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Abstract

In this paper, we present an end-to-end multi-level fu-
sion based framework for 3D object detection from a sin-
gle monocular image. The whole network is composed of
two parts: one for 2D region proposal generation and an-
other for simultaneously predictions of objects’ 2D loca-
tions, orientations, dimensions, and 3D locations. With the
help of a stand-alone module to estimate the disparity and
compute the 3D point cloud, we introduce the multi-level
fusion scheme. First, we encode the disparity information
with a front view feature representation and fuse it with the
RGB image to enhance the input. Second, features extracted
from the original input and the point cloud are combined
to boost the object detection. For 3D localization, we in-
troduce an extra stream to predict the location information
from point cloud directly and add it to the aforementioned
location prediction. The proposed algorithm can directly
output both 2D and 3D object detection results in an end-
to-end fashion with only a single RGB image as the input.
The experimental results on the challenging KITTI bench-
mark demonstrate that our algorithm significantly outper-
forms monocular state-of-the-art methods.

1. Introduction

In recent years, with the development of technologies in
computer vision and deep learning, numerous impressive
methods are proposed for accurate 2D object detection. The
results of 2D detection indicate the accurate locations for
each object in image coordinate system and the object class
for it. However, in several scenarios like robotic application
and autonomous driving, it is not enough to describe objects
in the 3D real world scene with 2D detection results only.

The focus of this paper is on 3D object detection uti-
lizing only monocular images. We aim at extending exist-
ing 2D object detectors for accurate 3D object detection in
the context of self-driving cars, without any help of expen-
sive LIDAR systems, stereo information or hand-annotated
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maps of the environment. For 2D object detection, since
the success of region-based convolutional neural networks
(R-CNNs) [13], the advanced promising works like SPP-
Net [17], Fast R-CNN [12], Faster R-CNN [31], R-FCN [7]
and Mask R-CNN [16] mostly apply deep convolutional
neural networks (CNNs) to learn features from region can-
didates over the image for accurate 2D object recognition.
Here we would like to extend the existing image-based 2D
detection algorithms for 3D object detection. Usually, a 2D
object is described by its location in the image, which is
quite different from the representation of a 3D object. Typ-
ically, a 3D object like a car in the real world is represented
by its pose, 3D dimension and localization of its center in
the camera coordinate system. It is much more complicated
for 3D object detection with only monocular images. How-
ever, since the existence of imaging mechanism and geo-
metric constraints, all the descriptors of a 3D object still
have compact relations to the projected image content, it
is possible to handle the 3D detection problem with only
monocular images.

To deal with this, we propose a framework for 3D ob-
ject detection by estimating the object class, 2D location,
orientation, dimension, and 3D location based on a sin-
gle monocular image in an end-to-end fashion. A region
proposal network (RPN) is utilized to generate 2D propos-
als in the image, as RPN provides strong objectness con-
fidence regions of interest (RoIs) with CNN features and
it can share weights with the down-stream detection net-
work [31, 36, 37, 19]. With features learned from the pro-
posals, both object class confidence and 2D bounding box
offset to the proposal are predicted, just like most region-
based 2D object detectors. Two more branches are added
for jointly learning of orientation and dimension. In addi-
tion, another module is introduced to estimate the disparity
information and adopt multi-level fusion method for accu-
rate 3D localization, constituting our 3D object detection
procedure.

In this work, to get the pose of a 3D object, we follow
a similar idea as the MultiBin architecture described in [26]
by adopting discrete-continuous formulation for orientation
estimation. For 3D object dimension, typical sizes made



Figure 1. The proposed framework for 3D object detection.

up of length, width and height are accessed by analyzing
the training labels for each class. The offset between ac-
tual dimension and typical dimension is estimated from the
network. It is much more complicated for estimating the
3D coordinates (X, Y, Z) of object center, since only im-
age appearance cannot decide the absolute physical loca-
tion. To solve this, global context information needs to be
considered as a prior for each region candidate. For the
input monocular image, the disparity information of each
pixel will be estimated through a fully convolutional net-
work (FCN), thus the approximate depth and point cloud
can be reached with the help of camera calibration files.
Then we superadd the estimated information in multiple
steps for 3D localization. A RoI mean pooling layer is intro-
duced to convert the point cloud inside the proposal into a
fixed-length feature vector through mean(average) pooling.
3D location of the object center will be estimated with fea-
tures from point cloud and the original convolutional fea-
tures. Besides, estimated depth is also encoded as front
view feature maps and be fused with the RGB image to im-
prove the performance. Thus all the 2D and 3D descriptors
can be simultaneously predicted.

As just described, our work focuses on 3D object detec-
tion from monocular images with existing 2D object detec-
tors. Our first contribution is an efficient multi-level fusion
based method for 3D object detection with a stand-alone
module for estimating the disparity information. Features
from disparity and the original RGB image are fused in dif-
ferent levels, proposing a possibly effective method for ac-
curate 3D localization. The second contribution is the in-
troduction of a general framework that can directly extend
existing region-based 2D object detectors for 3D object de-

tection. End-to-end learning is applied for estimating a 3D
object’s full pose, dimension and location without any other
additional annotations or 3D object models. The experi-
mental evaluation shows that our approach is able to per-
form really well on the very challenging KITTI dataset [11],
outperforming the state-of-the-art monocular methods and
even some methods with stereo information on particular
evaluation index.

The remainder of this paper is organized as follows: In
the next section, we review the related literature. Section 3
explains our framework and exhibits more details of the pro-
posed algorithm. After providing experimental results and
comparisons on the very challenging KITTI dataset in Sec-
tion 4, we conclude this paper.

2. Related Work
Our work is related to 2D object detection and monoc-

ular 3D object detection. The literature review will mainly
be focused on 2D object detection algorithms and 3D object
detection methods with only monocular images.

2D Object Detection. The majority of state-of-the-art 2D
object detectors belong to deep learning methods. Accord-
ing to the detection procedure and mechanism, they can be
categorized into two parts [23]. The first is one-stage de-
tectors, they are applied over a dense sampling of possi-
ble object locations, such as OverFeat [32], YOLO [29, 30]
and SSD [24, 10], that can provide promising results with
relatively fast speed. These methods trailed in accuracy
even with a larger compute budge [23, 18]. The other
is two-stage, proposal-driven detectors that apply classifi-
cation and regression over learned features within object



proposals. In the first stage, several methods are adopted
for proposal generation. The widely-used ones include
BING [5], Selective Search [35], EdgeBoxes [39], Deep-
Mask [27, 28] and RPN [31]. The most famous two-stage
detector is the aforementioned Faster R-CNN, which can
generate proposals and apply object recognition in an end-
to-end fashion. Typically, two-stage detectors need fewer
data augmentation tricks and have more accurate results
in most public benchmarks. Through a sequence of ad-
vances [12, 31, 22, 16], this two-stage framework con-
sistently achieves top accuracy on the challenging COCO
benchmark [21, 23]. According to [23], recent work on one-
stage detectors demonstrates promising results, while the
accuracy is within 10-40% relative to state-of-the-art two-
stage methods.

Monocular 3D Object Detection. Both 2D object detec-
tion and monocular 3D object detection are adopted on a
single RGB image. Unlike 2D object detection, it can be
quite difficult for monocular 3D object detection, since the
lack of stereo information and accurate laser points from
other sensors. Like two-stage, region-based 2D detectors,
several works make use of high quality 3D region propos-
als for further classification and detection. In [2], the au-
thor makes use of a general assumption that all the objects
should lie close to the ground plane, which should be or-
thogonal to the image plane. The 3D object candidates
are then exhaustively scored in the image plane by utiliz-
ing class segmentation, instance level segmentation, shape,
contextual features and location priors. With the projected
2D proposals from 3D candidates, it uses Fast R-CNN to
jointly predict category labels, bounding box offsets, and
object orientation. It performs really well on KITTI and
outperforms all published monocular object detectors at that
time. Recently proposed works mainly focus on combining
deep neural networks and geometric properties, providing
more accurate results. Deep3DBox [26] introduces geomet-
ric constraints into 3D object detection scenario. It is based
on the fact that the 3D bounding box should fit tightly into
2D detection bounding box, thus it requires each side of the
2D bounding box to be touched the projection of at least
one of the 3D box corners. Deep3DBox combines visual
appearance and geometric properties to find the 3D loca-
tion. It also utilizes deep CNN features to estimate the pose
and dimension of a 3D object, constituting the complete de-
tection framework. Another recently introduced method for
monocular 3D object detection is called Deep MANTA [1].
It takes a monocular image as input and can output vehi-
cle part coordinates, 3D template similarity and part visi-
bility properties, in addition to 2D scored bounding boxes.
Deep MANTA encodes 3D vehicle information using char-
acteristic points of vehicles, since they are rigid objects with
well known geometry. Corresponding to this, deep MANTA

uses a 3D vehicle dataset composed of 3D meshes with real
dimensions and several vertices are annotated for each 3D
model. Then the vehicle part recognition in Deep MANTA
can be considered as extra key points detection, which will
be adopted for 2D / 3D matching with the most similar 3D
template, thus the 3D localization results can be achieved.
Although it only needs a single RGB image as input, addi-
tional annotations like part locations and visibility for 3D
objects and an extra dataset of 3D templates are necessary
for the training and inference stages.

3. 3D Object Detection Framework
The proposed framework is an end-to-end network that

takes a monocular image as input and output 2D/3D object
representations. The system has two main parts: 2D re-
gion proposal generation and simultaneous 2D/3D param-
eters estimation. In particular, we adopt multi-level fusion
methods for accurate 3D localization and system enhance-
ment, constructing the robust detection pipeline. The whole
framework is illustrated in Figure 1.

3.1. 2D Region Proposal Generation

In our implementations, we utilize region proposal net-
work (RPN) introduced in Faster R-CNN to extract RoIs for
further detection. In RPN, a set of rectangular object pro-
posals with objectness scores are generated through a slided
small network over the convolutional feature map and the
Anchors mechanism [31]. 2D Anchors are generated with
pre-defined scales and aspect ratios over a basic rectangle in
each location. Then the network can output region propos-
als through objectness scores prediction and 2D bounding
box regression.

3.2. 2D/3D Parameters Estimation

Based on the 2D region proposals, 2D/3D parameters for
object description are estimated. For the 2D part, it consists
of multi class classification and 2D box regression, our im-
plementation is just like Faster R-CNN. For the 3D part, it is
determined by orientation estimation, dimension estimation
and 3D localization. Next we will describe our approach for
estimating these different parameters.

With region proposals of different spatial sizes, the RoI
pooling layer is introduced in [12] to convert the features
inside any valid region of interest into a small feature map
with a fixed spatial extent of H × W via max pooling. This
layer is regarded as RoI max pooling to prevent confusion
in this paper. With fixed-sized input features, then the fully
connected layers can be added for estimating the corre-
sponding parameters. In Fast R-CNN, features for region
classifier and bounding box regressor are shared. Following
this principle, we add two additional branches on the top
of the shared features for object orientation and dimension
regression at first.



Orientation Estimation. For the orientation branch, it is
not possible to estimate the global orientation in the camera
reference frame from only the contents of the region pro-
posal [26]. Thus the local orientation is regressed with the
state-of-the-art MultiBin architecture [26]. It discretizes an
angle and divides it into n overlapping bins. With the in-
put features, both confidence probabilities for each bin and
the residual part to the center of bin are estimated. The two
parts are regarded as angle confidence and angle localiza-
tion, respectively.

The loss function for angle confidence equals to cross
entropy (CE) with sigmoid function as probabilities, since
there are overlaps between adjacent bins and an angle could
belong to more than one bin. We adopt smooth L1 defined
in [12] for the regression loss of the residual angle. The
smooth L1 loss is a robust L1 loss that is less sensitive to
outliers than the L2 loss, which is defined as follows:

SL1(x) =

 0.5x2 if |x| < 1

|x| − 0.5 otherwise
(1)

Besides, instead of predicting the residual angle directly, we
predict the sine and the cosine of it, just like [26]. Overall,
the loss function for angle confidence Lconf is then defined
as:

Lconf = CE(σ(Pconf ), D
∗
conf ) (2)

D∗
conf is the ground data for bin class. σ(·) indicates sig-

moid function. For the residual part, the loss Lloc is defined
as:

Lloc =
1

n
· SL1(Ploc −D∗

loc) (3)

D∗
loc are ground truth residual data, n is the number of bins

that cover ground truth and SL1(·) indicates smooth L1
function. The total loss for orientation is thus:

Lα = Lconf + w · Lloc (4)

It is made up of angle confidence loss and angle localization
loss. w is used to balance the relative importance for the two
parts.

Dimension Estimation. For dimension estimation, we do
not regress the absolute dimensions directly. Instead, we
compute the average length, height and width for each class
over the training dataset at first to get the typical dimension.
Then the offset to the typical size is estimated with the same
shared features, just like the part for the regression of 2D
bounding boxes. The loss function in this branch is defined
as follows:

Ld = SL1(log(
Pd
Dt

)− log(D
∗
d

Dt
)) (5)

wherePd, D∗
d means the prediction and ground truth, re-

spectively. Dt indicates typical dimension that is computed
from training labels.

3.3. Multi-Level Fusion and 3D Localization

It is much more complicated to estimate the 3D loca-
tion of a 3D object. In our previous branches, only fea-
tures inside region proposals are utilized for angle and di-
mension regression. However, estimating 3D location in the
same way is difficult since the existence of RoI max pool-
ing. Features generated from RoI max pooling have sev-
eral drawbacks. First, it converts the features inside RoIs
with different scales into fixed-sized feature tensors. Thus
it partly eliminates a fundamental photography constraint
that the RoI with bigger size should lie closer to the cam-
era. Besides, the image coordinates of each RoI are only
used to fetch the corresponding region on the feature map.
It means that different spatial locations of RoIs may have
similar output after RoI max pooling, while the actual 3D
location can differ a lot. In 2D bounding boxes regression,
the absolute coordinates are achieved by estimating the off-
set to the proposals. However, for 3D localization, the 2D
proposals do not contain 3D information of the coordinates.

Another fact is that we human can tell the approximate
3D location of any object in a monocular image if we have
seen the scene before. A rich understanding of the world
can be developed through our past visual experience [38].
The understanding can be used as the prior knowledge for
the whole image, which can be adopted to localize any ob-
ject, even any pixel in it. To help localize the 3D object in
our framework, the approximate layouts of objects or 3D
locations of pixels can be modeled.

Disparity Estimation. To help understanding the whole
scene in the image, a sub-net for disparity estimation from
a single image is proposed. Learning based methods for dis-
parity or depth estimation are mainly built with fully convo-
lutional networks (FCNs). However, disparity or depth es-
timation with only monocular information can be quite dif-
ficult. Thanks for the remarkable work called MonoDepth
in [14], which enforces left-right depth consistency for dis-
parity estimation in an unsupervised way, we directly use
the pre-trained weights provided by MonoDepth to initial-
ize our sub-net and the weights won’t be updated during
training. Thus the sub-net can be regarded as a stand-alone
off-line module to help understand the whole scene. With
camera intrinsic parameters and estimated disparity, 3D co-
ordinates of each pixel in camera coordinate system can
be accessed, thus constructing the point cloud in the whole
scene. Given a pixel I = (Ix, Iy) with disparity Id in the
2D image, the 3D coordinates (x, y, z) can be computed as:

z = f ∗ Cb/Id

x = (Ix − Cx) ∗ z/f

y = (Iy − Cy) ∗ z/f

(6)
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Figure 2. Front view feature maps.

where f is the focal length of the camera, (Cx, Cy) is the
principal point, Cb is the baseline distance. In this paper, we
always adopt the camera coordinate system in KITTI for 3D
locations1.

Estimation Fusion for 3D Localization. With the esti-
mated point cloud in the whole image as our prior knowl-
edge and the previously generated RoIs, here we introduce
a RoI mean pooling layer for 3D localization. The principle
is quite simple and very similar to RoI max pooling. RoI
max pooling is proposed mainly to deal with high-level vi-
sual recognition tasks. The max operation aggregates mul-
tiple activations and outputs the max value, which has been
demonstrated useful in numerous applications. Nowadays,
the mostly used pooling operation in deep neural networks
is also max pooling. In RoI mean pooling, we just replace
the max operation with mean operation. Since original point
cloud does not contain any high-level representations, the
max pooling will get the maximum value for each axis,
which is not reasonable. We simply adopt RoI mean pooling
over the point cloud to get a fixed-sized point cloud feature
map, which takes both global prior knowledge about loca-
tions and the region proposal into account. Here the point
cloud is encoded as a 3-channel XYZ map which has the
same size as the RGB image. With this representation, we
can use ROI Pooling operation on the XYZ map, similar
to the ROI Pooling on convolutional feature maps. Objects
with the same appearance in the image probably have differ-
ent point cloud features when they locate differently in 3D
space. Therefore, the point cloud feature is complementary
to the appearance feature and crucial to 3D localization.

Now we have two streams for 3D localization, one is
from CNN features with RoI max pooling and the other is
from point cloud with RoI mean pooling. The two parts
are regarded as Sconv and Spc for better description. For
the Sconv stream, we estimate the 3D location, just like the
orientation and dimension branches. For the Spc stream, we
only use one fully connected layer and then estimate the 3D
location. Finally, location estimations from the two streams
will be added, constructing the final 3D location estimation.
In the training stage, smooth L1 function is applied again,

1Details about the set up for camera coordinate system can be found in
http://www.cvlibs.net/datasets/kitti/setup.php

so the loss for 3D localization can be represented as follow:

Lloc = SL1((Ppc + Pconv)−D∗
loc) (7)

where Ppc indicates estimation from Spc and Pconv indi-
cates estimation from Sconv .

The joint estimation for 3D location can be seen as a late
fusion between estimations from Sconv and Spc. The convo-
lutional features are learned from image content and mostly
contain high-level semantic information. While the repre-
sentations from point cloud can be seen as low-level ma-
nipulation about pixel locations. Estimations from different
levels are fused for accurate 3D estimation. In another point
of view, the point cloud that depends on estimated depth in-
formation can be regarded as global prior knowledge. It
contains spatial information about the RoIs and can help
compensate the information reduction after RoI max pool-
ing. The late fusion ensures the accurate 3D localization in
the network, which is the most important part of the whole
3D object detection framework.

Input Fusion with Front View Feature Maps Encoding.
In addition to helping estimate the 3D locations, we also
encode the estimated depth information with three-channel
representations as the front view feature maps, which is
similar to [4, 15, 20]. Given a pixel I = (Ix, Iy) with depth
Idepth in the 2D image, the three front view feature maps
FV1, FV2, FV3 are encoded as:

FV 1 = Idepth

FV 2 = (Iy − Cy) ∗ Idepth/f

FV 3 =
√
(FV 1)

2
+ (FV 2)

2
+ ((Ix − Cx) ∗ Idepth/f)2

(8)
where f is the focal length of the camera, (Cx, Cy) is the
principal point. As we can see, FV 1 represents depth in-
formation, FV 2 denotes height information and FV 3 indi-
cates distance information in the camera coordinate system.
The encoded front view feature maps are visualized in Fig-
ure 2.

Since the sub-net for disparity estimation is an off-line
module and will not be updated in the training stage, the
three-channel front view feature maps and three-channel
RGB images are concatenated as the input for RPN. This

http://www.cvlibs.net/datasets/kitti/setup.php


can be regarded as an early fusion or a pre-processing step
for enhancing the input.

Feature Fusion for Accurate Estimation. In the esti-
mation of 3D location, another fusion for different feature
maps is proposed. Here we regard feature maps after RoI
max pooling as Fmax(blue cube in Figure 1) and feature
maps after RoI mean pooling as Fmean(orange cube in Fig-
ure 1). Then the two feature maps are concatenated to en-
hance the Sconv stream.

In total, there are three levels of fusion in the network.
The earliest fusion is the concatenation between front view
feature maps and the corresponding RGB image. The sec-
ond one is the mergence of feature maps from the original
input and the estimated point cloud inside each region pro-
posal, with different types of RoI pooling. The last fusion
is the joint estimation from two different types of data for
the final 3D localization. Generally, the last fusion is nec-
essary for the framework, while the other two can improve
the whole performance to a certain extent. Details for com-
parisons are illustrated in Section 4.

3.4. Multi-task Loss

The whole loss Lrcnn for the 3D regression and classifi-
cation network can be formulated as:

Lrcnn = w2DL2D + wαLα + wdLd + wlocLloc (9)

where all the loss for 2D detection is regarded as L2D in
this paper, including multiclass classification loss and 2D
bounding box loss, just like the description in [31]. For the
RPN part, we use the same loss as the original paper [31].
In order to optimize the whole framework, joint training is
adopted for the whole network, which is also introduced
from the original Faster R-CNN implementations. Then the
whole network is trained end-to-end.

4. Experimental Results
We evaluate our approach on the challenging KITTI

dataset. It provides 7,481 images for training and 7,518
images for testing, along with the camera calibration files.
Detection is evaluated in three regimes: easy, moderate and
hard, according to the occlusion and truncation levels of
objects. Since there are no ground truth for the testing
images, we conduct 3D box evaluation on the validation
set. We split the training set into train/val parts. For better
comparisons with other start-of-the-art algorithms, we use
two train/val splits: train1/val1 from [2, 3] and train2/val2
from [26].

Implementation Details. We choose Faster R-CNN with
16-layer VGG net [34] as our basic 2D object detectors. For
RoI max pooling, the recently introduced operator called

Deformable RoI Pooling described in [8] is adopted in our
implementation. The RoI mean pooling operator is mod-
ified from RoI align described in [16]. By default, we
use pre-trained weights learned on ImageNet [9] dataset for
the initialization of our network. In addition, the input of
models trained on ImageNet is a single three-channel RGB
image. To handle the six-channel input in our framework
(three-channel RGB image + three-channel front view fea-
ture maps), the weights in the first convolutional layer are
just duplicated for initialization. To handle particularly
small objects in KITTI images, the shorter side of the train-
ing images is upscaled to 512 pixels, which was found to
be crucial to achieve very good performance. We don’t
apply any data augmentation methods, even the flip oper-
ation, which is usually used in most 2D detectors. For
anchors used in RPN, 5 scales of 2, 4, 8, 16, 32 and 3
aspect ratios of 1:1, 1:2, 2:1 are used on the basic 16 ×
16 box, where 16 is just the stride size on the utilized
feature map according to the original implementation of
Faster R-CNN. Mostly used sampling heuristics like the
fixed foreground-to-background ratio and online hard ex-
ample mining (OHEM) [33] are adopted to maintain a bal-
ance between foreground and background for good perfor-
mance. Mini-batch stochastic gradient descent (SGD) is the
optimizer of the network. We use a batch size of N = 1 for
images and a batch size of R = 256 for proposals. Weights
of the sub-net for disparity prediction are from the model
which is trained on Cityscapes [6] and KITTI2. The net-
work is trained with a learning rate of 0.0005 for 30K itera-
tions. Then we reduce the learning rate to 0.00005 and train
another 10K iterations. In our implementation, the whole
network takes around 120ms per image on a single TITAN
X GPU in inference stage.

Evaluation Metrics. We evaluate 3D object detection re-
sults using the official evaluation metrics from KITTI. 3D
box evaluation is conducted on both two validation splits
(different models are trained with the corresponding train-
ing sets). We focus our experiments on the car category as
KITTI provides enough car instances for our method. Fol-
lowing the KITTI setting, we do evaluation on three diffi-
culty regimes: easy, moderate and hard. In our evaluation,
the 3D IoU threshold is set to 0.5 and 0.7 for better com-
parison. We compute Average Precision (APloc) for the
bird’s eye view boxes, which are obtained by projecting the
3D boxes to the ground plane. Average Precision (AP3D)
metric is also used to evaluate the full 3D bounding boxes.
Table 1 shows APloc on val1 and val2 and Table 2 is the
comparison results for AP3D. Table 3 shows results on the
KITTI testing set.

2https://github.com/mrharicot/monodepth

https://github.com/mrharicot/monodepth


Figure 3. Visualization for 2D detection boxes, the projected 3D detection boxes on inferred point cloud from estimated disparity.

Comparison with Other Methods. As this work aims
at monocular 3D object detection, our approach is mainly
compared to other methods with only monocular images
as input. Here three methods are chosen for comparisons:
Mono3D [2], 3DOP [3] and Deep3DBox [26]. APloc and
AP3D for Mono3D [2] and 3DOP [3] are provided in [4].
For the state-of-the-art Deep3DBox method, we use the 3D
detection results provided by [26] on val23. The evalua-
tion codes are from the official KITTI website4. As we can
see the quantized results from Tables 1 and 2, our method
outperforms the Mono3D and Deep3DBox methods. Com-
pared to 3DOP, which uses stereo information, the proposed
method provides better results in some circumstances. In
addition, given an input image, the network directly out-
put the 2D and 3D detection results without any extra com-
putation. We also measure the effect of fusion methods
in our framework. As we can see, both input fusion(FV)
and feature fusion(FF) can improve the detection results.
All experiments are done with estimation fusion for 3D
localization, which is also the core part for the 3D detec-
tion pipeline. Typically, more fusion requires more param-
eters. However, the increased amount of parameters is a
very small part compared to the total parameters of the net-

3https://cs.gmu.edu/˜amousavi/results/
Output3DBoxes.zip

4http://kitti.is.tue.mpg.de/kitti/devkit_
object.zip

work. In particular, changing 3-channel RGB input to 6-
channel RGB+FV input only introduces 0.009% additional
weights, and adding fusion of XYZ map only increases
0.79% weights. With the significant performance gain (5%
- 8%), we think the increased parameters are negligible.

Disparity Effect. To show how the quality of the esti-
mated disparity map might change the 3D object detection
performance, we replace MonoDepth method with Disp-
Net [25], which takes stereo pairs as input to estimate more
accurate disparity. This stereo setting can be seen as a up-
per bound of the monocular input in our framework. As
shown in Table 4, 3D detection accuracy increases signifi-
cantly when using much more accurate disparity.

Qualitative Results. Apart from drawing the 2D detec-
tion boxes on images, we also project the 3D detection
boxes on inferred point cloud from estimated disparity for
better visualization. As shown in Figure 3, our approach can
obtain accurate 2D bounding box, 3D orientation, dimen-
sion, and 3D location in various scenes with only monocular
images.

5. Conclusion
We have proposed an approach for accurate 3D object

detection with monocular images in this paper. We directly

https://cs.gmu.edu/~amousavi/results/Output3DBoxes.zip
https://cs.gmu.edu/~amousavi/results/Output3DBoxes.zip
http://kitti.is.tue.mpg.de/kitti/devkit_object.zip
http://kitti.is.tue.mpg.de/kitti/devkit_object.zip


Method Type
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard
Mono3D [2] Mono 30.50 / - 22.39 / - 19.16 / - 5.22 / - 5.19 / - 4.13 / -

3DOP [3] Stereo 55.04 / - 41.25 / - 34.55 / - 12.63 / - 9.49 / - 7.59 / -
Deep3DBox [26] Mono - / 30.02 - / 23.77 - / 18.83 - / 9.99 - / 7.71 - / 5.30

Ours Mono 46.69 / 50.99 28.69 / 30.52 26.18 / 24.44 11.14 / 12.69 6.59 / 8.03 5.43 / 5.99
Ours(+FF) Mono 49.05 / 53.93 30.20 / 37.50 28.35 / 30.99 13.47 / 17.40 9.46 / 10.95 8.35 / 9.50

Ours(+FF+FV) Mono 55.02 / 54.18 36.73 / 38.06 31.27 / 31.46 22.03 / 19.20 13.63 / 12.17 11.60 / 10.89

Table 1. 3D localization performance: Average Precision (APloc) (in %) of bird’s eye view boxes on KITTI val sets. Results on the two
validation sets: val1 / val2. FV indicates the fusion between the front view feature maps and the RGB image. FF indicates the fusion
between Fmax and Fmean.

Method Type
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard
Mono3D [2] Mono 25.19 / - 18.20 / - 15.52 / - 2.53 / - 2.31 / - 2.31 / -

3DOP [3] Stereo 46.04 / - 34.63 / - 30.09 / - 6.55 / - 5.07 / - 4.10 / -
Deep3DBox [26] Mono - / 27.04 - / 20.55 - / 15.88 - / 5.85 - / 4.10 - / 3.84

Ours Mono 39.73 / 42.59 24.69 / 26.37 20.79 / 21.14 4.63 / 5.38 2.88 / 3.44 2.40 / 2.58
Ours(+FF) Mono 41.47 / 43.91 26.77 / 29.29 22.45 / 23.58 6.26 / 7.60 4.57 / 4.84 4.13 / 4.42

Ours(+FF+FV) Mono 47.88 / 44.57 29.48 / 30.03 26.44 / 23.95 10.53 / 7.85 5.69 / 5.39 5.39 / 4.73

Table 2. 3D detection performance: Average Precision (AP3D) (in %) of 3D boxes on KITTI val sets. Results on the two validation sets:
val1 / val2. FV indicates the fusion between the front view feature maps and the RGB image. FF means the fusion between Fmax and
Fmean.

Metric
IoU=0.7

Easy Moderate Hard
2D AP 90.43 87.33 76.78

Orientation AP 90.35 87.03 76.37
Birdview’s AP 13.73 9.62 8.22

3D AP 7.08 5.18 4.68

Table 3. Results for 2D, orientation, Bird’s eye view and 3D
AP(%) on the KITTI testing set.

Metric Disparity Data IoU=0.5 IoU=0.7

Birdview’s AP
MonoDepth Mono 36.73 13.63

DispNet Stereo 53.65 19.54

3D AP
MonoDepth Mono 29.48 5.69

DispNet Stereo 47.42 9.80

Table 4. Bird’s eye view and 3D AP(%) on KITTI val1
sets(moderate).

extend the existing proposal-driven 2D detectors with the
help of deep CNN features. With a single RGB image as
input, the network can output all the descriptors for 2D

and 3D objects in an end-to-end fashion. We have shown
that our detection approach significantly outperforms state-
of-the-art monocular approaches and even detectors with
stereo information on particular evaluation index.

The main innovation in the framework is the multi-level
fusion scheme. It utilizes a stand-alone module to estimate
the disparity information, which ensures the accurate 3D
localization and improve the detection performance. Al-
though we only adopt region-based 2D detectors for exten-
sion in this paper, one-stage detector like SSD [24] utiliz-
ing the mechanism of default box also has a potential to be
extended for 3D object detection, which deserves better re-
search in the future.
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