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Abstract

Salient object detection is a problem that has been con-
sidered in detail and many solutions proposed. In this paper,
we argue that work to date has addressed a problem that is
relatively ill-posed. Specifically, there is not universal agree-
ment about what constitutes a salient object when multiple
observers are queried. This implies that some objects are
more likely to be judged salient than others, and implies a
relative rank exists on salient objects. The solution presented
in this paper solves this more general problem that considers
relative rank, and we propose data and metrics suitable to
measuring success in a relative object saliency landscape.
A novel deep learning solution is proposed based on a hier-
archical representation of relative saliency and stage-wise
refinement. We also show that the problem of salient object
subitizing can be addressed with the same network, and our
approach exceeds performance of any prior work across all
metrics considered (both traditional and newly proposed).

1. Introduction
The majority of work in salient object detection considers

either a single salient object [37, 38, 7, 8, 31, 32, 9, 19, 17,
24, 39, 18] or multiple salient objects [13, 27, 36], but does
not consider that what is salient may vary from one person to
another, and certain objects may be met with more universal
agreement concerning their importance.

There is a paucity of data that includes salient objects that
are hand-segmented by multiple observers. It is important to
note that any labels provided by a small number of observers
(including one) does not allow for discerning the relative im-
portance of objects. Implicit assignment of relative salience
based on gaze data [33] also presents difficulties, given a
different cognitive process than a calculated decision that
involves manual labeling [16]. Moreover, gaze data is rela-
tively challenging to interpret given factors such as centre
bias, visuomotor constraints, and other latent factors [2, 1].
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Figure 1. We present a solution in the form of a deep neural network
to detect salient objects, consider the relative ranking of salience
of these objects, and predict the total number of salient objects.
Left to right: input image, detected salient regions, rank order of
salient objects, confidence score for salient object count (subitizing).
Colors indicate the rank order of different salient object instances.

Therefore, in this paper we consider the problem of salient
object detection more broadly. This includes detection of all
salient regions in an image, and accounting for inter-observer
variability by assigning confidence to different salient re-
gions. We augment the PASCAL-S dataset [23] via further
processing to provide ground truth in a form that accounts
for relative salience. Success is measured against other al-
gorithms based on the rank order of salient objects relative
to ground truth orderings in addition to traditional metrics.
Recent efforts also consider the problem of salient object
subitizing. It is our contention that this determination should
be possible by a model that provides detection of salient
objects (see Fig. 1). We also allow our network to subitize.

As a whole, our work generalizes the problem of salient
object detection, we present a new model that provides pre-
dictions of salient objects according to the traditional form
of this problem, multiple salient object detection and relative
ranking, and subitizing. Our results show state-of-the-art
performance for all problems considered.

2. Background
2.1. Salient Object Detection:

Convolutional Neural Networks (CNNs) have raised the
bar in performance for many problems in computer vision
including salient object detection. CNN based models are
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able to extract more representative and complex features
than hand crafted features used in less contemporary work
[21, 34, 15] which has promoted widespread adoption.

Some CNN based methods exploit superpixel and object
region proposals to achieve accurate salient object detection
[9, 19, 17, 22, 39, 18]. Such methods follow a multi-branch
architecture where a CNN is used to extract semantic in-
formation across different levels of abstraction to generate
an initial saliency prediction. Subsequently, new branches
are added to obtain superpixels or object region proposals,
which are used to improve precision of the predictions.

As an alternative to superpixels and object region propos-
als, other methods [26, 8, 37] predict saliency per-pixel by
aggregating multi-level features. Luo et al. [26] integrate
local and global features through a CNN that is structured as
a multi-resolution grid. Hou et al. [8] implement stage-wise
short connections between shallow and deeper feature maps
for more precise detection and inferred the final saliency map
considering only middle layer features. Zhang et al. [37]
combine multi-level features as cues to generate and recur-
sively fine-tune multi-resolution saliency maps which are
refined by boundary preserving refinement blocks and then
fused to produce final predictions.

Other methods [24, 31, 38] use an end-to-end encoder-
decoder architecture that produces an initial coarse saliency
map and then refines it stage-by-stage to provide better lo-
calization of salient objects. Liu and Han [24] propose a
network that combines local contextual information step-by-
step with a coarse saliency map. Wang et al. [31] propose a
recurrent fully convolutional network for saliency detection
that includes priors to correct initial saliency detection errors.
Zhang et al. [38] incorporate a reformulated dropout after
specific convolutional layers to quantify uncertainty in the
convolutional features, and a new upsampling method to
reduce artifacts of deconvolution which results in a better
boundary for salient object detection.

In contrast to the above described approaches, we achieve
spatial precision through stage-wise refinement by applying
novel mechanisms to control information flow through the
network while also importantly including a stacking strategy
that implicitly carries the information necessary to determine
relative saliency.

2.2. Salient Object Subitizing:

Recent work [35, 7] has also addressed the problem of
subitizing salient objects in images. This task involves count-
ing the number of salient objects, regardless of their impor-
tance or semantic category. The first salient object subitiz-
ing network proposed in [35] applies a feed-forward CNN
to treat the problem as a classification task. He et al. [7]
combine the subitizing task with detection by exploring the
interaction between numeric and spatial representations. Our
proposal provides a specific determination of the number of

salient objects, recognizes variability in this number, and
also provides output as a distribution that reflects this vari-
ability.

3. Proposed Network Architecture
We propose a new end-to-end framework for solving the

problem of detecting multiple salient objects and ranking the
objects according to their degree of salience. Our proposed
salient object detection network is inspired by the success of
convolution-deconvolution pipelines [28, 24, 12] that include
a feed-forward network for initial coarse-level prediction.
Then, we provide a stage-wise refinement mechanism over
which predictions of finer structures are gradually restored.
Fig. 2 shows the overall architecture of our proposed net-
work. The encoder stage serves as a feature extractor that
transforms the input image to a rich feature representation,
while the refinement stages attempt to recover lost contextual
information to yield accurate predictions and ranking.

We begin by describing how the initial coarse saliency
map is generated in section 3.1. This is followed by a de-
tailed description of the stage-wise refinement network, and
multi-stage saliency map fusion in sections 3.2 and sec-
tion 3.3 respectively.

3.1. Feed-forward Network for Coarse Prediction

Recent feed-forward deep learning models applied to
high-level vision tasks (e.g. image classification [6, 30], ob-
ject detection [29]) employ a cascade comprised of repeated
convolution stages followed by spatial pooling. Down-
sampling by pooling allows the model to achieve a highly
detailed semantic feature representation with relatively poor
spatial resolution at the deepest stage of encoding, also
marked by spatial coverage of filters that is much larger
in extent. The loss of spatial resolution is not problematic
for recognition problems; however, pixel-wise labeling tasks
(e.g. semantic segmentation, salient object detection) require
pixel-precise information to produce accurate predictions.
Thus, we choose Resnet-101 [6] as our encoder network (fun-
damental building block) due to its superior performance
in classification and segmentation tasks. Following prior
works on pixel-wise labeling [3, 12], we use the dilated
ResNet-101 [3] to balance the semantic context and fine de-
tails, resulting in an output feature map reduced by a factor
of 8. More specifically, given an input image I ∈ Rh×w×d,
our encoder network produces a feature map of size

⌊
h
8 ,

w
8

⌋
.

To augment the backbone of the encoder network with a
top-down refinement network, we first attach one extra con-
volution layer with 3× 3 kernel and 12 channels to obtain a
Nested Relative Salience Stack (NRSS). Then, we append a
Stacked Convolutional Module (SCM) to compute the coarse
level saliency score for each pixel. It is worth noting that
our encoder network is flexible enough to be replaced with
any other baseline network e.g. VGG-16 [30], DenseNet-



Figure 2. Illustration of our proposed network architecture. In the encoder network, the input image is processed with a feed-forward encoder
to generate a coarse nested relative salience stack (St

ϑ). We append a Stacked Convolutional Module (SCM) on top of St
ϑ to obtain a coarse

saliency map St
m. Then, a stage-wise refinement network, comprised of rank-aware refinement units (dotted box in the figure), successively

refines each preceding NRSS (St
ϑ) and produces a refined NRSS (St+1

ϑ ). A fusion layer combines predictions from all stages to generate the
final saliency map (ST

m). We provide supervision (∆t
Sϑ

, ∆t
Sm ) at the outputs (St

ϑ, St
m) of each refinement stage. The architecture based on

iterative refinement of a stacked representation is capable of effectively detecting multiple salient objects.

101 [10]. Moreover, we utilize atrous pyramid pooling [3] to
gather more global contextual information. The described
operations can be expressed as

Stϑ = C3×3(Fs(I;W); Θ), Stm = ξ(Stϑ) (1)

where I is the input image and (W,Θ) denote the parameters
of the convolution C. Stϑ is the coarse level NRSS for stage
t that encapsulates different degrees of saliency for each
pixel (akin to a prediction of the proportion of observers that
might agree an object is salient), Stm refers to the coarse
level saliency map, and ξ refers to SCM. Fs(.) denotes the
output feature map generated by the encoder network. The
SCM consists of three convolutional layers for generating
the desired saliency map. The initial convolutional layer has
6 channels with a 3×3 kernel, followed by two convolutional
layers having 3 channels with 3× 3 kernel and one channel
with 1× 1 kernel respectively. Each of the channels in the
SCM learns a soft weight for each spatial location of the
nested relative salience stack in order to label pixels based
on confidence that they belong to a salient object.

3.2. Stage-wise Refinement Network

Most existing works [24, 32, 37, 8] that have shown suc-
cess for salient object detection typically share a common
structure of stage-wise decoding to recover per-pixel cate-
gorization. Although the deepest stage of an encoder has
the richest possible feature representation, relying only on
convolution and unpooling at the decoding stages to recover
lost information may degrade the quality of predictions [12].
So, the spatial resolution that is lost at the deepest layer may
be gradually recovered from earlier representations. This
intuition appears in proposed refinement based models that
include skip connections [25, 12, 37, 8] between encoder and
decoder layers. However, how to effectively combine local

and global contextual information remains an area deserving
further analysis. Inspired by the success of refinement based
approaches [25, 11, 12], we propose a multi-stage fusion
based refinement network to recover lost contextual infor-
mation in the decoding stage by combining an initial coarse
representation with finer features represented at earlier layers.
The refinement network is comprised of successive stages of
rank-aware refinement units that attempt to recover missing
spatial details in each stage of refinement and also preserve
the relative rank order of salient objects. Each stage refine-
ment unit takes the preceding NRSS with earlier finer scale
representations as inputs and carries out a sequence of oper-
ations to generate a refined NRSS that contributes to obtain
a refined saliency map. Note that refining the hierarchical
NRSS implies that the refinement unit is leveraging the de-
gree of agreement at different levels of SCMs to iteratively
improve confidence in relative rank and overall saliency. As
a final stage, refined saliency maps generated by the SCMs
are fused to obtain the overall saliency map.

3.2.1 Rank-Aware Refinement Unit

Previous saliency detection networks [32, 24] proposed re-
finement across different levels by directly integrating repre-
sentations from earlier features. Following [12], we integrate
gate units in our rank-aware refinement unit that control the
information passed forward to filter out the ambiguity relat-
ing to figure-ground and salient objects. The initial NRSS
(Stϑ) generated by the feed-forward encoder provides input
for the first refinement unit. Note that one can interpret Stϑ as
the predicted saliency map in the decoding process, but our
model forces the channel dimension to be the same as the
number of participants involved in labeling salient objects.
The refinement unit takes the gated feature map Gt generated



by the gate unit [12] as a second input. As suggested by [12],
we obtain Gt by combining two consecutive feature maps
(f tϑ and f t+1

ϑ ) from the encoder network (see dotted box in
Fig. 2). We first upsample the preceding Stϑ to double its
size. A transformation function Tf comprised of a sequence
of operations is applied on upsampled Stϑ and Gt to obtain
the refined NRSS (St+1

ϑ ). We then append the SCM module
on top of St+1

ϑ to generate the refined saliency map St+1
m . Fi-

nally, the predicted St+1
ϑ is fed to the next stage rank-aware

refinement unit. Note that, we only forward the NRSS to the
next stage, allowing the network to learn contrast between
different levels of confidence for salient objects. Unlike
other approaches, we apply supervision for both of the re-
fined NRSS and the refined saliency map. The procedure
for obtaining the refined NRSS and the refined saliency map
for all stages is identical. The described operations may be
summarized as follows:

St+1
ϑ = wb ∗ Tf (Gt, u(Stϑ)), St+1

m = wbs ∗ ξ(St+1
ϑ ) (2)

where u represents the upsample operation; wb and wbs de-
notes the parameter for the transformation function Tf and
SCM (ξ in the equation) respectively. Note that t refers to
particular stage of the refinement process.

3.3. Multi-Stage Saliency Map Fusion

Predicted saliency maps at different stages of the refine-
ment units are capable of finding the location of salient
regions with increasingly sharper boundaries. Since all the
rank-aware refinement units are stacked together on top of
each other, the network allows each stage to learn specific
features that are of value in the refinement process. These
phenomena motivate us to combine different level SCMs
predictions, since the internal connection between them is
not explicitly present in the network structure. To facilitate
interaction, we add a fusion layer at the end of network that
concatenates the predicted saliency maps of different stages,
resulting in a fused feature map S f̂m. Then, we apply a 1× 1
convolution layer Υ to produce the final predicted saliency
map STm of our network. Note that our network has T pre-
dictions, including one fused prediction and T-1 stage-wise
predictions. We can write the operations as follows:

S f̂m = ð(Stm,St+1
m , ....,ST−1

m ), STm = wf ∗Υ(S f̂m) (3)

where ð denotes the cross channel concatenation; wf is the
resultant parameter for obtaining the final prediction.

3.4. Stacked Representation of Ground-truth

The ground-truth for salient object detection or segmenta-
tion contains a set of numbers defining the degree of saliency
for each pixel. The traditional way of generating binary
masks is by thresholding which implies that there is no no-
tion of relative salience. Since we aim to explicitly model

observer agreement, using traditional binary ground-truth
masks is unsuitable. To address this problem, we propose to
generate a set of stacked ground-truth maps that corresponds
to different levels of saliency (defined by inter-observer
agreement). Given a ground-truth saliency map Gm, we ob-
tain a stack Gϑ of N ground-truth maps (Gi,Gi+1, .....,GN )
where each map Gi includes a binary indication that at least
i observers judged an object to be salient (represented at a
per-pixel level). N is the number of different participants
involved in labeling the salient objects. The stacked ground-
truth saliency maps Gϑ provides better separation for mul-
tiple salient objects (see Eq. (4) for illustration) and also
naturally acts as the relative rank order that allows the net-
work to learn to focus on degree of salience. It is important
to note the nested nature of the stacked ground truth wherein
Gi+1 ⊆ Gi. This is important conceptually as a represen-
tation wherein Gi = 1 ⇐⇒ exactly i observers agree,
results in zeroed layers in the ground truth stack, and large
changes to ground truth based on small differences in degree
of agreement.

Gϑ =

 Gi  Gi+1

 Gi+2

...
 GN  (4)

3.5. Salient Object Subitizing Network

Previous works [35, 7] treat subitizing as a straight-
forward classification task. Similar to our multiple salient ob-
ject detection network, the subitizing network is also based
on ResNet-101 [6] except we remove the last block. We
append a fully connected layer at the end to generate con-
fidence scores for each of 0, 1, 2, 3, and 4+ salient objects
existing in the input image followed by another fully con-
nected layer leads to generate final confidence scores for
each category. The reasoning behind this is that a single
layer allows for accumulation of confidence tied to salience
while two layers allows for reasoning about relative salience.
We use our pre-trained detection model to train the subitizing
network. As a classifier, the subitizing network reduces two
cross entropy losses `1sub(c, n) and `fsub(cf , n) between the
number of salient objects n in ground-truth, and the total
predicted objects.
A New Dataset for Salient Object Subitizing: Since
salient object subitizing is not a widely addressed problem,
a limited number of datasets [35] were created. In order to
facilitate the study of this problem in more complex scenar-
ios, we create the subitizing ground-truth for the Pascal-S
dataset [23] that provides instance-wise counting as labels.
The distribution of the images in Pascal-S dataset with re-
spect to different categories is shown in Table 1. It is an
evident from the table that, there is a considerable number
of images with more than two salient objects but only few
images with more than 7. We initially include all instances of
salient objects in the labeling process. To reduce imbalance



# Salient Object 1 2 3 4 5 6 7 8+ Total

#Images 300 227 136 72 43 28 18 26 850
Distribution (%) 0.35 0.27 0.16 0.08 0.05 0.03 0.02 0.03 1

Table 1. Count and percentage of images corresponding to different
numbers of salient objects in the Pascal-S dataset.

between different categories, we create another ground-truth
set where we only categorize the images as 1, 2, 3, and 4+
salient objects.

3.6. Training the Network

Our proposed network produces a sequence of nested
relative salience stacks (NRSS) and saliency maps at each
stage of refinement; however, we are principally interested
in the final fused saliency map. Each stage of the network is
encouraged to repeatedly produce NRSS and a saliency map
with increasingly finer details by leveraging preceding NRSS
representations. We apply an auxiliary loss at the output of
each refinement stage along with an overall master loss at the
end of the network. Both of the losses help the optimization
process. In more specific terms, let I ∈ Rh×w×3 be a
training image with ground-truth saliency map Gm ∈ Rh×w.
As described in section 3.4, we generate a stack of ground-
truth saliency maps Gϑ ∈ Rh×w×12. To apply supervision
on the NRSS (Stϑ) and saliency map Stm, we first down-
sample Gϑ and Gm to the size of Stϑ generated at each stage
resulting in Gtϑ and Gtm. Then, at each refinement stage we
define pixel-wise euclidean loss ∆t

Sϑ
and ∆t

Sm
to measure

the difference between (Stϑ,Gtϑ) and (Stm,Gtm) respectively.
We can summarize these operations as:

∆t
Sϑ

(W ) =
1

2dN

d∑
i=1

N∑
z=1

(xi(z) − yi(z))
2

∆t
Sm

(W ) =
1

2d

d∑
i=1

(xi − yi)
2

Lt
aux(W ) = ∆t

Sϑ
+ ∆t

Sm
(5)

where x ∈ IRd and y ∈ IRd (d denotes the spatial resolution)
are the vectorized ground-truth and predicted saliency map.
xi and yi refer to a particular pixel of Stϑ andGtϑ respectively.
W denotes the parameters of whole network and N refers
to total number of ground-truth slices (N =12 in our case).
The final loss function of the network combining master and
auxiliary losses can be written as:

Lfinal(W ) = Lmas(W ) +

T−1∑
t=1

λtL
t
aux(W ) (6)

where Lmas(W ) refers to the euclidean loss function com-
puted on the final predicted saliency map STm. We set λt to 1
for all stages to balance the loss, which remains continuously
differentiable. Each stage of prediction contains information
related to two predictions, allowing our network to propagate

supervised information from deep layers. This also begins
with aligning the weights with the initial coarse representa-
tion, leading to a coarse-to-fine learning process. The fused
prediction generally appears much better than other stage-
wise predictions since it contains the aggregated information
from all the refinement stages. For saliency inference, we
can simply feed an image of arbitrary size to the network
and use the fused prediction as our final saliency map.

4. Experiments
The core of our model follows a structure based on

ResNet-101 [6] with pre-trained weights to initialize the
encoder portion. A few variants of the basic architecture are
proposed, and we report numbers for the following variants
that are described in what follows:
RSDNet: This network includes dilated ResNet-101 [3] +
NRSS + SCM. RSDNet-A: This network is the same as
RSDNet except the ground-truth is scaled by a factor of
1000, encouraging the network to explicitly learn deeper
contrast. RSDNet-B: The structure follows RSDNet except
that an atrous pyramid pooling module is added. RSDNet-C:
RSDNet-B + the ground-truth scaling. RSDNet-R: RSDNet
with stage-wise rank-aware refinement units + multi-stage
saliency map fusion.

4.1. Datasets and Evaluation Metrics

Datasets: The Pascal-S dataset includes 850 natural images
with multiple complex objects derived from the PASCAL
VOC 2012 validation set [4]. We randomly split the Pascal-S
dataset into two subsets (425 for training and 425 for test-
ing). In this dataset, salient object labels are based on an
experiment using 12 participants to label salient objects. Vir-
tually all existing approaches for salient object segmentation
or detection threshold the ground-truth saliency map to ob-
tain a binary saliency map. This operation seems somewhat
arbitrary since the threshold can require consensus among
k observers, and the value of k varies from one study to
another. This is one of the most highly used salient ob-
ject segmentation datasets, but is unique in having multiple
explicitly tagged salient regions provided by a reasonable
sample size of observers. Since a key objective of this work
is to rank salient objects in an image, we use the original
ground-truth maps (each pixel having a value corresponding
to the number of observers that deemed it to be a salient
object) rather than trying to predict a binary output based on
an arguably contentious thresholding process.
Evaluation Metrics: For the multiple salient object detec-
tion task, we use four different standard metrics to mea-
sure performance including precision-recall (PR) curves,
F-measure (maximal along the curve), Area under ROC
curve (AUC), and mean absolute error (MAE). Since some
of these rely on binary decisions, we threshold the ground-
truth saliency map based on the number of participants that



deem an object salient, resulting in 12 binary ground truth
maps. For each binary ground truth map, multiple thresholds
of a predicted saliency map allow for calculation of the true
positive rate (TPR), false positive rate (FPR), precision and
recall, and corresponding ROC and PR curves. Given that
methods that predate this work are trained based on varying
thresholds and consider a binary ground truth map, scores are
reported based on the binary ground truth map that produces
the best AUC or F-measure score (and the corresponding
curves are shown). Max F-measure, average F-measure and
median F-measure are also reported to provide a sense of
how performance varies as a function of the threshold chosen.
We also report the MAE score i.e. the average pixel-wise
difference between the predicted saliency map and the binary
ground-truth map that produces the minimum score.

In ordered to evaluate the rank order of salient objects, we
introduce the Salient Object Ranking (SOR) metric which is
defined as the Spearman’s Rank-Order Correlation between
the ground truth rank order and the predicted rank order of
salient objects. SOR score is normalized to [0 1] for ease
of interpretation. Scores are reported based on the average
SOR score for each method considering the whole dataset.

4.2. Performance Comparison with State-of-the-art

The problem of evaluating salient detection models is
challenging in itself which has contributed to differences
among benchmarks that are used. In light of these con-
siderations, the specific evaluation we have applied to all
the methods aims to remove any advantages of one algo-
rithm over another. We compare our proposed method with
recent state-of-the-art approaches, including Amulet [37],
UCF [38], DSS [8], NLDF [26], DHSNet [24], MDF [18],
ELD [17], MTDS [22], MC [39], HS [34], HDCT [15], DSR
[21], and DRFI [14]. For fair comparison, we build the eval-
uation code based on the publicly available code provided
in [20] and we use saliency maps provided by authors of
models compared against, or by running their pre-trained
models with recommended parameter settings.
Quantitative Evaluation: Table 2 shows the performance
score of all the variants of our model, and other recent
methods on salient object detection. It is evident that,
RSDNet-R outperforms other recent approaches for all
evaluation metrics, which establishes the effectiveness of
our proposed hierarchical nested relative salience stack.
From the results we have few fundamental observations: (1)
Our network improves the max F-measure by a considerable
margin on the Pascal-S dataset which indicates that our
model is general enough that it achieves higher precision
with higher recall (see Fig. 3). (2) Our model decreases
the overall MAE on the Pascal-S dataset and achieves
higher area under the ROC curve (AUC) score compared
to the baselines shown in Fig. 3. (3) Although our model
is only trained on a subset of Pascal-S, it significantly

∗ AUC max-Fm med-Fm avg-Fm MAE SOR
DRFI [14] 0.887 0.716 0.583 0.504 0.216 0.726
DSR [21] 0.871 0.696 0.628 0.583 0.186 0.728

HDCT [15] 0.809 0.654 0.567 0.523 0.214 0.645
HS [34] 0.837 0.702 0.634 0.596 0.263 0.714
MC [39] 0.870 0.717 0.616 0.573 0.216 0.732

MTDS [22] 0.941 0.805 0.731 0.664 0.176 0.782
ELD [17] 0.916 0.789 0.784 0.774 0.123 0.792
MDF [18] 0.892 0.787 0.746 0.730 0.138 0.768

DHSNet [24] 0.927 0.837 0.833 0.822 0.092 0.781
NLDF [26] 0.933 0.846 0.843 0.836 0.099 0.783

DSS [8] 0.918 0.841 0.838 0.830 0.099 0.770
AMULET [37] 0.957 0.865 0.854 0.841 0.097 0.788

UCF [38] 0.959 0.858 0.840 0.813 0.123 0.792
RSDNet 0.972 0.873 0.854 0.834 0.091 0.825

RSDNet-A 0.973 0.874 0.851 0.796 0.103 0.838
RSDNet-B 0.969 0.877 0.857 0.831 0.100 0.840
RSDNet-C 0.972 0.874 0.850 0.795 0.110 0.848
RSDNet-R 0.971 0.880 0.861 0.837 0.090 0.852

Table 2. Quantitative comparison of methods including AUC, max
F-measure (higher is better), median F-measure, average F-measure,
MAE (lower is better), and SOR (higher is better). The best three
results are shown in red, violet and blue respectively.
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Figure 3. Left: ROC curves corresponding to different state-of-
the-art methods. Right: Precision-Recall curves for salient object
detection corresponding to a variety of algorithms.

outperforms other algorithms that also leverage large-scale
saliency datasets. Overall, this analysis hints at strengths
of the proposed hierarchical stacked refinement strategy
to provide a more accurate saliency map. In addition, it
is worth mentioning that RDSNet-R outperforms all the
recent deep learning based methods intended for salient
object detection/segmentation without any post-processing
techniques such as CRF that are typically used to boost
scores.

Qualitative Evaluation: Fig. 4 depicts a visual comparison
of RSDNet-R with respect to other state-of-the-art methods.
We can see that our method can predict salient regions accu-
rately and produces output closer to ground-truth maps in
various challenging cases e.g., instances touching the image
boundary (1st & 2nd rows), multiple instances of same object
(3rd row). The nested relative salience stack at each stage
provides distinct representations to differentiate between
multiple salient objects and allows for reasoning about their
relative salience to take place.



Image GT RSDNet-R UCF [38] Amulet [37] DSS [8] NLDF [26] DHSNet [24] MTDS [22] HS [34] DRFI [14]
Figure 4. Predicted salient object regions for the Pascal-S dataset. Each row shows outputs corresponding to different algorithms designed
for the salient object detection/segmentation task.

4.2.1 Application: Ranking by Detection

As salient instance ranking is a completely new problem,
there is not existing benchmark. In order to promote this
direction of studying this problem, we are interested in find-
ing the ranking of salient objects from the predicted saliency
map. Rank order of a salient instance is obtained by averag-
ing the degree of saliency within that instance mask.

Rank(STm(δ)) =

∑ρδ
i=1 δ(xi, yi)

ρδ
(7)

where δ represents a particular instance of the predicted
saliency map (STm), ρδ denotes total numbers of pixels δ
contains, and δ(xi, yi) refers to saliency score for the pixel
(xi, yi). While there may exist alternatives for defining rank
order, this is an intuitive way of assigning this score. With
that said, we expect that this is another interesting nuance of
the problem to explore further; specifically salience vs. scale,
and part-whole relationships. Note that we do not need to
change the network architecture to obtain the desired ranking.
Instead we use the provided instance-wise segmentation and
saliency map to calculate the ranking for each image.

To demonstrate the effectiveness of our approach, we
compare the overall ranking score with recent state-of-the-
art approaches. It is worth noting that no prior methods
report results for salient instance ranking. We apply the pro-
posed SOR evaluation metric to report how different models
gauge relative salience. The last column in Table 2 shows the
SOR score of our approach and comparisons with other state-
of-the-art methods. We achieve 85.2% correlation score for
the best variant of our model. The proposed method signif-
icantly outperforms other approaches in ranking multiple
salient objects and our analysis shows that learning salient
object detection implicitly learns rank to some extent, but
explicitly learning rank can also improve salient object de-
tection irrespective of how the ground truth is defined. Fig. 5
shows a qualitative comparison of the state-of-the-art ap-
proaches designed for salient object detection. Note that the
role of ranking for more than three objects is particularly
pronounced.

Image GT RSDNet-R AMULET [37] UCF [38]
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Figure 5. Qualitative depiction of rank order of salient objects.
Relative rank is indicated by the assigned color. Blue and red image
borders indicate correct and incorrect ranking respectively.

4.2.2 Application: Salient Object Subitizing

As mentioned prior, salient object detection, ranking, and
subitizing are interrelated. It is therefore natural to consider
whether salient region prediction and ranking provide guid-
ance to subitize. A copy of the detection network is further
trained to perform subitizing on Pascal-S. For simplicity
(and in line with prior work [35, 7]), we train our system
only for predicting objects either for 1, 2, 3, or 4+ and report
the Average Precision (AP) [5] in Table 3. Since this is the
first work to perform subitizing on the Pascal-S dataset, we
do not have any baselines to compare with. To make com-
parison possible, we fine-tune and evaluate our model on
the SOS dataset [35], and report the AP and weighted AP
(overall) scores in Table 4. Our proposed model achieves
state-of-the-art results on this dataset compared to baselines.

∗ 1 2 3 4+ mean

RSDNet 0.62 0.42 0.20 0.55 0.45

Table 3. Average Precision (AP) on Pascal-S dataset.

∗ 0 1 2 3 4+ mean overall

count 338 617 219 137 69 - -
% 0.24 0.45 0.16 0.10 0.05 - -

CNN [35] 0.92 0.82 0.34 0.31 0.56 0.59 0.70
SOS [35] 0.93 0.90 0.51 0.48 0.65 0.69 0.79

RSDNet 0.95 0.92 0.61 0.59 0.67 0.75 0.83

Table 4. Overall and Average Precision (AP) on the SOS dataset.



∗ S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12
AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm

NLDF [26] 0.900 0.846 0.922 0.840 0.931 0.836 0.933 0.831 0.930 0.827 0.922 0.821 0.925 0.818 0.913 0.809 0.897 0.802 0.865 0.782 0.812 0.751 0.660 0.680
DSS [8] 0.883 0.841 0.906 0.839 0.916 0.832 0.918 0.825 0.915 0.821 0.910 0.819 0.912 0.816 0.901 0.805 0.886 0.799 0.855 0.779 0.802 0.745 0.651 0.675

AMULET [37] 0.932 0.865 0.949 0.856 0.954 0.850 0.957 0.847 0.952 0.840 0.944 0.834 0.946 0.829 0.933 0.819 0.918 0.813 0.884 0.791 0.827 0.760 0.671 0.688
UCF [38] 0.940 0.858 0.955 0.845 0.959 0.838 0.959 0.831 0.956 0.829 0.947 0.825 0.949 0.823 0.935 0.813 0.918 0.806 0.885 0.785 0.827 0.754 0.672 0.689
RSDNet 0.950 0.872 0.966 0.873 0.970 0.870 0.972 0.868 0.967 0.860 0.957 0.854 0.957 0.850 0.945 0.842 0.926 0.834 0.893 0.812 0.836 0.774 0.676 0.705

RSDNet-A 0.952 0.874 0.967 0.874 0.972 0.871 0.973 0.869 0.968 0.860 0.958 0.856 0.958 0.853 0.946 0.846 0.928 0.836 0.895 0.815 0.837 0.778 0.677 0.707
RSDNet-B 0.948 0.877 0.963 0.877 0.968 0.873 0.969 0.871 0.964 0.862 0.954 0.856 0.954 0.852 0.942 0.844 0.923 0.833 0.889 0.810 0.831 0.774 0.672 0.702
RSDNet-C 0.955 0.874 0.968 0.872 0.971 0.869 0.972 0.867 0.967 0.859 0.958 0.854 0.958 0.851 0.946 0.843 0.928 0.835 0.895 0.813 0.838 0.775 0.678 0.699
RSDNet-R 0.951 0.880 0.965 0.879 0.969 0.874 0.971 0.871 0.966 0.866 0.956 0.859 0.956 0.854 0.944 0.849 0.925 0.838 0.892 0.815 0.833 0.776 0.674 0.701

Table 5. Quantitative comparison (AUC & Fm) with state-of-the-art methods across all ground truth thresholds, each corresponding to
agreement among a specific number participants. Best and second best scores are shown in red and blue respectively.

Figure 6. Visualization of Principal component analysis (PCA) for
the final prediction stack (NRSS) of our model. The first column
shows the image and its ground truth. Second and third columns
show a selection of ground truth stack slices. The final column
provides a visualization of the top three principal components for
our predicted stack as an RGB image. Note that the contribution of
the top three components itself is diagnostic with respect to relative
salience.

4.3. Examining the Nested Relative Salience Stack

Comparison of slices of the nested relative salience stack
can be challenging as differences between some layer pairs
may be subtle, and contrast can differ across layers. We
therefore examine variability among NRSS layers through
Principal component analysis (PCA) to determine regions
where greatest variability (and signal) exists. Fig. 6 shows
the top three principal components as an RGB image where
the first principal component (which captures the most vari-
ance across layers) is mapped to the R-channel, the second
principal component is mapped to the G-channel and so
forth. Salient areas in the ground truth are captured in the
variability across layers demonstrating the value of our stack-
ing mechanism for saliency ranking. Moreover, it is nearly
possible to read a relative ranking directly from this visual-
ization wherein high values for the first 2 eigenvectors result
in yellow, the first only red, etc.

We also report the AUC score and max F-measure for
each slice (denoted as S) in Table 5. Compared to base-
lines, our proposed method achieves better scores across
all ground truth thresholds, that correspond to the different
numbers of participants showing agreement that an object is
salient. This further shows the effectiveness of the stacking
mechanism and predicting relative salience, which results in
improvements no matter how the ground truth is determined
(if considered as a binary quantity).

4.4. Failure Cases

Despite good performance for the majority of cases; there
are instances that are more challenging to predict (see Fig. 7).
Sometimes, the ground truth has multiple objects with the
same degree of saliency (ties in participants agreeing) (see
1st row in Fig. 7). Other failures of ranking happen when
there is considerable diversity in agreement on what is salient
in an image (as shown in the second row) or when there is
occlusion among two objects which have a relatively close
degree of saliency as shown in the last row.

Image Ground-truth RSDNet DSS [8] AMULET [37]

Figure 7. Shown are some illustrative examples of disagreements
in rank between model and ground truth. These are most common
for ties in the ground truth, and for scenes with many salient objects.

5. Conclusion
In this paper, we have presented a neural framework for

detecting, ranking, and subitizing multiple salient objects
that introduces a stack refinement mechanism to achieve
better performance. Central to the success of this approach,
is how to represent relative saliency both in terms of ground
truth, and in network in a manner that produces stable
performance. We highlight the fact that to date, salient
object detection has assumed a relatively limited, and
sometimes inconsistent problem definition. Comprehensive
experiments demonstrate that the proposed architecture
outperforms state-of-the-art approaches across a broad
gamut of metrics.
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