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Abstract

Pedestrian trajectory prediction is a challenging task be-
cause of the complex nature of humans. In this paper, we
tackle the problem within a deep learning framework by
considering motion information of each pedestrian and its
interaction with the crowd. Specifically, motivated by the
residual learning in deep learning, we propose to predict
displacement between neighboring frames for each pedes-
trian sequentially. To predict such displacement, we design
a crowd interaction deep neural network (CIDNN) which
considers the different importance of different pedestrian-
s for the displacement prediction of a target pedestrian.
Specifically, we use an LSTM to model motion informa-
tion for all pedestrians and use a multi-layer perceptron to
map the location of each pedestrian to a high dimension-
al feature space where the inner product between features
is used as a measurement for the spatial affinity between
two pedestrians. Then we weight the motion features of
all pedestrians based on their spatial affinity to the target
pedestrian for location displacement prediction. Extensive
experiments on publicly available datasets validate the ef-
fectiveness of our method for trajectory prediction.

1. Introduction

Pedestrian trajectory prediction aims to predict a con-
tinuous set of location coordinates of a pedestrian in fu-
ture based on its history path, and it is an important task
in computer vision because of its potential applications in
behavior prediction [24] [4], traffic flow segmentation [22],
crowd motion analysis [31]], crowd counting and segmen-
tation [27], abnormal detection [16]], etc. Tremendous
efforts have been made to solve this problem [3] [LO] [29]
[31]. However, due to the complex nature of pedestrians,
it remains a challenging problem. In practice, to make the
problem tractable, some work has attempted to model the
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Figure 1. CIDNN motivation illustration. The motion for the target
pedestrian (Pr) from time ¢ to t+1 depends on its motion, and its
spatial affinity to other pedestrians(Ps and Ps) at time ¢, and other
pedestrians’ motion. Though its distance to pedestrian P; is far,
but P moves fast, so it also influences the movement of Pr. So
trajectory prediction of Pr should consider more pedestrians other
than its neighbors with a fixed distance, and different pedestrians
also have different level of influence on the target pedestrian.

task by only considering a few factors related to pedestrian
trajectory, including decision making process of individual-
s [10], interactions between the different pedestrians [235]],
and historical motion statistics of each pedestrian [26].

In light of the success of deep learning in computer vi-
sion, it has also been introduced to pedestrian trajectory pre-
diction, of which Behavior Convolutional Neural Network
(Behavior CNN) [25] and Social Long-Short Term Memo-
ry (Social LSTM) [[1] are two representative ones. Behav-
ior CNN represents historical trajectories of all pedestrians
with a position displacement map in the image space, and
then a CNN is adapted to associate each pedestrian with its
neighbors for future trajectory prediction. But such method
cannot model the potential interactions between pedestrian-
s in a more distant future. For example, as shown in Fig.
[[] a pedestrian walking very fast in a far distance may al-
so influence the walking trajectory of the target pedestrian,
or if a group of pedestrians are walking towards the target
or they are standing in the target pedestrian’s walking direc-
tion, even they are far from the target pedestrian, he/she may
change his/her walking direction in advance to keep away



from these people in advance. To prevent this, Social LSTM
[1] is proposed. It designs a social pooling layer to capture
dependencies between multiple pedestrians and interactions
that could occur in a more distant future, thus achieves bet-
ter performance. However, such a social pooling does not
differentiate the effect of neighboring pedestrians based on
their spatial positions and their motion information.

In this paper, we propose a Crowd Interaction Deep Neu-
ral Network framework (CIDNN) to sequentially predict
the coordinate displacement between two frames for each
pedestrian. We assume the movement of the target pedestri-
an depends on its motion information(speed, acceleration),
other pedestrians motion information, as well as the spatial
affinity between the target and all the rest pedestrians, where
the spatial affinity measures the level of influence of the rest
pedestrians to the target pedestrian. To model the motion of
each pedestrian, an LSTM model is adapted whose input is
the coordinate sequence at different moments of the pedes-
trian. To measure the spatial affinity of each pedestrian to
the target pedestrian at a given moment, we feed the coor-
dinates of a pedestrian into a multi-layer perceptron, and
use the inner product between the coordinate feature of the
pedestrian and that of the target to measure spatial affini-
ty. Then we module the interactions between the target and
all pedestrians including itself as the product between their
spatial affinity and the motion feature of the correspond-
ing pedestrian, and feed the interaction features into another
multi-layer perceptron for coordinate displacement predic-
tion of the target in next frame. We consider all pedestrian-
s in the scene as well as their spatial affinity for trajectory
prediction, thus as demonstrated in Table([I] our method out-
performs both LSTM [1]] and Behavior CNNJ[25]]. Further,
different from Social LSTM and Behavior CNN that direct-
ly predict the coordinates, we propose to predict the loca-
tion displacement between between next and current frame,
which further validates the effectiveness of residual learning
in computer vision [8]][9].

The contributions of our paper can be summarized as
follows: Firstly, we propose a CIDNN architecture for
trajectory prediction, which considers all pedestrians in
a scene for trajectory prediction. Our CIDNN has three
features: i)an LSTM based motion encoding strategy; ii)
location based spatial affinity measurement; and iii) coordi-
nate displacement based trajectory prediction. We propose
to use location based spatial affinity measurement module,
which experimentally shown its good performance than dis-
tance based spatial affinity. Ours takes coordinates as input
to enrich the number of training samples and facilitate the
network training. Consequently, our network architecture
of CIDNN is simple and can be paralleled easily. Therefore,
our trajectory prediction is more effective and efficient
than existing methods; Finally, extensive experiments vali-
date the effectiveness of our model for trajectory prediction.

2. Related Work

2.1. Hand-crafted Features Based Trajectory Pre-
diction

Social force models and topic models are commonly
used for hand-crafted features based trajectory prediction.
Social force models learn the motion patterns based on
the interactions between pedestrians. It is first proposed
to model the attractive and repulsive forces in [10]. Later
Mehran er al. propose to use social force model to learn
the interaction forces between people in [16]. Antonini
et al. [2] propose a discrete choice framework to predict
pedestrian’s next step under assumption that the destination
and the route are known. Different from social force mod-
els, topics models [22]] [11]] [6] model the motion pattern
based on spatial and temporal information. Further, Trajec-
tory clustering [13] [[L7] [21] are also used for crowd flow
estimation by clustering different trajectories into different
classes. However, all these methods are based hand-crafted
features, which limits the performance of trajectory predic-
tion.

2.2. Deep Neural Networks Based Trajectory Pre-
diction

Deep learning based methods have been introduced for
pedestrian trajectory prediction [[1] [25] [7] in light of its
good performance for many computer vision tasks [[19][[12].
Specifically, Behaviour-CNN [25]] employs a 2D map to
encode the history walking path and use a CNN to model
the interactions between different pedestrians, yet it doesn’t
consider the effect of pedestrians in a more distant future.
Social LSTM [[1] for human trajectory prediction design a
Social Pooling layer to capture dependencies between mul-
tiple correlated sequences and interactions that could oc-
cur in a more distant future, but it doesn’t consider the d-
ifferent importance of different pedestrians. In [14] Lee
et al. employ RNN to capture past motion histories, the
semantic scene context and interactions among multiple a-
gents for trajectory predictions in dynamic scenes. In [7],
Su et al. propose to deploy long short-term memory (LST-
M) networks with social-aware recurrent Gaussian process-
es to model the complex transitions and uncertainties of the
crowd and achieves good performance for trajectory predic-
tion. But it also only considers the neighboring pedestrian-
s and does not treat them differently. As aforementioned,
some pedestrians in a far distance but with a fast movement
speed may also influence the target pedestrian’s trajectory
in next moment, and different pedestrians have a different
influence level on the target pedestrians trajectory. In this
paper, we propose to take both factors into our considera-
tion for trajectory prediction.
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Figure 2. The architecture of crowd interaction deep neural network (CIDNN).

3. Method

3.1. The Formulation for Pedestrian Trajectory
Prediction

Assume that there are N pedestrians py,...,py , and ¢
is current time stamp (frame). The spatial location (coordi-
nate) of the ! pedestrian p; (i € [1, N]) at time ¢ is denoted
as S} = [z, y}], where 2} € [1, X], v € [1,Y], and [X, Y]
is the spatial resolution of video frames.

Given the spatial coordinates S7.; of each pedestrian
from beginning to time ¢, trajectory prediction aims at pre-
dicting the coordinates in the future time period from ¢ + 1
tot+T,1i.e., Stt1.4+7. Different from previous work
which predicts all the coordinates in all these frames simul-
taneously, we sequentially predict the coordinates in each
future frame. Further, much previous work shows that the
residual learning or displacement prediction is easier for im-
age classification [8], face alignment [28]], as well as pose
estimation [3]]. Since our work sequentially estimates the
coordinates at each time stamp, therefore we propose to
predict the location displacement corresponding to a cur-
rent frame for each pedestrian. Mathematically, our work
aims at learning a nonlinear function F' by minimizing the
following objective function:

obs+T—1
.F)k = argmpin Z ||St+1 - (St + F(Sl;t))||2 (l)

t=obs

Here obs is the number of observed frames and F' function
as an estimation of location displacement for each pedes-
trian. Such location displacement or the movement from
current frame to next frame is related to the pedestrian’s his-
tory motion, other pedestrians’ spatial affinity to the target
pedestrian as well as their history motion. To model these
factors for trajectory prediction, we introduce a Crowd In-
teraction Deep Neural Network (CIDNN) for displacement

prediction. The architecture of CIDNN is depicted in Fig.
Specifically, CIDNN consists of four modules including
motion encoder module, location encoder module, crowd
interaction module, and displacement prediction module.
Next, we will detail these four modules sequentially.

3.2. Motion Encoder Module

Motion encoder module is designed to model motion
pattern of pedestrians, including different history path and
direction, different velocity and acceleration. Long Short-
Term Memory (LSTM) networks have been proved success-
ful in motion modeling [1]](7]. By following these work, we
also employ LSTM networks to encode the motion informa-
tion for each pedestrian. In our implementation, we stack
two LSTM together for motion encoding. For each pedes-
trian, we sequentially feed the history coordinates into the
stacked LSTM. For pedestrian p;, we denote the output of
staked LSTM as zf at time ¢, then mathematically

Zz:f(SL’SZ) ()
where the function f(-) represents the input-output function
of stacked LSTM. In our implementation, the number of
nodes in hidden layer of both LSTM is fixed to be 100, and
all pedestrians share the same stacked LSTM for motion
encoding.

3.3. Location Encoder Module

As aforementioned, the movement of a target pedestrian
from the current frame to next frame is related to all pedes-
trians’ motion information, including the pedestrian him-
self/herself as well their spatial affinity to the target pedes-
trian. So a straightforward way is to linearly combine the
motion features of all pedestrians for displacement predic-
tion, and the weight is based on the spatial affinity of each
pedestrian to the target pedestrian, and the spatial affinity



measures the level of influence of each pedestrian to the tar-
get pedestrian.

We denote the spatial affinity between p; and p; at
time ¢ as ay’ , then we can use some kernel function
(S}, 57) for a;? measurement, for example, Gaussian k-
ernel k(S¢,S7) = exp(—A||S} — S7||?). However, such
Gaussian kernel only considers the spatial distance between
two pedestrians for spatial affinity measurement. It is worth
noting that given two pedestrians, even their distance to the
target person are the same, their spatial affinity to the target
pedestrian may be different. There are two possible reasons
for this: i) As shown in Fig. [I] there stands some pedes-
trians between p; and p;, though the Euclidean distance of
ps3 to the target is similar as that of p; to the target, but p;
probably influences the trajectory of target more than ps.
ii) Because of the view angle of the camera, even though
the distances of two pedestrian pairs calculated based on
coordinates in the image are the same, it is possible the ac-
tual ground distance are different, consequently the spatial
affinity of these two pedestrian pair should be different too.
For example, the distance between two pedestrians in upper
left corner may be the same with that of two pedestrians in
lower right corner in Fig. 3, though their coordinates based
distance are the same. Therefore, coordinates based spa-
tial affinity is more meaningful than distance based affinity
measurement for trajectory prediction. So is there any way
to automatically learn an optical spatial affinity measure-
ment?

The kernel trick says that «(S?, S7) = <¢(S§), ¢(Sg)>,
here ¢(-) is some nonlinear function that maps the input
to a high dimensional feature space, and (-, -) is the inner
product operation. However, such ¢(-) is usually unknown.
Motivated by the kernel trick, we propose to map the in-
put (coordinates) into a high dimensional feature space with
some neural network and use the inner product between the
hidden nodes for spatial affinity measurement. Specifically,
we use a multi-layer perceptron as location encoder, which
contains 3 layers, and ReLU activation function is used. The
number of hidden nodes in these layers is 32, 64, 128, re-
spectively. We denote the output of location encoder for
pedestrian p; at time ¢ as hi, then

hy = g(S)) 3)

Here g(-) represents the input-output function of the multi-
layer perceptron of local encoder.

3.4. Crowd Interaction Module

Based on the output of location encoder, we can mea-
sure the spatial affinity between two pedestrians. For the
a pedestrian p;, we denote its spatial affinity to the target

pedestrian p; at time ¢ as ai’j , then

i exp<<hz,@z }) "
5, exp({hi,hl))

It is worth noting that since <h§, hi> does not necessari-

ly between [0,1], we use a softmax way to normalize it to
[0,1], and use it as the affinity measurement. We can see that
a;” and al”" are different, and this is reasonable because the
movement of each pedestrian is based on himself/hereself as
well as its neighbors. Even though p; is the nearest neigh-
bour for p;, but p; may not be the nearest neighbour for p;.
Therefore, the level of influence of p; to p; and the level of
influence of of p; to p; are different.

Based on the definition of spatial affinity, we can model
the level of influence of all pedestrians to person p;, which
is denoted as ci, as follows:

¢l = Zai’jz{ )
J

Then we can use ¢! to predict the location displacement be-
tween time ¢ and ¢ + 1 for person p;. Here we consider both
the spatial affinity and the motion information of different
pedestrian for the trajectory prediction of the target pedes-
trian. If the spatial affinity is larger or the pedestrian moves
fast, then it is likely that the pedestrian may influence the
target more.

3.5. Displacement Prediction Module

We use one fully connected layer with linearity to map
the total effect of all pedestrians to the target p; to estimate
the location displacement (6.5}, ;) between time ¢ and ¢ + 1:

6S;  =Wci+b (6)

Here W, b is the parameters in this fully connected layer.
Once we get the location displacement, we can compute the
coordinate of person p; at time ¢ + 1: i, = S + 65} ;.

It is also worth noting that we predict the trajectory for
each pedestrian separately. Therefore our framework can
be easily paralleled in implementation. Further, compared
with Behavior CNN [25]] and Social LSTM [1]], the number
of hidden nodes in our framework is very small. Therefore
our method is very efficient in implementation, especially
when the number of pedestrians is small in a scene.

4. Experiments
4.1. Experimental Setup

We implement our solutions with the PyTorch frame-
work, and mini-batch based stochastic gradient descent is
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Figure 3. Qualitative results: history trajectory (red), ground truth (blue), and predicted trajectories from our model (green). The first
three columns show some successful cases and last column shows some failure cases. We can see that our prediction always overlaps with
ground truth, which shows the effectiveness of our method. Please enlarge the figure for better visualization.

used to optimize the objective function. We train our net-
work with the following hyper-parameters setting: mini-
batch size (256), learning rate (0.003), momentum (0.9),
weight decay (0.005), and number of epochs (50,000). The
parameters are initialized with ‘Xavier’.

Datasets. We evaluate our method with the following
publicly available human trajectory datasets: New York
Grand Central (GC) [24]], ETH [18]], UCY [13]], the CUHK
Crowd Dataset [20] and the subway station dataset[30]. As
shown in [18], these datasets also cover very challenging
group behaviors such as couples walking together, groups
crossing each other and groups forming and dispersing in
some scenes.

The GC dataset consists of around 12,600 pedestrians and
it is about one hour long. By following the same experi-
mental setup with [25]], 4990 short clips are uniformly seg-
mented from GC dataset, and one sample can be obtained
from each clip. The first 90% samples are used for training
while the remaining for test.

The ETH dataset contains two scenes each with 750 dif-
ferent pedestrians split into two sets (ETH and Hotel).

The UCY dataset includes two scenes with 786 people.
This dataset has 3-components: ZARA-01, ZARA- 02 and
UCY. These datasets represent crowded real-world settings
with thousands of non-linear trajectories.

The CUHK Crowd Dataset contains many crowd videos
with different densities and perspective scales in many en-
vironments.

The subway station dataset is a 30-minute sequence col-

lected in the New York Grand Central Station, with each
containing more than 40,000 keypoint trajectories in total.
Following the same experimental setup and evaluation cri-
teria as [1]], we use a leave-one-out approach on the 5 sets
of ETH and UCY. We train and validate our model on 4 sets
and test on the remaining set. We repeat this for all the 5 set-
s. We also use the same training and testing procedure for
other baseline methods used for performance comparison.
Measurement. By following the work [23]], we use Av-
erage Displacement Error (ADE) as metric to measure the
performance of different methods. ADE is the mean square
error (MSE) overall estimated points of a trajectory and the
true points. It can be mathematically defined as follows:

bs+T—1 || @i &i
Zi Zgzsobs ||Stz+1 - SZ-&—IHQ

ADE =
nT

)

In our experiments, we have observed the trajectory for 5
frames and use them to predict the trajectory for the next 5
frames, therefore obs = 5 and T' = 5. Actually the data on
the GC dataset is sampled from real videos with time inter-
val 20 frames, so the time interval between two neighbour-
ing frames is 0.8 sec, and the prediction of the Sth frame is
the coordinates in the coming 4 sec.

Baselines. Following the experimental setup in [23]], we
design the following baselines:
i) The constant acceleration regressors were used to predict
future walking path of each pedestrian, and this baseline is
termed as const acc; We also compare our method with the



dataset const acc | SF S-LSTM B-CNN SRGP [7] | Ours
ETH 0.80 0.41 0.50 0.35 NA 0.09
HOTEL 0.39 0.25 0.11 0.18 NA 0.11
ZARA 1 0.47 0.40 0.22 0.20 NA 0.15
ZARA 2 0.45 0.40 0.25 0.23 NA 0.10
ucy 0.57 0.48 0.27 0.25 NA 0.12
GC 0.099 0.033 0.020 0.024 NA 0.012
CUHK Crowd 0.046 NA 0.0341 NA 0.029 0.008
subway station 0.064 NA 0.0335 NA 0.031 0.016

Table 1. The performance comparison of different methods on the
GC, ETH, UCY, CUHK Crowd and subway station datasets.

following state-of-the-art baselines [}

i) Social force (SF) which employs an agent for each
pedestrian to simulate the trajectory making process. 1iii)
Behaviour-CNN (B-CNN) [25]] where a deep neural net-
work (Behavior-CNN) is proposed to model pedestrian be-
haviors in crowd scenes;

iv) Social LSTM (S-LSTM) where generated multiple
LSTMs for each pedestrian are used to estimate their posi-
tions considering the neighboring pedestrians.

v) SRGP [7] where long short-term memory (LSTM) net-
works with social-aware recurrent Gaussian processes is
used to model the complex transitions and uncertainties of
the crowd.

4.2. Performance Comparison

We compare our method and other baseline methods on
GC, ETH, UCY, the CUHK Crowd Dataset and the subway
station dataset in Table[I] We can see that our method sig-
nificantly outperforms all existing methods and other base-
lines on all the datasets, which validates the effectiveness of
our solution. The comparison based metrics used in [1] Fi-
nal displacement error (FDE) and Average non-linear dis-
placement error (ANDE) is listed in Table[2}

Methods ADE FDE ANDE
GC Subway GC Subway GC Subway
B-CNN 0.024 NA 0.0495 NA 0.0284 NA
S-LSTM 0.020 0.0335 0.0456 0.045 0.0403 0.0403
Ours 0.012 0.008 0.0229 0.0266 0.0257 0.0299

Table 2. Comparisons on more evaluation metric.
We further show the predicted trajectory and its ground

truth on the GC dataset in Fig. El As aforementioned, ev-
ery pedestrians trajectory will be influenced by near other
people, but our crowd interaction module can learn differ-
ent patterns of this influences. The first three columns show
that the model can well predict the trajectories even if they
intersect with others. Meanwhile, in the last column of Fig.
[l we also show some failure cases, which is probably due
to the sudden changes of destination in ground truth. Even
though such sudden change is hard to model, our method
still predicts very similar trajectory compared with ground
truth.

*Because the same experimental setup of [T, [23] and same train-
ing/testing sets are used, we directly adapted the results of baselines from
[0, [25]. The performance of Social LSTM [1], Behavior CNN [23], S-
RGP [[7], and SF [23] on these datasets are directly adapted from the cor-
responding papers.

Besides spatial affinity, the movement of someone also
depends on his movement velocity, direction, etc. We show
two examples in Fig. @] We can see that the one walks slow
would let the one walks fast go first for both ground-truth
and prediction in collision cases.

Figure 4. Examples of collision case.

4.3. Evaluation of Different Components in CIDNN

Coordinate regression vs. displacement regression In
our displacement prediction module, we use a fully con-
nected layer to map the weighted features to estimate the
displacement 6.5} 11 between time ¢£+1 and time ¢ for pedes-
trian p;. Besides the 0.5 regression, we also try to use the
weighted features to directly estimate Sy, ;. We show re-
sults of these two different strategies in Table[3] We can see
that displacement regression always achieves higher accu-
racy than directly predicting the ground truth. This is be-
cause the LSTM encodes the velocity, acceleration between
continuous frames well, and it is easier to predict the dis-
placement only than predict (displacement + current coor-
dinates). The good performance of displacement regression
strategy validates the effectiveness of residual regression in
trajectory prediction, which agrees with existing work for
image classification and facial/body key points detection.

With Crowd Interaction module vs. Without Crowd In-
teraction module To validate the effectiveness of crowd
interaction module, we also train a network without the
crowd interaction module, i.e., we directly estimate the dis-
placement based on motion features extracted from stacked
LSTM. We compare the performance with/without crowd
interaction module in Table Bl We can see that that net-
work with crowd interaction module performs better than
the one without crowd interaction module. This is because
the network with crowd interaction module takes the dif-
ferent importance of different neighboring pedestrians into
consideration.

The evaluation of motion encoder To evaluate the im-
portance of motion encoder, we propose to replace it with
the displacements between all previous neighboring frames
in CIDNN, and we term such baseline as CIDNN w/o LST-
M. The comparison between our method and CIDNN w/o
LSTM is listed in Table Bl We can see that our CIDNN
achieves better performance, which validates the effective-
ness of LSTM for motion characterization.



Datasets Regression Stlrategy i Crowd Interacliqn
Coordinate Displacement With Without

ETH 0.23 0.09 0.09 0.11
ZARA 2 0.24 0.10 0.10 0.15

GC 0.018 0.012 0.012 0.055
Datasets Spatial Affinity Motion Encoder

Ours Gaussian With LSTM Without LSTM

ETH 0.09 0.11 0.09 1.37
ZARA 0.10 0.16 0.10 0.17

GC 0.012 0.055 0.012 0.018

Table 3. Performance evaluation of different components in
CIDNN.

We also investigate the performance of stacked LSTM
with different layers for motion encoder on GC. When the
number layer of stacked LSTM is 1, 2, and 3, the MSE
results are 0.014, 0.0125, and 0.013.Considering accuracy
and efficiency, we fix the layers to be 2.

Different spatial affinity measurement To evaluate the
importance of our location encoder, we also compare our
method with Gaussian kernel x(S}, S) = exp(—\||S; —
S7||?), which is a distance based spatial affinity measure-
ment. The performance comparison is shown in Table [3]
The good performance of our method validates the effec-
tiveness of our location encoder module for spatial affinity
measurement.

We further show the relationship between our spatial
affinity and the Euclidean distance between two pedestri-
an on GC in Fig. 5] (a). We can see that the spatial affinity
measured by our method is usually larger for points with s-
maller distance, and smaller for points with larger distance.
Sa shown in Fig. |§| (b), since the Euclidean distance between
pedestrian pair (P> Pro), and (P53, Prs) is similar, and the
spatial affinity between them is also similar, while the Eu-
clidean distance between pairs (P, Prs) is less than that of
(Py Pr2), the spatial affinity of (P, Pro) is smaller. Further,
as we discussed earlier, even two pedestrian pairs are with
different distances computed based coordinates, their spa-
tial affinity may be similar because coordinates based dis-
tance is not the actual ground plane distance due to effect
of view angle. We also give an example in Fig. 5] (b), and
we can see that even though the coordinate based distance
between pedestrian pair (P, Pri) is smaller than that of
pedestrian pair (P», Pr2), but because of view angle, their
ground distance is similar, so their spatial affinity is also
similar. Fig. [6] shows spatial affinity for different pedestri-
ans at different time stamps in a scene on the GC dataset.
We can see that neighboring pedestrians are usually with
larger spatia affinity, which validates the effectiveness of
our spatial affinity definition.

The performance on challenging data To show the
performance of different methods for more challenging
data, we split the GC dataset into two subsets (non-
straight/straight trajectories). Results are shown in[d] Re-
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Figure 5. (a) The relationship between the our spatial affinity and
Euclidean distance on the GC dataset. We normalize the coordi-
nates to [0,1] when we feed the coordinates to location encoder.
So the distance is also normalized. (b) An instance for illustrating
the relationship between Euclidean distance and spatial affinity.

sults show our method achieves the best performance on
both subsets.

Method straight subset (97.8%) non-straight subset (2.2%)
Ours 0.0123 0.0206

B-CNN 0.0284 0.0361

S-LSTM 0.0540 0.0254

Table 4. Prediction errors for straight non-straight trajectories.

We randomly contaminate a fraction of training data with
gaussian noise N (0, ¥), where ¥ is their mean velocity.
When gaussian noise is 0%, 5%, 10%, and 20%, the MSE
results on GC dataset is 0.0125, 0.0137, 0.0143, and 0.0145,

which shows the robustness of our method.

Trajectory prediction for a longer time The ADE of tra-
jectory prediction for 0.8 sec, 4 sec, and 8§ sec is 0.005,
0.012, and 0.034, respectively, on GC, which is better than
that of social LSTM, which achieves 0.009, 0.020, and
0.040, respectively. We further see that the performance of
trajectory prediction degenerates for a longer time. But the
improvement of our method over social LSTM increases as
time goes longer because our formulation considers all pos-
sible pedestrians which may contribute the targets trajectory
prediction in future.

The input of motion encoder In our implementation, we
feed the coordinates of each pedestrian at different time in-
to the motion encoder. We also try to replace the input of
motion encoder with the displacement between neighbor-
ing frames on GC datasets. Such model achieves a score
of 0.021 in terms of ADE on GC, while our coordinates
based model achieves 0.012 in terms of ADE. One possible
reason is that the coordinates of pedestrians would provide
extra location information apart from motion, which further
boosts the performance of trajectory prediction.

4.4. Transferability of location encoder and motion
encoder

To evaluate the transferability of location encoder and
motion encoder, we conduct cross domain experiments. We
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Figure 6. Crowd Interaction scores for different motion encoders at different time. (a) represents qualitative results: history trajectory
(red), ground truth (blue), and predicted trajectories with our model (green). (b) - (f) represent spatial affinity scores at time from ¢ + 1 to
t + 5 respectively. x axis and y axis represent the ID of each pedestrian.

Setting Transferred components Ours

Source Target Mand L M L

subway GC 0.085 0.021 0.034 0.012
GC subway 0.068 0.018 0.023 0.016
GC ETH 1.19 0.03 0.1 0.09
GC HOTEL 0.83 0.057 0.099 0.11
GC ZARA1 1.28 0.034 0.045 0.15
GC ZARA2 1.54 0.035 0.046 0.1
GC ucy 0.90 0.073 0.114 0.12

Table 5. Prediction errors under different transfer learning settings.

evaluate the performance of location encoder (L) and mo-
tion encoder (M) trained on target domain with the target
domain. In our experiments, we use GC and subway sta-
tion because of they both corresponds to subway scenes,
and choose one dataset as source domain and use the other
as target domain, as shown in Table. |§[ Since GC is much
lager than subway station, and the model trained on GC
also achieves satisfactory results on subway. Further, we
found motion is easier to transfer because all possible mo-
tion trend of all pedestrians can be well covered by a larger
dataset. By contrast, the transferability of location encoder
is not so good because the scene layout as well as the cam-
era perspective are different. Further, the performance of
the model trained on GC and then finetuned on subway is
0.017, and 0.013 if source/target is changed reversely.

4.5. Time cost

We test the running time of our method on the GC
dataset. Our model is implemented on an NVIDIA GeForce
TITAN GPU platform and an Intel(R) Xeon(R) CPU ES-
2643 v3 3.40GHz CPU platform, respectively. We run our
program 20 times and calculate the average running time
for each image. More precisely, the average running time

of CIDNN is 0.43 ms on GPU. The time cost of CIDNN is
1.91 ms on CPU.

5. Conclusion

In this paper, we design a crowd interaction deep neural
network (CIDNN) for displacement prediction. Our mod-
el considers the difference level of influence of different
pedestrians in the crowd on the target pedestrian. Specif-
ically, we propose to use LSTM to model the motion of
each pedestrian, then we weight the motion feature of all
pedestrians based on their spatial affinity to the target pedes-
trian for location displacement prediction. Compared with
existing work Social LSTM(1]], Behaviour-CNN[23], our
method considers the different importance of all pedestrians
based on their spatial affinity to the target pedestrian. Ex-
tensive experiments on publicly available datasets validate
the effectiveness of our method for trajectory prediction.

The proposed solution here is used for trajectory predic-
tion. But it also can be applied to other applications, for ex-
ample, facial keypoint detection in videos and human pose
estimation (body keypoint detection) in videos. Appearance
based key point detection is usually time-consuming. By
combining our method with appearance based keypoint de-
tection in key frames, we can avoid keypoint detection for
each frame, which may improve the efficiency without re-
ducing accuracy.
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