcrafted feature
based methods listed in Table 1 use the same features for
fair comparison. RED-SVM [12] is a state-of-the-art hand-
crafted feature based method for general ordinal regres-
sion problems. To evaluate the performance of CNNPOR
achieved by the deep features and by the algorithm, CN-
NPOR is compared with RED-SVM with the inputs of the
8168 handcrafted features (RED-SVM@8168 in Table 1)
and the deep features extracted from the traditional CNN
which are the 512 dimensional output values before the first
fully-connected layer in the VGG architecture [20] (RED-
SVM@deep in Table 1).

The deep multi-class classification method (CNNm in
Table 1) and the deep ordinal regression method (Niu et
al.’s method in Table 1) are implemented for comparison.
For the historical image dataset, the VGG architecture [20]
is employed for CNNm, Niu et al.’s method and CNNPOR.
For CNNPOR, as shown in Fig. 1, Gh and Gc are linked
together and implemented through the VGG architecture,
i.e., Gh consists of the thirteen convolution layers and the
ReLU and pooling layers in between, and Gc includes the
three fully-connected layers and the layers in between. The
implementation ofG11−G22 is same asGh. The images in
the historical image dataset are resized to 256× 256 pixels.
For all the three deep learning methods, the image size of
the input layer is set to 224× 224 3-channel pixels, and the
input images are cropped further at random positions during
the training phases for data augmentation. For each train-
ing/testing image partition, the last 5 images in the training
set are used as the validation images, i.e., 210, 5 and 50
images respectively for training, validation and testing in



Figure 2: Historical color image dating dataset. (a)1930s,
(b)1940s, (c)1950s, (d)1960s, (e)1970s.

Table 1: Results on the historical image benchmark.
Methods Accuracy(%) MAE
Palermo et al.’s method [17] 44.92±3.69 0.93±0.08
Martin et al.’s method [15] 42.76±1.33 0.87±0.05
Frank and Hall [6] 41.36±1.89 0.99±0.05
Cardoso and Pinto da Costa [1] 41.32±2.76 0.95±0.04
RED-SVM@8168 [12] 35.92±4.69 0.96±0.06
RED-SVM@deep [12] 25.38±2.34 1.08±0.05
CNNm 48.94±2.54 0.89±0.06
Niu et al.’s method [16] 44.67±4.24 0.81±0.06
CNNPOR 50.12±2.65 0.82±0.05

(a) Very relevant (b) Relevant (c) Irrelevant
Figure 3: MSRA-MM1.0 dataset: cat subset.

Table 2: Class distributions on MSRA-
MM1.0 dataset.

Rank 1 Rank 2 Rank 3 Total
Baby 379 295 277 951
Beach 336 398 213 947
Cat 243 344 378 965
Rose 222 418 329 969
Tiger 277 408 335 1020
Fish 130 669 165 964
Golf 777 97 79 953

each rank. In total, the sizes of training, validation and test-
ing sets for CNNm and Niu et al.’s method are 1050, 25
and 250 images, respectively. For CNNPOR, all the pos-
sible permutations of the images in the five ranks produce
4 ∗ 2102 training pairs (i.e., the pair (xki , x

k+1
j ) in Eq. 5)

and 4 ∗ 52 validation pairs. All three deep methods are fine-
tuned from the pretrained ImageNet model [20]. The C in
Eq. 5 is set to 1 in the experiments. The learning rate of
all layers, except for the last fully-connected layer, is set to
0.0001. Because the number of output nodes for the histor-
ical image dataset is different from that for the ImageNet,
the learning rate of the last fully-connected layer is set as
10 times of the learning rate of other layers, i.e., 0.001.

Table 1 summarizes the results and the number after± is
the standard deviation values. CNNPOR outperforms RED-
SVM on handcrafted features and deep features, CNNm,
and Niu et al.’s method by 14.2%, 24.74%, 1.18%, and
5.45%, respectively in terms of accuracy. The mean MAE
result of CNNPOR is 0.01 higher than that of Niu et al.’s
method, which outperforms all other methods, but it is
within two standard deviations of Niu et al.’s method. Over-
all, CNNPOR achieves the best results on the historical
color image dataset. As shown in Table 1, CNNm per-
forms much better than RED-SVM on deep features (RED-
SVM@deep). The deep features for training RED-SVM are
extracted from the well-trained CNNm. The results show
RED-SVM cannot fully utilize the deep network, because
during the training phase of RED-SVM, it cannot adjust the

mapping from the raw images to deep features. As shown in
Table 1, Niu et al.’s method achieves better performance for
MAE than for accuracy. It is originally proposed for age es-
timation problem, which has larger number of ranks and is
more similar to regression. Thus, it focuses on minimizing
the absolute error, instead of zero one error.

4.2. Results on the Image Retrieval Dataset
Microsoft Research Asia Multimedia 1.0 (MSRA-MM

1.0) dataset [21] is a small scale benchmark which is con-
structed to evaluate multimedia information retrieval algo-
rithms originally. MSRA-MM 1.0 has two parts, an image
benchmark and a video benchmark. The image benchmark
consists of 68 subsets. Each subset stores about 1000 im-
ages for one representative query from the image search en-
gine of Microsoft Live Search. The images are thumbnails,
i.e., the small images displayed on Microsoft Live Search.
Fig. 3 shows a subset representing the query “cat”. The
relevance of the images to the corresponding query is clas-
sified into three levels: very relevant, relevant and irrele-
vant. Fig. 3 lists serval exemplar images labeled as “very
relevant”,“relevant” and “irrelevant” to “cat”. In the exper-
iments, these three relevance levels are indicated by rank 1,
2 and 3. Given a testing image in a query set, we are tar-
geting to predict which rank it belongs to. Seven subsets -
“cat”, “baby”, “beach”, “rose”, “tiger”, “fish” and “golf” in
MSRA-MM 1.0 image benchmark are used to evaluate the
performance CNNPOR. Table 2 summarizes the size of the



Table 3: Results on MSRA-MM1.0 dataset.
Accuracy (%) MAE

RED-SVM RED-SVM CNNm Niu CNN- RED-SVM RED-SVM CNNm Niu CNN-
@8168 @deep et al. POR @8168 @deep et al. POR

Baby 36.99 32.66 48.00 47.33 50.00 0.630 0.699 0.667 0.647 0.636
Beach 35.64 34.00 50.67 51.11 51.11 0.648 0.673 0.598 0.576 0.596
Cat 40.22 34.89 47.56 48.44 52.89 0.633 0.662 0.676 0.620 0.598
Rose 42.05 34.22 55.11 55.78 56.67 0.582 0.664 0.522 0.500 0.500
Tiger 35.57 33.56 53.33 51.78 52.89 0.644 0.673 0.571 0.562 0.578
Fish 68.66 68.89 63.95 66.16 66.33 0.313 0.311 0.378 0.357 0.355
Golf 80.45 80.17 83.08 83.93 84.96 0.283 0.289 0.229 0.219 0.197
Overall 48.51 45.48 57.39 57.79 59.26 0.533 0.567 0.520 0.497 0.494

(a) Unacceptable (b) Flawed (c) Ordinary (d) Professional (e) Exceptional
Figure 4: Image Aesthetics Dataset

seven subsets and the number of images in each rank. These
datasets are small with less than 1100 images. To evalu-
ate the algorithms on imbalanced datasets, “fish” and “golf”
subsets are tested, respectively, 69.4% and 81.5% images in
one rank. Besides images content and task differences, the
images in MSRA-MM 1.0 are different from the historical
images in three properties: different number of ranks, non-
equal number of images in each rank or very imbalanced,
and smaller image size.

Because the size of MSRA-MM 1.0 images is quite
small, the LeNet architecture [10] is employed in all deep
learning methods: CNNm, Niu et al.’s method and CN-
NPOR. The images are cropped to 60 × 60 pixels in the
experiments. For each rank of the first five datasets in Table
2, the images are randomly split to 10 images for validation,
50 images for testing and the rest for training. For the two
imbalanced datasets “fish” and “golf”, 75%, 5% and 20%
images in each rank are randomly selected for training, val-
idation and testing, respectively. In each training set, 40960
pairs of instances from adjacent ranks are constructed as
training instances for CNNPOR. Mini-batch size is set to
64 and the learning rate is set to 0.01. To evaluate RED-
SVM method on handcrafted features, the same 8168 fea-
tures as used for the historical image dataset are employed.
RED-SVM is also tested on the features extracted before the
first fully-connected layer of the LeNet architecture, which
is 50 dimensional features. All methods are examined on
three random training/testing partitions for all datasets and
the mean results are summarized in Tables 3. CNNPOR
performs better than all the baseline methods on five sub-

sets in terms of accuracy, and on three subsets in terms of
MAE. The results on MSRA-MM 1.0 dataset indicate that
CNNPOR performs averagely better than the baseline meth-
ods.

4.3. Results on the Image Aesthetics Dataset

The image aesthetic benchmark [18] consists of 10800
Flickr photos of four categories, i.e., “animals”, “urban”,
“people” and “nature”, and is constructed originally to re-
trieve beautiful yet unpopular images in social networks.
The ground truths of the photos in the benchmark are five
aesthetic grades: “Unacceptable” - images with extremely
low quality, out of focus or underexposed, “Flawed” - im-
ages with some technical flaws and without any artistic
value, “Ordinary” - standard quality images without tech-
nical flaws, “Professional” - professional-quality images
with some artistic value, and “Exceptional” - very appeal-
ing images showing both outstanding professional quality
and high artistic value. Fig. 4 shows an example from the
“urban” category with one photo from each atheistic level.
Each photo in the dataset is labeled by five graders of an
online crowdsourcing platform to one of the five aesthetics
levels. If the level of agreement is low, two more graders
are recruited to perform the evaluation. In the experiments,
these five aesthetic levels are indicated by rank 1 to 5, and
the median rank of each image given by the graders is used
as the ground truth. In each rank 75%, 5% and 20% im-
ages are randomly selected for training, validation and test-
ing, respectively. All comparison methods are tested on five
random training/testing partitions.



Table 4: Results on the image aesthetics dataset.
Accuracy (%) MAE

RED-SVM RED-SVM CNNm Niu CNN- RED-SVM RED-SVM CNNm Niu CNN-
@8168 @deep et al. POR @8168 @deep et al. POR

Nature 69.73 70.72 70.97 69.81 71.86 0.319 0.309 0.305 0.313 0.294
Animal 61.14 61.05 68.02 69.10 69.32 0.407 0.410 0.342 0.331 0.322
Urban 63.88 65.44 68.19 66.49 69.09 0.391 0.374 0.356 0.349 0.325
People 60.06 61.16 71.63 70.44 69.94 0.421 0.412 0.315 0.312 0.321
Overall 63.70 64.59 69.45 68.96 70.05 0.385 0.376 0.330 0.326 0.316

Figure 5: Training curves on the Adience face dataset.

Table 5: Results on the Adience face dataset.
Methods Accuracy(%) MAE
Feature-based
[5] 45.1 ± 2.6 -
Lean DNN [11] 50.7 ± 5.1 -
CNNm 54.0 ± 6.3 0.61 ± 0.08
Niu et al. 56.7 ± 6.0 0.54 ± 0.08
CNNPOR 57.4 ± 5.8 0.55 ± 0.08

In the experiments, all the deep learning methods, in-
cluding CNNm, Niu et al.’s method and CNNPOR, employ
the VGG architecture and are fine-tuned from the ImageNet
model. The images are resized to 256× 256 pixels and are
randomly cropped to 224 × 224 pixels further during the
learning. The learning rate is set to 0.001 for the last fully-
connect layer and 0.0001 for all other layers. RED-SVM
is tested on the same 8168 features listed in Section 4.1
and the deep features extracted right before the first fully-
connected layer. Table 4 summarizes the results in terms
of accuracy and MAE. For both performance indexes, CN-
NPOR outperforms all the baseline methods on three cate-
gories. CNNm achieves the best performance for one cate-
gory in terms of accuracy and Niu et al.’s method achieves
the best performance for one category in terms of MAE.

4.4. Results on the Adience Face Dataset

To evaluate the scalability of CNNPOR, the Adience
face dataset [11] is employed, which consists of 26580
Flickr photos of 2284 subjects and the ordinal ranks are
eight age groups. In the experiments, the images alignment
and five-fold partition follow [11]. Because the VGG net for
multi-class classification has been verified scalable for large
datasets, the training phase of CNNPOR is compared with
CNNm and both methods are fine-tuned from the VGG Im-
ageNet pretrained model. Same mini-batch size 96 is used
for both CNNm and CNNPOR (i.e., n = 32,m = 8, d = 8
in Algorithm 1). Same learning rate 0.001 is applied for
the last fully-connected layer of CNNm and Gc, Gr of CN-
NPOR, and 0.0001 for the rest layers. The C in Eq.5 is set
to 1. Caffe package on Tesla M40 GPU is run for the ex-
periments, and the average training time for one iteration of
CNNm and CNNPOR is 3.3 and 3.6 seconds respectively.

Fig. 5 shows the training curves on one fold, which indi-
cate the converge speed of CNNm and CNNPOR are sim-
ilar, and in the experiments, both methods are trained for
the same number of iterations 2000. Therefore, by employ-
ing the proposed efficient implementation, the scalability of
CNNPOR is similar as CNNm. As shown in Fig. 5 and Ta-
ble 5, the training error of CNNPOR is higher than CNNm,
but CNNPOR achieves better performance on the testing
set, which indicates the proposed method avoids overfit-
ting effectively. RED-SVM is not scalable for this dataset,
and the accuracy of state-of-the-art handcrafted feature-
based method for this dataset is cited from [5] for compar-
ison in Table 5. G. Levi and T. Hassner proposed a lean
DNN [11] particularly for this dataset. They did not report
MAE results in their papers. It is observed that CNNPOR
achieves overall best performance consistently for all the
benchmarks.

5. Conclusions
This paper proposes a new constrained optimization for-

mulation for ordinal regression problems, and transforms
it to an unconstrained optimization formulation with an ef-
fective deep learning implementation. The experimental re-
sults show that CNNPOR achieves overall the best results
on all the four benchmarks, demonstrating the generality
and scalability of the proposed method.
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