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Abstract

In this paper, we aim to solve the pose estimation prob-
lem of calibrated pinhole and generalized cameras w.r.t. a
Structure-from-Motion (SfM) model by leveraging both 2D-
3D correspondences as well as 2D-2D correspondences.
Traditional approaches either focus on the use of 2D-
3D matches, known as structure-based pose estimation
or solely on 2D-2D matches (structure-less pose estima-
tion). Absolute pose approaches are limited in their per-
formance by the quality of the 3D point triangulations as
well as the completeness of the 3D model. Relative pose
approaches, on the other hand, while being more accu-
rate, also tend to be far more computationally costly and
often return dozens of possible solutions. This work aims to
bridge the gap between these two paradigms. We propose
a new RANSAC-based approach that automatically chooses
the best type of solver to use at each iteration in a data-
driven way. The solvers chosen by our RANSAC can range
from pure structure-based or structure-less solvers, to any
possible combination of hybrid solvers (i.e. using both types
of matches) in between. A number of these new hybrid min-
imal solvers are also presented in this paper. Both synthetic
and real data experiments show our approach to be as ac-
curate as structure-less approaches, while staying close to
the efficiency of structure-based methods.

1. Introduction
Camera pose estimation, i.e., estimating the position and

orientation of a given image, is a central step in 3D com-
puter vision approaches such as SfM [1, 11, 25], Simulta-
neous Localization and Mapping (SLAM) [7], and visual
localization [4,18,22,27,35]. In addition, camera pose esti-
mation plays an important role in applications such as self-
driving cars [9] and augmented reality [19].

The traditional approach to camera pose estimation is
to estimate the pose from a set of 2D-3D matches be-
tween pixels in a query image and 3D points in a scene
model [10]. The pose is typically computed by applying a
structure-based minimal pose solver inside a RANSAC [8]

Figure 1. Visualization of 2D-2D matches (pink) and 2D-3D
matches (blue) used by one of our hybrid pose solvers. The query
camera is represented in red and SfM cameras in green.

loop. There is a large body of work on absolute pose
estimation from n 2D-3D matches, a problem typically
referred to as n-point perspective pose (PnP). Solutions
to this problem exist for calibrated [8, 10], partially cali-
brated [31, 34], and uncalibrated cameras [12]. When the
3D model is obtained via SfM, as is typical for visual lo-
calization [4, 18, 22, 27, 35], not all 3D points will be ac-
curately triangulated, leading to potentially inaccurate pose
estimates. An alternative to pose estimation from 2D-3D
matches is structure-less pose resectioning [36]: The pose
of a query image is estimated from a set of 2D-2D corre-
spondences between the query and two or more images in
the reconstruction. While this approach avoids the prob-
lem of inaccurately triangulated points and incompleteness
of the model, structure-less pose solvers are significantly
less computationally efficient (up to orders of magnitude
slower).

The availability of both structure-based and structure-
less camera pose estimation techniques leads to a set of in-
teresting questions: Are they mutually exclusive, i.e., is one
always preferable over the other, or is there value in using
both 2D-3D and 2D-2D matches for pose estimation? Is it
best to use ”pure” solvers, i.e., solvers that use either 2D-
3D or 2D-2D correspondences, or do hybrid solvers (c.f .
Fig. 1) using both type of matches improve pose estimation
performance? Should one decide prior to RANSAC which
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solver to use, or is it best to select solvers in a data-driven
way during RANSAC-based pose estimation?

The goal of this paper is to answer these questions.
To this end, we propose nine novel hybrid camera pose
solvers, differing by the number of 2D-3D and 2D-2D
matches each one uses and whether they deal with a cen-
tral or a generalized camera (or both). In order to use
structure-based, structure-less, and hybrid solvers side by
side, we propose a new hybrid RANSAC-variant that first
samples a pose solver according to its probability of suc-
cess and next selects a suitable minimal sample for this
solver. Through extensive tests on both synthetic and real
data, we analyze our new solvers and demonstrate that our
hybrid RANSAC scheme consistently outperforms purely
structure-based and structure-less approaches.

2. Background

Structure-based pose estimation. The classical procedure
followed in structure-based pose estimation consists on first
obtaining a set of putative 2D-3D matches. These putative
matches are usually obtained from matching keypoints in
a query image (or image sequence) against mean descrip-
tors associated to each 3D point in the model. Given these
matches, the camera pose is robustly inferred by employing
a minimal solver inside a Hypothesize-and-Verify scheme
(e.g. RANSAC [8]).

Different minimal solvers have been proposed in the lit-
erature, depending on whether the camera to localize is cen-
tral or generalized (i.e., with multiple centers of projection).
For the case of central cameras, [8, 14] require a minimal
sample of 3 matches as they deal with a fully calibrated set-
ting, while [34] requires 3.5 matches as a focal length is
also estimated. [31] also seeks to estimate the center of pro-
jection, and thus requires 5 matches. [12] assumes unknown
radial distortion, and uses a minimal set of 4 matches. [16]
uses 3 matches to estimate the pose of a calibrated general-
ized camera, assuming that its scale w.r.t. to the 3D model
is known. [28] additionally assumes a known vertical direc-
tion, requiring only 2 matches in order to compute a pose.
In [16, 28], the scale of the generalized cameras w.r.t. the
SfM to be known. This is not always the case in many Com-
puter Vision scenarios, where often the 3D models available
are up to scale. Addressing this, [32] deals with the case
of unknown scale and unknown vertical direction, thus re-
quiring 4 points. Since we will focus on a calibrated sce-
nario in this paper, we will make use of some of this solvers
(namely, [14, 28, 32]) alongside both structure-less and hy-
brid solvers in a novel RANSAC-based approach.

Structure-less pose estimation. The pose accuracy ob-
tained by structure-based methods is limited by the qual-
ity of the 3D points that the camera observes. Addition-
ally, the number of inlier matches a query camera can have

is bounded by the number of 3D points the camera sees.
Tackling these issues has been the focus of recent research.
Rather than explicitly representing the scene by its 3D struc-
ture, 2D-2D correspondences between the query image (or
images) against multiple images are used for pose estima-
tion. In these cases, the query is usually matched against
the most similar images (2 or more [36]) present in the SfM
model, which are found using an image retrieval approach.

Alternatively, 2D-2D matches can also be obtained by
following the same procedure described for structure-based
pose estimation. Once the a set of 2D-3D matches is ob-
tained, the 3D counterpart of each match can be replaced
by one of the SfM camera rays used to reconstruct this 3D
point. Next, a minimal solver is used inside a RANSAC
loop in order to robustly estimate a camera pose. [36] pro-
poses a minimal solver that can deal with both calibrated
central cameras, using 6 matches, as well as uncalibrated
ones (using 7 matches). For the problem of localizing a
generalized camera, [26] proposes a 6 point solution that
requires prior knowledge on the relative scale of the cam-
era. If the vertical direction is known, only 4 matches are
needed [29]. [30] estimates the scale while also assuming a
known vertical direction, thus requiring 5 matches. All of
these solvers share the property of being more accurate than
their structure-based counterparts. However, they can be up
to orders of magnitude slower, which is further aggravated
by the fact that RANSAC needs to run exponentially longer
due to the larger size of the minimal samples. In Sec. 3, we
introduce a solver-selection step that allows the use of these
type of solvers only when the current state of the problem
suggests that they have a high chance of success, thus re-
ducing the total running time of robust pose estimation.

Hybrid pose estimation. Somewhere in-between there are
solvers that simultaneously use different types of matches,
referred to as hybrid solvers, although they have not gained
much attention in the past. [5] uses two 2D-3D matches and
one 3D-3D match in order to estimate the pose and scale
of a generalized camera. [6] uses one 3D-3D match and 3
2D-2D matches in order to find the relative pose of a stereo
pair. These two approaches, however, can be twice affected
by the inaccuracy of point triangulation due to the use of a
3D-3D match. Most related to the type of solvers that we
explore in this work, is [13], where 2 2D-2D and 2 2D-3D
matches are used to find the pose of a central camera. In
section Sec. 4 we propose a number of solvers that can also
deal with generalized cameras, as well as different mixtures
of 2D-2D and 2D-3D matches, and show how their combi-
nation can be valuable for pose estimation.

Adapted RANSAC schemes. Since we are looking to
deal with different types of matches, RANSAC needs to be
adapted to sample from two different sets with potentially
different inlier ratios. [5, 6] deal with this problem by keep-



ing track of the two (or more) inlier ratios and modifying the
RANSAC termination criterion to take them into account.
In this work, we adopt the same termination criterion, as
we also face the same issue. However, we also need to de-
vise a strategy to choose a suitable solver for RANSAC. The
choice of solver should be driven by the data and the current
estimate. This task is akin to model selection, where mod-
els are selected on the fly according to a probability criterion
based on the current state of the problem.

3. Hybrid RANSAC for Pose Estimation
Let Mp be a set of putative 2D-3D matches and Mr

be the set of putative 2D-2D matches. Traditionally, only
one of these sets is used to robustly estimate the pose of
a query camera using RANSAC combined with a minimal
solver such as P3P or a 2D-2D structure-less pose solver
such as [36]. However, we would like to exploit all of the
available information, e.g. by using hybrid minimal solvers
that use a combination of both 2D-3D and 2D-2D matches.
In order to use such solvers, RANSAC would need to sam-
ple from bothMr andMp. Consequently, its termination
criterion should be adapted to work with two separate inlier
ratios, which we will call εr and εp, as presented in [5, 6].
Nevertheless, depending on the quality of the matches, e.g.
noise in the 3D or 2D points, different number of outliers
contaminating the matching sets, etc., as well as the quality
of the solver itself, different solvers may yield better results
than others. Therefore, given a set of minimal solvers S that
require different mixtures of 2D-2D and 2D-3D matches,
we would like RANSAC to be able to automatically choose
a solver depending on the quality of the data. This choice
may change from one iteration to the next based on an im-
proved estimate of the inlier sets, e.g., relative inlier ratios
may change when a better model is found which should af-
fect our choice of solver.

Three questions arise when designing a RANSAC vari-
ant that can cope with two different sets of matches and in-
lier ratios, as well as a number of different minimal solvers:

1. How do we score a hypothesized model, i.e. how do
we choose the best model so far?

2. Given the estimated inlier ratios ε̂r and ε̂p, as well as
our past choices of solver, which is the best solver to
use for the next iteration?

3. When should we terminate?
For the first question, we adopt a classical RANSAC ap-
proach, and choose the best model as the one with the
highest inlier count overall, taking into account both sets
of matches. Notice that one may choose a different inlier
threshold for each set of matches.

The issue of choosing a solver for the next iteration is
tackled using a probability-guided sampling strategy. At
each iteration, a solver is chosen according to its proba-
bility of succeeding (estimating a model from an all-inlier

minimal sample) at this iteration for the first time. The intu-
ition behind using this probability is that we want our solver
to be as exploratory as possible as long as the data allows
it. Therefore, we would like to select a solver with a high
chance of success which has not been used enough to have
found a valid solution yet. This means that its chances of
finding a good solution for the first time should be high. We
will refer to this probability as success probability, or Ps.

Let s be a solver that requires a minimal set of nmatches
fromMr and m matches fromMp. Let εr and εp be the
true inlier ratios of the setsMr andMp, respectively. The
probability of sampling an all-inlier minimal set for solver
s at any iteration is given by εnr ε

m
p . The probability of the

solver not having seen an all-inlier set by iteration ks is
given by (1 − εnr εmp )ks−1. It follows then that the proba-
bility Ps of choosing a good sample at iteration ks of model
s for the first time is given by

Ps = εnr ε
m
p (1− εnr εmp )ks−1 . (1)

Since the true inlier ratios are unknown, they can be re-
placed by the estimated inlier ratios ε̂r and ε̂p of the best
model found so far. In order to compute Ps, RANSAC
needs to keep track of how many times each solver has been
chosen in the past. Therefore, for each solver s, a number
of iterations ks has to be stored. Notice that the more a
solver is used, the less likely it is to be chosen in later iter-
ations, therefore allowing RANSAC to eventually explore
previously unused solvers.

Another factor that should affect the choice of solver is
the quality of the solver itself, i.e. how accurate is the solu-
tion estimated given an all-inlier sample. Consequently, we
will weight the computed success probability with a prior
on the quality of the solver. This quality prior, referred to
as Pp, is empirically chosen based on the solver’s numerical
stability and the size of its minimal set. The intuition behind
this being that the more matches a solver requires, the more
it will be affected by their noise. Therefore, we rank the
solvers according to their minimal set size and their numeri-
cal stability (which is analyzed in Sec. 5.1) and assign them
a normalized prior according to this ranking. Notice that
this prior does not need to be recomputed during RANSAC
and does not depend on the data. Finally, the solver is cho-
sen according to this prior multiplied by its probability of
success. Once the solver is picked, we then randomly sam-
ple n and m matches fromMr andMp, respectively (c.f .
the supplementary material for additional details).

The last question to answer involves the termination cri-
terion. For each solver s, the minimum number of iterations
Ks that guarantees that it will find a good solution with
probability P (usually set to 0.99) is given by:

Ks =
log(1− P )

log(1− εnr εmp )
. (2)



Algorithm 1 Hybrid RANSAC

Require: S,Mr ,Mp, inlier thresholds σr , σp

Require: ∀s ∈ S, minimal set sizes ns,ms, prior Pp(s)
1: ∀s ∈ S, initialize success probability Ps(s) = 1,
2: while TRUE do
3: Choose s ∈ S with probability Ps(s)Pp(s)
4: ks ← ks + 1
5: Randomly choose Sr ⊂Mr , |Sr| = ns

6: Randomly choose Sp ⊂Mp, |Sp| = ms

7: Compute pose θ = s(Sp ∪ Sr)
8: Ir = inlier count(θ,Mr, σr)
9: Ip = inlier count(θ,Mp, σp)

10: Inliers(θ)← Ir + Ip
11: ε̂r ← Ir/|Mr|, ε̂p ← Ip/|Mp|
12: if Inliers(θ) > Inliers(θ∗) then
13: θ∗ ← θ
14: for all s ∈ S do
15: Update Ps(s, ε̂r, ε̂p) using (1)
16: Update Ks using (2)
17: if ks ≥ Ks then
18: return best model θ∗

Thus, our RANSAC variant stops when at least one solver
s has been chosen Ks times, as this means that a good so-
lution for the current inlier ratios has been found with prob-
ability P . Note that at every iteration, the number of it-
erations ks for the last chosen solver s has to be updated,
and, if the model found is better than the best model found
so far, the maximum number of iterations Ks′ is updated
for all solvers s′ ∈ S. The chosen termination criterion is
optimistic in the sense that it stops as soon as one solver
is finished. Its pessimist counterpart would have RANSAC
run for as long as necessary for each solver to complete its
iterations. We argue that this is unnecessary, as this would
require RANSAC to wait for the most unsuited solvers to
finish even though their chances of finding a valid model
are very low (therefore needing more iterations). Indeed,
when a solver is called very few times, it is usually because
it relies on the set of matches with the lowest inlier ratio,
therefore it is unsuited for this particular data. In practice,
the optimistic criterion allows for a good trade-off between
accuracy and run-time, as will be shown in Sec. 5. Our
RANSAC variant is presented in Alg. 1.

4. Hybrid Minimal Solvers

In this section we detail the derivation of all new solvers
which are required for our RANSAC variant (c.f . Alg. 1).
Given a combination of n 2D-2D matches and m 2D-3D
matches, we have 2m+n constraints: A 2D-2D match will
provide 1 algebraic constraint on the pose while a 2D-3D
match will provide 2 constraints. If d is the number of de-
grees of freedom of the camera pose, we are interested in
the cases where 2m + n = d, i.e., minimal problems. In
this paper we will focus on 4 different pose problems, de-
pending on what is assumed as prior knowledge regarding
the pose (c.f . Table 1). The first problem, referred here as
PROBLEM 6-DOF, is the case of a generalized camera where
only its rotation and translation are unknown, and so d = 6.
Notice that the problem of single central camera pose esti-

mation is a specific case of this problem. PROBLEM 4-DOF
has d = 4 and refers to the upright case of a known-scale
camera, i.e., where the vertical direction is known. PROB-
LEM 7-DOF is the problem where we do not know the scale
of the generalized camera w.r.t. to the map. Thus, for this
problem d = 7. Finally with d = 5, PROBLEM 5-DOF is
the upright version of PROBLEM 7-DOF, i.e., we know the
vertical direction but not the scale.

U S # Matches Name Reference Num.
Sols.2D 3D

P
R

O
B

L
E

M

6
-D

O
F

0 3 (g)P3P [14, 16] 4/81

2 2 H22 Sec. 4.2 16
4 1 H41 Sec. 4.2 32
6 0 Strless [26, 36] 642

P
R

O
B

.
4

-D
O

F • 0 2 (g)P2P [28] 2
• 2 1 uH21 Sec. 4.2 4
• 4 0 QEP [29] 6

P
R

O
B

L
E

M

7
-D

O
F

• 0 4 P4P+s [32] 8
• 1 3 H13+s Sec. 4.1 16
• 3 2 H32+s Sec. 4.1 56
• 5 1 H51+s Sec. 4.1 803

• 7 0 SevenPt [30] 1403

P
R

O
B

L
E

M

5
-D

O
F

• • 0 3 uP3P+s Sec. 4.1 1
• • 1 2 uH12+s Sec. 4.1 4
• • 3 1 uH31+s Sec. 4.1 6
• • 5 0 FivePt [30] 10

Table 1. Summary of Minimal Solvers. U and S stand for upright
(i.e., known vertical) and unknown scale, respectively. The solvers
presented in this paper are in boldface.

As detailed in Table 1, most of the “pure” solvers al-
ready exist in the literature (e.g., P3P), with the exception
of uP3P+s. Conversely, most of the hybrid solvers are yet
to be derived. This with the exception of H22 and H41,
which have been previously explored in [13]. However, the
versions there are only meant for central cameras, thus here
we offer a more general derivation. In total, there are 7 min-
imal solvers which our hybrid RANSAC requires and that,
to the best of our knowledge, have not yet been investigated
in the literature. We also offer a novel, more general deriva-
tion for 2 existing solvers. We note, however, that two of
the solvers required for PROBLEM 7-DOF are of very high
polynomial degree and have been deemed too unstable for
practical use [30]. As such, we do not investigate a full Hy-
brid RANSAC solution for PROBLEM 7-DOF. Nevertheless,
we offer derivations and synthetic precision evaluations for
the more tractable cases: H13+s and H32+s.

Rotation Parameterization. Let R and t be the rota-
tion and translation that transform elements in the global
frame of reference {G} to the camera frame of reference
{C}. For the unkonwn vertical cases (PROBLEM 6-DOF and
PROBLEM 7-DOF), we parameterize the rotation using a unit
quaternion [u1u2u3w]

ᵀ, setting w = 1, i.e., R = R(u).
Even though setting w = 1 eliminates the possibility of

1For the generalized gP3P we have 8 solutions. 4 for P3P the case.
2If the query camera is central, we may have 20, 40, 56 and 64 solutions

depending on the SfM cameras’ configuration [36].
3Solvers are too numerically unstable to be useful c.f . Sec. 4.2 and [30].



finding a rotation with w = 0, this has a negligible impact
on the solver’s performance for real data and has been used
widely in previous work [26, 29, 36].

For upright cases (PROBLEM 4-DOF and PROB-
LEM 5-DOF), i.e., where the vertical direction in the cam-
era frame is known, we are dealing with a rotation around
a known axis. Without loss of generality we assume the
vertical direction in {C} to be [0 0 1]ᵀ, which can always
be achieved using a pre-processing step (details of this are
given in the supplemental material). This results in a rota-
tion around the Z axis, which we choose to parameterize as

R(a, b) =
[
a −b 0
b a 0
0 0 1

]
, (3)

where we must enforce that a2 + b2 = 1.

2D-3D Constraints. Given i = 1 . . .m 2D-3D matches,
we may write

αivi + s ci = Rpi + t , (4)

where αi is the depth of the i-th point in {C}, vi is a ray
of unit length, s is the scale of the generalized camera, ci
is the center of projection for the generalized measurement
and pi is the 3D point in {G}. In many cases it is useful to
eliminate the unknown depths, thus one may rewrite (4) as

bvicx (Rpi + t− s ci) = 0 , (5)

where bacx ∈ R3×3, such that bacxb = a× b. Only 2 of
the 3 equations in (5) are linearly independent, thus only the
first two are taken into account. For the case where scale is
known, we simply set s = 1, whereas for central cameras
we may always set ci = 0. Notice that (5) is linear in t

and s, two of the potential unknowns. Depending on how
many 2D-3D matches are available, we manipulate (5) in
two different ways.

2 2D-3D matches or more: In this case, t and s may be
eliminated. For known scale problems we need only 3 of
the 4 equations provided by 2 2D-3D matches to get

At = B(r) , (6)

where A ∈ R3×3 is a coefficient matrix obtained from the
inputs, and B(r) ∈ R3 is a function of the rotation param-
eters r, which can be (a, b) or u as explained above. In the
case of unknown scale, we must use all of the 4 constraints
available in the 2 2D-3D matches to isolate the linear un-
knowns. For this case we have

As [tᵀ s]
ᵀ
= Bs(r) , (7)

where we now have As ∈ R4×4 and Bs ∈ R4. We can then
invert either A or As in order to obtain the linear unknowns
in terms of the rotation only.

1 2D-3D match: in this case we instead transform the
point in {G} and the corresponding camera frame. We do
this s.t. c1 = 0, v1 = [0 k1 k2] and p1 = 0 (details of

this transformation are offered in the supplemental mate-
rial). Doing this allows us to then rewrite (4) as α1v1 = t,
and eliminating α1 leads to

t =

[
0

tz
k1
k2

tz

]
, (8)

where tz is the last element of the unknown translation.

2D-2D Constraints. A 3D line can be represented using
Plücker coordinates [21] as L = [qᵀ q′

ᵀ
]ᵀ ∈ R6. Here q is

the unit direction of the line, and q′ = q×p where p is any
point on the line. A given pair of lines, aL and bL, intersect
in space iff aq ·bq′ +aq′ ·bq = 0. In order for the j-th line
(with j = 1 . . . n) in the camera frame CLj to intersect with
its matched line in the global frame GLj we must have that

Cqᵀ
j R

Gq′j +
Cq′

ᵀ
j R

Gqj =
Cqᵀ
j btcxR

Gqj , (9)

Notice that, as opposed to (5), (9) is homogeneous in R, and
so the scale of the rotation is irrelevant. This is important
in the case of the quaternion-based rotation, since every el-
ement of R(u) has a common factor of 1/(|u|2+1) in order
for R to be a proper rotation. For (9) this nonlinear common
term can be safely factored out.

Gröbner Basis Solution. For any given solver, we adopt
a Gröbner basis approach to solve the resulting polynomial
system. For this, we employ a Gröbner basis Solver Gen-
erator [15, 17]. The solution of the polynomial system is
then given by the Gauss-Jordan reduction of an elimination
template, and the eigen-decomposition of an action matrix
with entries resulting from the elimination template. Thus,
the speed and numerical stability of the resulting solver will
depend on the size of the elimination template and the size
of the action matrix (which also dictates the number of so-
lutions). A more detailed discussion of this method is out
of the scope of this paper, for more details see [3].

4.1. Unknown Scale Solvers

H13+s First we obtain t(u) and s(u) using the first 2 2D-
3D points (c.f . (7)). Then, we are left with one more 2D-3D
match (2 constraints) and one 2D-2D match (1 equation).
We substitute t(u) and s(u) into (4) and into (9), leaving
us with 3 equations in u. We input these equations into the
generator in [17], obtaining a solver with a 66×82 elimina-
tion template and 16 solutions.

H32+s Here, we follow the same procedure as for H13+s,
with the difference that we substitute t and s into 3 2D-2D
constraint equations, instead of 2 2D-3D and only 1 2D-2D.
Given that the 2D-2D constraints are of higher degree than
the 2D-3D, we end up with a much more complex solver
compared to H13+s. In this case, the elimination template
is of size 212×276 and the system has 56 solutions.



H51+s In this case, we cannot directly use (7), and thus we
use (8) with our only 2D-3D constraint in order to eliminate
the first two elements of the translation. We then substitute
t as per (8) into (9) with j = 1 . . . 5, which yields a very
complex solver. For this derivation, we obtain a 549×781
elimination template with 80 solutions. According to our
experiments, this is not an acceptable size of elimination
template to deal with in 64-bit floating point precision, and
thus this solver is deemed impractical.

uP3P+s For this solver we are given 3 2D-3D matches, as
in (5) and a known vertical direction. Since we are able to
parameterize R(a, b) as in (3), then (5) is purely linear. As
with the solver in [32], we actually have one excess con-
straint. Thus, we may solve the system of 6 linear equations
given by 3 2D-3D constraints for the 6 unknowns t, â, b̂,
s. This solution in general will not fulfill the nonlinear con-
straint â2+ b̂2 = 1. To enforce this, we simply divide â and
b̂ by â2 + b̂2. This is only an approximate solution, but in
practice it yields good results (c.f . Sec. 5.1).

uH12+s For this solver we again employ the elimination of
(7). We are then left with inserting the expression for t and
s in terms of a and b into the remaining 2D-2D equation.
This leads to a system of two polynomials: one of degree 2
resulting from the previous substitution, and the constraint
of the rotation parameterization (3). The solver obtained
has a 6×10 template, with an action matrix of size 4.

uH31+s Similarly to H51+s, we start by eliminating the
first two elements of t using (8). Then, we substitute this
expression into (9) with j = 1, 2, 3, leading to a system of 3
polynomials in terms of a, b, tz and s. Adding the rotation
parameterization constraint leads to an elimination template
of size 30×36 and an eigen-decomposition of size 6.

4.2. Known Scale Solvers

H22 We begin by eliminating t using 3 equations out of
the 4 given by our 2 2D-3D matches. Afterwards we simply
substitute this into the remaining 2D-3D constraint plus the
two 2D-2D constraints. This yields a system of 3 polyno-
mials in u. We get an elimination template of size 23×39
and 16 solutions.

H41 For this solver we use (8) with only 2D-3D constraint
to eliminate two translation parameters. We then substitute
back into 4 (9) constraints. Since, as mentioned, all of this
equations are homogeneous, we multiply out the resulting
polynomial system in u and tz by the scale of the rotation.
This simplifies the algebraic representation of the problem,
however we are still left with a rather large elimination tem-
plate of size 244×277 and an action matrix with up to 32
valid solutions.

uH21 As in the previous solver, we eliminate the last two
elements of the translation. We arrive at two 2D-2D con-

straints in tz , a and b plus one constraint on the rotation
parameterization. We solve this system of three polynomi-
als using a 8×12 template yielding an action matrix with up
to 4 solutions.

5. Results

First, we evaluate the numerical stability of the solvers.
This is used not only to validate our derivations, but to
guide our prior Pp(s) (c.f . Sec. 3). Afterwards, we perform
two different real-data evaluations for instances of PROB-
LEM 6-DOF and PROBLEM 5-DOF.

5.1. Numerical Stability of the Minimal Solvers

For each solver we generated 106 random synthetic
scenes and compared the obtained best pose against ground
truth. For each synthetic scene we generated 3D points in
the [−1, 1]× [−1, 1] × [2, 10] cube. Each synthetic cam-
era was placed with a random center of projection in the
range [−1, 1]× [−1, 1]× [−1, 1]. We then generated a ran-
dom rotation and translation (and if applicable a random
scale ∈ [1, 10]) and transformed the generated camera cen-
ters and 3D points. For each trial, we use enough matches to
cover the requirements of each solver. For 2D-3D matches,
we projected each transformed 3D point to the transformed
frame and associated it with the original 3D generated point.
For 2D-2D matches, we also project the 3D points to ob-
tain 2D measurements in the query frame, while keeping the
original camera and its projected observation in the global
frame. In Fig. 2 we report the precision with which we
were able to obtain the camera poses. We can see that all
proposed solvers are stable enough to be used in practical
applications (e.g., within RANSAC). In order to asses the
computational cost for our solvers, we also recorded the ex-
ecution time and number of real-valued solutions (c.f . Ta-
ble 2). For comparison, a typical P3P implementation has
runtimes of about 2µs.

Solver Time Num. of Sols.
Mean Median Mean Median

Implementations in MATLAB (times in [ms])
uH21 3.2 2.6 3.2 4
H13+s 19.1 17.5 6.2 6
H32+s 2, 693 2, 617 20.9 22

Implementations in C++ (times in [µs])
uP3P+s 3.2 3.1 1 1

H22 7.25 7.2 6.8 6
uH12+s 9.5 9.2 3.3 4
uH31+s 32.6 32.1 4.5 4

H41 756 728 12.7 12
Table 2. Execution times and number of solutions for the minimal
solvers presented in this paper. C++ was used only for the minimal
problems needed for the real-world experiments. H51+s is not
included since no practical implementation was obtained.



Figure 2. Numerical precision of the nine proposed solvers. Notice the scale changes in the X-axis. For more complex solvers (i.e., larger
elimination templates and more solutions, c.f . Sec. 4), we observe errors with a higher spread. Nevertheless, all our proposed solvers
exhibit enough numerical accuracy to be useful for practical applications.

5.2. Real-data Experiments

To test our novel hybrid pose estimation framework
along with our newly developed minimal solvers, we focus
on PROBLEM 6-DOF and PROBLEM 5-DOF for the real-data
experiments. We conduct these experiments by comparing
our hybrid approach against the pure approaches for each
problem. These experiments are meant to illustrate two dif-
ferent possible usages of our hybrid method. In the first ex-
periment (c.f . Sec. 5.2.1), we address the issue of inaccurate
pose estimates arising from inaccurately reconstructed 3D
points. To do so, we ignore the badly triangulated 3D points
and instead focus on the 2D measurements that produced
them. In the second experiment (c.f . Sec. 5.2.2), we focus
on increasing the number of correspondences by matching
against all existing 3D points plus all the 2D observations
from the SfM model which were not used to reconstruct
any 3D point. This allows us to utilize information that is
usually ignored (2D measurements in the SfM) when esti-
mating the pose of a given camera.

Bear in mind that these results are meant to demonstrate
that using hybrid matches can improve performance in real-
world scenarios. As such, we do not focus on the matching
procedure and thus we cannot directly compare our results
to many state-of-the-art approaches, e.g., [18, 22]. Never-
theless, our approach is agnostic to the matching procedure
and it can be used as a drop-in replacement in many of these
state-of-the-art methods.

5.2.1 Image-based Camera Localization

We employ the dataset presented in [23] as an instance of
PROBLEM 6-DOF. This dataset consists of an SfM model
with 1.65M points, 4.3K model images and has 824 query
images with ground truth poses. For each query image, we
match all detected SIFT features against the SfM’s 3D fea-
tures using an approximate nearest neighbor search [20].
For the purely 2D-3D method, we simply take all 2D-3D
correspondences to compute the pose of each image. For
the 2D-2D method, for each 3D point we randomly select
a camera in the model that reconstructed that point and use
this camera and its original 2D measurement to recreate a
2D-2D match. Finally, for our hybrid method, we need to
use both 2D-2D and 2D-3D matches. To do so, we select
a subset of the initial 2D-3D matches and instead consider
them as 2D-2D. To decide which 2D-3D matches we will

Figure 3. Top Comparison of the number of correctly estimated
poses for the dataset in [23]. For a given threshold, we count the
number of images with an error equal or below the threshold. Bot-
tom Comparison of the execution time for our hybrid method com-
pared to using either P3P [14] or SixPt [36] alone. All values are
the average of 100 runs.

recast as 2D-2D, we use the covariance of the 3D points
(obtained as part of the Bundle Adjustment procedure as
approximated by the inverse Hessian). As in [2], we score
each 3D point by the roundness of its covariance

rk =
√

λ3

λ1
, (10)

where λi is the i-th singular value of the 3×3 (up-to-scale)
covariance matrix of point k. Using this score, we then sim-
ply take 50% of the matches with highest roundness score
as 2D-3D and consider the rest as 2D-2D. By applying this
procedure we aim to reduce the impact of badly triangulated
3D points in the accuracy of our estimated pose.

In Fig. 3 we show the precision of our method compared
to using each match type separately. For this dataset, we
focus on the registration rate as a function of the retrieved
pose precision. For a given position (or rotation) threshold,
we count the number of images which have a position (or
rotation) error equal or below such threshold. The poses
used to compute the precision against the ground truth were
obtained from the output of RANSAC directly, without per-
forming any pose refinement. Note that, interestingly, our
hybrid approach is able to increase the precision of the re-
trieved poses across all images. Furthermore, in Fig. 3 we
can see that the average runtime of our method does not
significantly differ from the less accurate P3P. Additionally
in order to validate our Hybrid RANSAC solver selection
scheme, we measured how often a particular solver finds



Using 2D2D Matches Using 2D3D Matches Hybrid

Dataset Inlier
Ratio Time

[ms]

Position Error [cm] Inlier Ratio Time
[ms]

Position Error [cm] Inlier Ratio Time
[ms]

Position Error [cm]
Quantiles Mean Quantiles Mean Quantiles MeanName # Images 2D2D 2D3D 25% 50% 75% 2D2D 2D3D 25% 50% 75% 2D3D 2D3D 25% 50% 75%

Office1 9 - - - - - - - 0 0.657 13.1 4.7 5.35 7.4 6.3 0.01 0.66 21.1 4.8 5.21 7.5 6.27
Office2 9 - - - - - - - 0 0.56 13.2 5.2 5.9 6.5 5.6 0.1 0.65 19 5.1 5.9 6.5 5.6
Office3 33 0.54 0 169 3.5 4.4 5.2 4.5 0 0.29 272 3.9 5.3 5.9 5.8 0.46 0.33 110 3.2 3.8 4.5 4.0
Office4 9 0.74 0 25.3 4.1 5.4 7.7 6.3 0 0.51 21 4.3 5.83 7.9 6.6 0.72 0.54 16.4 4.1 5.4 8.0 6.5
Office5 15 0.58 0 115.3 3.5 5.3 7.2 5.5 0 0.31 151 4.1 5.4 6.8 5.54 0.34 0.35 85 3.6 4.2 5.7 4.3
Office6 24 0.07 0 983 4.4 5.3 6.3 5.4 0 0.53 9.68 3.4 3.7 4.0 3.8 0.04 0.54 19.1 3.4 3.5 4.1 3.5
Office7 9 0.70 0 51.4 3.9 4.52 5.57 4.7 0 0.25 125 4.4 5.1 5.8 5.1 0.63 0.27 41.9 4.2 4.7 5.1 4.7
Office8 11 0.47 0 137 3.8 4.46 5.6 4.7 0 0.41 75 4.1 4.8 5.4 4.9 0.42 0.43 48 4.0 4.5 5.5 4.5
Office9 7 0.21 0 279 5.9 6.2 6.4 7.1 0 0.49 8.3 4.1 5.2 6.5 5.6 0.22 0.51 15.3 4.3 5.3 5.9 5.4
Office10 23 0.39 0 151 5.2 6.0 6.7 6.1 0 0.45 15.7 4.7 5.7 6.1 5.8 0.38 0.45 11.4 4.8 5.5 5.9 5.5
Office11 58 0.78 0 21.3 4.4 5.1 5.5 5.0 0 0.47 9.9 4.3 4.9 5.57 5.1 0.77 0.47 10 3.8 4.3 4.9 4.3

Table 3. Performance on the dataset by [33], consisting of 12 image sequences and a point cloud with SIFT descriptors. As in [5, 30, 32],
the position error is computed using the output of RANSAC without refinement. Notice that our hybrid approach performs better both in
runtime and accuracy than using each of the matches separately. For two sequences (1 and 2), there was not enough visual overlap with
“Office12” in order to localize using only 2D-2D matches.

Method
Inlier Count

Mean Quantiles
25% 50% 75% 90% 95%

Hybrid 260 74.5 175 372 632 804
P3P 239 72.5 167.5 349 583 690

SixPoint 246 71 174 354 609 724
Table 4. Statistics on the number of inliers for the experiments
on the dataset for [23]. Our hybrid method is able to consistently
achieve a larger number of inliers. Results averaged over 100 runs.

the highest inlier consensus per image. For 824 images,
H22 finds the best model 214 times; H41 finds the best
model 245 times, P3P finds it 197 times and finally SixPt
finds it 168 times. Thus, depending on the image being lo-
calized, one solver is more suited than another. Regarding
the number of inliers obtained by our method, we measured
the mean number of inliers across all images, c.f . Table 4.

5.2.2 SLAM Trajectory Registration

In this experiment we aim to measure the performance of
our framework applied to PROBLEM 5-DOF. This type of
problem is particularly relevant for SfM registration, where
we have two reconstructions (with different scales) which
we aim to merge into one. We used the dataset in [33],
which consists of 12 video sequences of an office indoor
scene, as well as a 3D reconstruction of the scene obtained
using SfM. Additionally, each of the 12 sequences were ran
through a SLAM system, thus relative local poses within
each sequence are known. An optical tracker was used to
obtain accurate positional ground truth of each of the se-
quences in the dataset. Similarly to Sec. 5.2.1, we first ob-
tain 2D-3D matches for each sequence against the model’s
3D points. In contrast to the previous experiment, however,
we cannot use the original reconstruction’s cameras to ob-
tain 2D-2D matches since those camera poses are not avail-
able in the dataset. Instead, we follow a similar procedure
to [30]. We first take one of the sequences, “Office12”, and
use its ground truth pose to align it to the global frame of
reference. We then compute 2D-3D matches for this se-
quence, and non-linearly refine the poses of the sequence
by minimizing the reprojection error of the 2D-3D matches.
This results in an augmented dataset, where in addition to
the original set of 3D points we have a camera sequence

registered to these 3D points. This allows us to then match
against all original 3D points and the 2D observations of
“Office12”. Then, for the purely 2D-2D method, we con-
sider all 2D observations of “Office12” to obtain matches.
For our hybrid method, however, we match against the orig-
inal 3D points to get 2D-3D matches, while we use the un-
matched 2D observations in “Office12” (i.e., the image ob-
servations which are not matched to a 3D point) to obtain
2D-2D matches. Thus, for our solver we use the original 3D
points plus the 2D measurements from “Office12” which
would usually go unused.

In Table 3 we show the results of our method on an
instance of PROBLEM 5-DOF. For most sequences, our
method is able to deliver an accuracy comparable to the
state-of-art method by [30], while maintaining a runtime
very close to the one achieved by the most simple 2D-3D
solver.

6. Conclusions
In this paper, we have posed the question whether cam-

era pose estimation can be improved by using both 2D-
2D and 2D-3D matches. To answer this, we have devel-
oped a novel framework for camera pose estimation that
jointly uses different minimal solvers within a new Hybrid
RANSAC scheme. As needed by our Hybrid RANSAC
scheme, we have derived several new minimal solvers using
both 2D-2D and 2D-3D correspondences, which we evalu-
ated on synthetic data in order to asses their numerical sta-
bility. We have evaluated our framework on two different
real-world datasets, demonstrating that it generates more
accurate poses compared to approaches using either 2D-2D
or 2D-3D matches. One main strength of our approach is its
ability to automatically select a suitable solver, allowing it
to adapt to the quality of the provided matches. Overall, we
have shown that there is a clear benefit in properly combin-
ing different types of matches for camera pose estimation.
For future work, we plan to apply our framework to other
geometric problems, such as uncalibrated camera pose esti-
mation (e.g., by extending [24]) or rolling shutter scenarios.
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