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Abstract

This paper studies the problem of learning image seman-
tic segmentation networks only using image-level labels as
supervision, which is important since it can significantly
reduce human annotation efforts. Recent state-of-the-art
methods on this problem first infer the sparse and discrimi-
native regions for each object class using a deep classifica-
tion network, then train semantic a segmentation network
using the discriminative regions as supervision. Inspired
by the traditional image segmentation methods of seeded
region growing, we propose to train a semantic segmenta-
tion network starting from the discriminative regions and
progressively increase the pixel-level supervision using by
seeded region growing. The seeded region growing module
is integrated in a deep segmentation network and can bene-
fit from deep features. Different from conventional deep net-
works which have fixed/static labels, the proposed weakly-
supervised network generates new labels using the contex-
tual information within an image. The proposed method
significantly outperforms the weakly-supervised semantic
segmentation methods using static labels, and obtains the
state-of-the-art performance, which are 63.2% mIoU score
on the PASCAL VOC 2012 test set and 26.0% mIoU score
on the COCO dataset.

1. Introduction
Deep Convolutional Neural Networks (DCNN) have

achieved great successes on the image semantic segmen-
tation problem [5, 18] thanks to a large amount of fully-
annotated images. However, collecting large-scale accu-
rate pixel-level annotation is time-consuming and typically
requires substantial financial investments. Unlabeled and
weakly-labeled visual data, however, can be collected in
large amounts in a relatively fast and cheap manner. There-
fore, a promising direction in the computer vision research
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Figure 1. The top row orderly shows a training image with
the image-level labels, the segmentation result of our proposed
method only using image-level supervision, and the ground truth.
Our segmentation result is very close to the ground truth anno-
tated by human. The bottom row shows the dynamic supervi-
sion in several epochs during the training of the proposed weakly-
supervised semantic segmentation network. (The black represents
background and the white represents unlabeled/ignore pixels).

is to develop object recognition methods that can learn from
unlabeled or weakly labeled images [14, 32].

In this paper, we study the problem of learning seman-
tic segmentation networks from weakly-labeled images.
Among various settings of weak label, image-level anno-
tation is one of the most economical and most efficient set-
ting. In this context, every training image has its image
class/category labels. It means objects belonging to the
class labels appear in the image. However, the locations
of the objects are unknown. We need to infer the pixel-level
locations of the objects. Thus, the main problem in training
weakly-supervised semantic segmentation networks is how
to accurately assign image-level labels to their correspond-
ing pixels.

To establish the desired pixel-label correspondence



in training, there is a very insightful research work.
Kolesnikov et al. [14] employed an image classification
network with classification activation maps (CAM) [37]
method to select the most discriminative regions, and used
the regions as pixel-level supervision for segmentation net-
works. Compared to the early weakly-supervised semantic
segmentation methods [22, 20], the discriminative region
based approach significantly improved the performance of
this challenging task. However, in [14], the discriminative
regions are small and sparse as shown in the epoch #0 image
in Figure 1. In training, the supervision of the semantic seg-
mentation network is fixed as the sparse discriminative re-
gions. Thus, we name the learning strategy in [14] as “static
supervision”. The static supervision setting deviates from
the requirement of semantic segmentation task that requires
accurate and complete object regions for training segmen-
tation models.

To address the issue, we propose to expand the discrim-
inative regions to cover the whole objects during training
segmentation networks. In practice, the pixels around the
discriminative regions are always belonging to the same ob-
jects because semantic labels of the same object have spa-
tial continuity. Our motivation is that, using the image la-
bels enables to find small and sparse discriminative regions
from the object of interest, termed as “seed cues”, the neigh-
boring pixels of seed cues with similar features (e.g. color,
texture or deep features) could have the same labels as the
seed cues. We utilize the classical Seeded Region Growing
(SRG) method [1] to model this process for generating ac-
curate and complete pixel-level labels. Here we can train
semantic segmentation networks under supervision of the
pixel-level labels. Different from [14, 19], the pixel-level
labels are dynamic. The dynamic supervision is quite dif-
ferent from traditional network training using fixed super-
vision. In our case, we let the network generate new labels
of the input training example, i.e., the training image. SRG
is integrated into the deep segmentation network and can
be optimized end-to-end and enjoys the deep features. We
name the proposed method as “deep seeded region growing
(DSRG)” for weakly-supervised semantic segmentation.

In practice, the seed cues localized by classification net-
work is small but with high precision. It is a natural way
to choose the seed cues as the seed points in SRG. Besides,
to measure the similarity between the seed points and ad-
jacent pixels for region growing, we make use of the seg-
mentation map which is output of the segmentation network
as features. Thus, SRG treats the seed cues as initial seed
points; then the adjacent pixels in segmentation map with
high probabilities on their corresponding categories take the
same labels as the seed cues. This process is repeated until
there are no pixels satisfying the above constraints. In the
end, the output of DSRG is used as the supervision for train-
ing segmentation network. In the training phase, the super-

vision is used to form the loss function, termed as “seeding
loss”. In seeded regions, the loss is the same as full super-
vise loss function in [5]; the other positions are ignored by
the seeding loss.

During training, the DSRG approach gradually enriches
the supervision information of the segmentation network.
As shown in Figure 1, the supervision in epoch #0 is ac-
tually the seed cues generated by classification model, the
cues localize the head of person and the horse, which are
the most discriminative regions in the image. With the in-
creasing of epochs, the dynamic supervision gradually ap-
proaches the ground truth and cover the whole object con-
tent precisely. Meanwhile, the dynamic supervision ides
the network to produce competitive segmentation result. To
ensure the stability of training, DSRG always choose the
original seed cues as initial seed points.

In the experiments, we demonstrate the effectiveness of
our approach on the challenging PASCAL VOC 2012 Se-
mantic Segmentation benchmark [8] and COCO, and show
that we achieve the new state-of-the-art results. In addition,
we provide an analysis of the DSRG approach by carrying
out some ablation studies.

In summary, the main contributions of this paper are
summarized below:

• In deep semantic segmentation network, we utilize the
seeded region growing [1] mechanism, which enables
the network safely generates new pixel-level labels for
weakly-supervised semantic segmentation. Besides,
the network can be optimized in an end-to-end man-
ner and is easy to train.

• Our work obtains the state-of-the-art weakly-
supervised semantic segmentation performance on the
PASCAL VOC segmentation benchmark and COCO
dataset. The mIoU of our method are 61.4% and
63.2% on pascal voc val set and test set respectively,
which are better than many sophisticated systems and
are getting closer to the fully supervised segmentation
system [6] (67.6/70.3% mIoU on val/test set).

The rest of this paper is organized as follows. We first
review related work in Section 2 and describe the architec-
ture of our approach in Section 3. In Section 4, the detailed
procedure to improve the quality of dynamic supervision is
discussed and experimental results are analyzed. Section 5
presents our conclusion and future work.

2. Related work
The last years have seen a renewed interest on weakly-

supervised visual learning. Various weakly-supervised
methods have been proposed for learning to perform se-
mantic segmentation with coarser annotations, such as im-
age labels [20, 36], points [2], scribbles [16], and bounding



boxes [7, 20] etc. In this work, we focus on using image
labels as the main form of supervision, which is a simple
supervision for training semantic segmentation models.

2.1. Pixel labeling from image level supervision

Pinheiro et al. [23] proposed a novel LSE pooling
method which puts more weight on pixels which are impor-
tant for classifying the image during training. Papandreou
et al. [20] adopted an alternating training procedure based
on the Expectation-Maximization algorithm to dynamically
predict semantic foreground and background pixels. Qi et
al. [24] proposed a unified framework that includes the se-
mantic segmentation and object localization branches. [27]
proposed a novel method to extract markedly more accurate
masks from the pre-trained network itself. Wei et al. [35]
presented a simple to complex learning method to gradually
enhance the segmentation network. [29] proposed a method
based on CNN-based class-specific saliency maps and fully-
connected CRF. Roy et al. [26] presented a novel deep ar-
chitecture which fuses three different cues toward semantic
segmentation.

Recently, Kolesnikov et al. [14] proposed to localize
seed cues according to classification networks for training
segmentation network. However, [14] can only obtain small
and sparse object-related seeds for supervision. To solve
this problem, Oh et al. [19] proposed using a saliency model
as additional information to exploit object extent. Wei et
al. [33] used adversarial erasing manner to iteratively train
multiple classification networks for expanding discrimina-
tive regions. Arslan et al. [4] also utilized adversarial eras-
ing manner to allow the saliency detection network to dis-
cover new salient regions of object. Once true negative re-
gions are generated, they have no chance to be correct them.
In contrast, our proposed DSRG approach is very simple
and convenient to start from the seed cues and progressively
refine the pixel-level labels as the dynamic supervision in
training phase.

Both [20] and the proposed method generate dynamic
pixel-level labels to train semantic segmentation networks.
However, there are several major improvements in this pa-
per. Different from [20] where the latent pixel-level su-
pervision is approximated by applying argmax function on
biased segmentation maps, we instead propose to use the
Seeded Region Growing to find accurate and reliable latent
pixel-level supervision. With the help of the object seed
cues, our DSRG training approach is robust to very noisy
segmentation map in the beginning of training and generate
pixel-level supervision with high accuracy all along.

2.2. Seeded Region Growing

The Seeded Region Growing (SRG) [1] is an unsuper-
vised approach to segmentation that examines neighbor-
ing pixels of initial seed points and determines whether the

pixel neighbors should be added to the region depending on
a region similarity criterion. Two major concerns must be
handled when performing a segmentation based on region
growing: where to place the initial seeds in the image do-
main and which similarity criterion should be adopted to
characterize the image regions. The most common way
to select some seed pixels as seed based on simple hand-
crafted criterion [28] (e.g. color, intensity, or texture).
Meanwhile, the similarity criterion [3] is always defined
on hand-crafted features. These settings result in over-
segmentation and bad segmentation. In contrast, the DSRG
utilizes seed cues generated by classification network as the
initial seed to avoid wrong seed placement. Besides, We
compute pixel similarity using deep learning features which
have been proven to have high-level semantics. Thus, the
DSRG can reduce over-segmentation and do not have the
merge procedure of the traditional SRG.

3. Approach
In this section, we give the details of the proposed DSRG

training approach for weakly-supervised semantic segmen-
tation. At first, we will introduce how we generate seed cues
from a deep classification network. Then, we will introduce
a balanced seed loss function which uses seed cues as su-
pervision to guide the weakly-supervised semantic segmen-
tation network. At last, to address the problem that the seed
cues are small and sparse, we propose the DSRG training.

3.1. Seed generation with classification network

We utilize a deep classification network to locate dis-
criminative regions as seed cues under image-level super-
vision. Image-level labels do not explicitly provide any in-
formation about the position of semantic objects. But, re-
cently, it has been shown that high-quality seeds indicating
discriminative object regions can be obtained by learning a
classification network under the supervision of image-level
labels [30, 37]. The classification network is fully convolu-
tional and the position of discriminative object regions are
preserved in the deep layers of the network.

In our framework, we employ the CAMs [37] method
for localizing the foreground classes. The procedures are
briefly described as follows. We use a modified VGG-16
network [14] to initialize our classification network. In
the network, global average pooling (GAP) is applied on
conv7; the generated tensor is used as image representa-
tion and classified using a fully-connected layer; finally, the
fully-connected classifier is applied to conv7 to generate a
heatmap for each object class. Then the discriminative ob-
ject regions are obtained by applying a hard threshold to the
heatmap.

Besides of the seed cues in foreground, we also find seed
cues in the background. For localizing background, we uti-
lize the saliency detection technology from [12], and simply
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Figure 2. Overview of the proposed Deep Seeded Region Growing training approach. The Region Growing module takes the seed cues and
segmentation map as input produces latent pixel-wise supervision which is more accurate and more complete than seed cues. Our method
iterates between refining pixel-wise supervision and optimizing the parameters of a segmentation network.

select the regions in normalized saliency maps whose pixels
are with low saliency values as background. The resulted
seed cues from foreground and background are stacked to-
gether into a single channel segmentation mask.

3.2. Seeding loss

After obtaining the seed cues, we introduce how to train
an image semantic segmentation network using the seed
cues. The balanced seeding loss is proposed to encourage
predictions of the segmentation network to match only seed
cues given by the classification network while ignoring the
rest of the pixels in the image. Considering the unbalanced
distribution of the seed cues of foreground and background,
the balanced seeding loss has two normalization coefficients
for foreground and background, respectively, which is dif-
ferent from the seed loss in [14].

Let C be the set of classes that are present in the image
(excluding background) and C̄ be the background. Suppose
that Sc is a set of locations that are classified to class c.
Then, the balanced seeding loss `seed is defined as follows:

`seed = − 1∑
c∈C
|Sc|

∑
c∈C

∑
u∈Sc

logHu,c

− 1∑
c∈C̄
|Sc|

∑
c∈C̄

∑
u∈Sc

logHu,c, (1)

in which Hu,c denotes the probability of class c at position
u of segmentation map H .

Besides, we use a boundary loss `boundary which pro-
posed in [14] to encourage segmentation map to match up
with object boundaries. Ultimately, the segmentation net-
work are optimized by minimizing a loss function:

` = `seed + `boundary. (2)

3.3. Deep seeded region growing

In the introduced seeding loss, we can find the seed cues
are sparse. In practice, there are about 40% pixels have
labels. During training, the labels are fixed following con-
ventional setting of training deep networks. Our idea is to
grow the seed cues to unlabeled pixels. Thus, we could
have denser supervision to train better segmentation net-
works. The basis of seed cues growing is that in image there
are small homogeneous regions in which the pixels should
have the same label. The small homogeneous regions are
usually used in low-level vision, such as generating super-
pixels [25]. To formulate the seed cues growing problem,
here we refer to a classical algorithm, Seeded Region Grow-
ing (SRG) [1].

In SRG, some seed pixels are initially selected based on
some simple hand-crafted criterion (e.g. color, intensity,
or texture). Once the initial seeds are placed, the growth
process seeks to obtain homogeneous image regions, i.e.,
it tries to segment the image into regions with the property
that each connected component of a region contains exactly
one of the initial seeds.

We propose to integrate SRG into deep segmentation
networks for weakly-supervised semantic segmentation.
The yield method is termed as “deep seeded region growing
(DSRG)”.

Once the initial seeds are initialized by classification net-
work, the regions are then grown from these seed points to
adjacent unlabeled points depending on a region similarity
criterion. The similarity criterion defines whether a candi-
date pixel should be incorporated into a specific region or
not. Now, the major concerns must be handled when per-
forming learning a semantic segmentation network based
on region growing: which similarity criterion should be



adopted to characterize the image regions? In the follow-
ing, we detail the strategies to handle the problem.

The similarity criteria P we make here is the simple
probability threshold value of a pixel in segmentation map
H generated by segmentation network.

P (Hu,c, θc) =


TRUE Hu,c ≥ θc and

c = arg max
c′

Hu,c′ ,

FALSE otherwise.

(3)

in which Hu,c refers to the probability value of the pixel
at position u that belongs to class c . And θ is the proba-
bility threshold value. In practice, we do not set different
thresholds for different categories. The foreground cate-
gories share a same threshold θf and the background has
another threshold θb. Traditional SRG usually has a phe-
nomenon of over-segmentation since low-level image fea-
tures is not robust to inter-class appearance of object. In
DSRG, we compute pixel similarity using deep learning
features which have been proven to have high-level seman-
tics. Thus, the DSRG can reduce over-segmentation and do
not have the merge procedure of the traditional SRG.

Now, we can take segmentation map H and seed cues
S as inputs to perform region growing. DSRG is an iter-
ative visiting process for each class. We denote the itera-
tive visiting process of class c as Vc, c ∈ [0, |C|], where
c = 0 means the background class. In an iteration of Vc,
we visit all the positions in Sc in a row-first manner. When
visiting a pixel Q, we denote the set of unlabeled pixels
in Q’s 8-connectivity neighborhoods as R. For Ru ∈ R,
its probability of being class c is denoted as Hu,c as de-
scribed above. Then Ru is classified based on P as fol-
lows:

1: if P (Hu,c, θc) then
2: the pixel at u is labeled as c;
3: else
4: the pixel at u keeps unlabeled state.
5: end if

After visiting all the positions, we append all the newly
labeled pixels to Sc. Once Sc is changed, we will visit
the updated Sc again. Otherwise, Vc stops. The termina-
tion criteria is different with classical SRG in which ev-
ery pixel must have a label. Because it is difficult to tell
the label of a pixel with a low confidence predicted by seg-
mentation network. However, with increasing capability of
segmentation network, the amount of unlabeled pixels de-
creases and the objects extent are covered with correct la-
bels. Besides, to reduce the redundancy visits in Vc, we
first compute connected components of regions that meet
the requirement in Eqn (3), and then the connected compo-
nents which consist the initial seed regions take the same
label as the initial seed. These connected components are

selected as new supervision for training segmentation net-
work. We denote the |C| + 1 iterative visiting process as
DSRG(S,H), which means a region growing step. The
final updated S = [S0, · · · , SC ] is used as the supervision
and applied to train segmentation network with seeding loss
in Eqn (1). In Figure 2, the DSRG(S,H) is plugged into
the framework of the proposed segmentation network.

4. Experiments

4.1. Experimental setup

Dataset and Evaluation Metrics We evaluate the pro-
posed approach on the PASCAL VOC 2012 segmentation
benchmark dataset [8] and COCO dataset [17]. PASCAL
VOC: It contains three parts: training (train, 1464 images),
validation (val, 1449 images) and testing (test, 1456 im-
ages). Following the common practice [6, 33], we aug-
ment the training part by additional images from [9]. In our
experiments, only image-level labels are utilized for train-
ing. We compare our method with other state-of-the-arts
on both val and test sets. The standard intersection over
union (IOU) criterion and pixel-wise accuracy are adopted
for evaluation on PASCAL val dataset. The result on the
test set is obtained by submitting the predicted results to the
official PASCAL VOC evaluation server. COCO: its train-
ing set contains 80k samples with only image-level labels
and it’s val set contains 40k samples for evaluation. Per-
formance is evaluated in terms of pixel IoU averaged on 81
categories. Experimental analysis of the proposed approach
is conducted on the val set.

Training/Testing Settings
We adopt the slightly modified version of the 16-layer

VGG network from [14] for the classification network and
DeepLab-ASPP from [6] for the segmentation network.
They are all initialized by the VGG-16 [31] pretrained on
ImageNet. SGD with mini-batch is used for training classi-
fication and segmentation network. We use the momentum
of 0.9 and a weight decay of 0.0005. The batch size is 20,
the dropout rate is 0.5 and the weight decay parameter is
0.0005. The initial learning rate is 5e-4 and it is decreased
by a factor of 10 every 2000 iterations.

For seed generation, those pixels belonging to top 20%
of the largest value (a fraction suggested by [14, 33]) in the
heatmap are considered as foreground object regions. We
use saliency maps from [12] to produce the background lo-
calization cues. We adopt the normalized saliency value
0.06 as the threshold to obtain background localization cues
(i.e. pixels whose saliency values are smaller than 0.06 are
considered as background). For the similarity criteria in
DSRG, we set θb and θf to 0.99 and 0.85, respectively. For
CRF, we use the default values from the Koltun public im-
plementation as parameters for the pairwise interactions.

In test phase, the learned segmentation network is ap-



Table 1. Comparison of weakly-supervised semantic segmentation
methods on VOC 2012 val and test set

Method Training Val Test
Supervision: Image-level Labels

(* methods implicitly use pixel-level supervision)

(† methods implicitly use box supervision)

SN B* [34] 10k 41.9 40.6

MIL-seg* [23] 700k 42.0 43.2

TransferNet* [10] 70k 52.1 51.2

AF-MCG* [24] 10k 54.3 55.5

GuidedSeg† [19] 20k 55.7 56.7

Supervision: Image-level Labels

MIL-FCN [22] 10k 25.7 24.9

CCNN [21] 700k 35.3 35.6

MIL-bb [23] 700k 37.8 37.0

EM-Adapt [20] 10k 38.2 39.6

DCSM [29] 10k 44.1 45.1

BFBP [27] 10k 46.6 48.0

STC [35] 50k 49.8 51.2

SEC [14] 10k 50.7 51.7

AF-SS [24] 10k 52.6 52.7

Combining Cues [26] 10k 52.8 53.7

AE-PSL [33] 10k 55.0 55.7

DCSP [4] 10k 58.6 59.2

Supervision: Image-level Labels

DSRG (VGG16) 10k 59.0 60.41

DSRG (Resnet101) 10k 61.4 63.22

plied to produce probability map for each testing image.
Then, we upscale the predicted probability map to match
the size of the input image, and then apply a fully-connected
CRF [15] to refine the segmentation result.

Reproducibility. Our approach is implemented based
on Caffe [11]. All networks are trained on a single NVIDIA
GeForce GTX TITAN X GPU. The code is available at
https://github.com/speedinghzl/DSRG.

4.2. Comparisons with state-of-the-arts

Results of other state-of-the-art weakly-supervised se-
mantic segmentation solutions on PASCAL VOC valida-
tion and test dataset are summarized in Table 1. We pro-

1http://host.robots.ox.ac.uk:8080/anonymous/
ZZT4TI.html

2http://host.robots.ox.ac.uk:8080/anonymous/
LWX93L.html

Image Prediction Ground Truth  

Figure 3. Qualitative segmentation results on the VOC 2012 val
set. One failure case is shown in the last row.

vide these results for reference and emphasize that they
should not be directly compared with our method. Because
the methods were trained on different training sets or with
different kinds of annotations, bounding boxes, spots and
image-level labels. Among the approaches, CCNN [21],
MIL-seg [23], STC [35], GuidedSeg [19], and TransferNet
[10] use more images for training (700K, 700K, 50K, 20K
and 70K, respectively). All the other methods are based on
10K training images and built on top of the VGG16 model.

The results show that our method substantially outper-
forms all the previous techniques using image-level labels
for weak supervision. AE-PSL [33] and DCSP [4] achieve
the best performance among the baselines. However, adver-

https://github.com/speedinghzl/DSRG
http://host.robots.ox.ac.uk:8080/anonymous/ZZT4TI.html
http://host.robots.ox.ac.uk:8080/anonymous/ZZT4TI.html
http://host.robots.ox.ac.uk:8080/anonymous/LWX93L.html
http://host.robots.ox.ac.uk:8080/anonymous/LWX93L.html


Table 2. Comparison of mIoU using different settings of our approach on VOC 2012 val set
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baseline 82.5 67.5 23.2 65.7 29.7 47.5 71.8 66.8 76.7 23.3 51.7 26.2 69.7 54.2 63.2 57.2 33.7 64.5 33.5 48.7 46.1 52.5

+BSL 82.4 71.9 29.1 67.7 32.4 49.8 75.5 67.9 74.7 22.8 54.9 26.6 64.3 55.7 64.7 56.0 35.0 67.7 32.7 50.2 45.8 53.6

+DSRG 86.6 70.5 28.8 70.6 34.7 55.7 74.9 70.1 80.2 24.1 63.6 24.8 76.6 64.1 64.9 72.3 38.5 68.7 35.8 51.8 51.9 57.6

+Retrain 87.5 73.1 28.4 75.4 39.5 54.5 78.2 71.3 80.6 25.0 63.3 25.4 77.8 65.4 65.2 72.8 41.2 74.3 34.1 52.1 53.0 59.0

sarial erasing is employed by AE-PSL to expand the seed
cues for supervision, which needs to iteratively train multi-
ple classification networks. DCSP also utilizes adversarial
erasing manner to allow the saliency network to discover
new salient regions of object. It does not require the re-
training of the network after each erasing, but DCSP may
introduce some true negative regions due to over erasing.
In contrast, the proposed DSRG approach is very simple
and convenient to refine supervision online and our method
obtains better results than DCSP and AE-PSL. Compared
with those methods only using image-level labels for su-
pervision, the proposed DSRG(VGG16) method improves
upon the best performance by over 1.2% on test set. It can
be seen that our method achieves 60.4% mIoU on test set.
Besides, Our DSRG (Resnet101) achieves 63.2% mIOU on
test set.

4.3. Qualitative results

Fig. 3 shows some successful segmentation results. It
shows our method can produce accurate segmentations even
for complicated images and recover fine details of the
boundary. One typical failure case is given in the bot-
tom row of Fig. 3. This failure mode is that the model
cannot pick out object regions from background precisely.
As is typical for weakly-supervised systems, strongly co-
occurring categories (such as train and rails, sculls and oars,
snowbikes and snow) cannot be separated without finner-
grained information [13].

4.4. Ablation studies

In order to further prove the effect of the different com-
ponents, we conduct some ablation experiments with differ-
ent settings of VGG16 based DSRG. In Table 2, the “base-
line” denotes our implemented SEC [14], our result is much
better than [14] (50.4 mAP without Lexpand), due to the dif-
ferent background locating technology [12] and details. The
“+BSL” denotes replacing the original seeding loss with the
balanced seeding loss in Eqn (1); the “+DSRG” denotes
adding DSRG training approach. We can observe that the
weighted seeding loss improves the performance by 1.1%
compared with baseline. And, DSRG improves further the
performance by 4%, demonstrating the significant effective-
ness of DSRG. It is most noticeable for animals and person,

Table 3. Per-class IOU on COCO using image tags during training
Cat.   Class SEC BFBP Ours Cat.   Class SEC BFBP Ours

BG   background 74.3 68.8 80.6   wine glass 22.3 17.5 24.0

P   person 43.6 27.5   cup 17.9 5.6 20.4

  bicycle 24.2 18.2 30.4   fork 1.8 0.5 0.0

  car 15.9 7.2 22.1   knife 1.4 1.0 5.0

  motorcycle 52.1 40.5 54.2   spoon 0.6 0.6 0.5

  airplane 36.6 32.0 45.2   bowl 12.5 13.3 18.8

  bus 37.7 39.2 38.7   banana 43.6 44.9 46.4

  train 30.1 26.5 33.2   apple 23.6 18.9 24.3

  truck 24.1 17.5 25.9   sandwich 22.8 21.4 24.5

  boat 17.3 16.5 20.6   orange 44.3 35.0 41.2

  traffic light 16.7 3.9 16.2   broccoli 36.8 27.0 35.7

  fire hydrant 55.9 33.1 60.4   carrot 6.7 16.0 15.3

  stop sign 48.4 28.4 51.0   hot dog 31.2 22.5 24.9

  parking meter 25.2 25.5 26.3   pizza 50.9 57.8 56.2

  bench 16.4 12.4 22.3   donut 32.8 36.2 34.2

  bird 34.7 31.1 41.5   cake 12.0 17.0 6.9

  cat 57.2 52.8 62.2   chair 7.8 8.2 9.7

  dog 45.2 44.1 55.6   couch 5.6 13.9 17.7

  horse 34.4 34.2 42.3   potted plant 6.2 7.4 14.3

  sheep 40.3 38.0 47.1   bed 23.4 29.8 32.4

  cow 41.4 42.1 49.3   dining table 0.0 2.0 3.8

  elephant 62.9 65.2 67.1   toilet 38.5 30.1 43.6

  bear 59.1 57.0 62.6   tv 19.2 14.8 25.3

  zebra 59.8 65.0 63.2   laptop 20.1 19.9 21.1

  giraffe 48.8 55.6 54.3   mouse 3.5 0.4 0.9

  backpack 0.3 3.2 0.2   remote 17.5 9.9 20.6

  umbrella 26.0 28.1 35.3   keyboard 12.5 19.9 12.3

  handbag 0.5 1.1 0.7   cell phone 32.1 26.1 33.0

  tie 6.5 5.5 7.0   microwave 8.2 9.8 11.2

  suitcase 16.7 21.3 23.4   oven 13.7 16.4 12.4

  frisbee 12.3 5.6 13.0   toaster 0.0 0.0 0.0

  skis 1.6 1.0 1.5   sink 10.8 9.5 17.8

  snowboard 5.3 2.8 16.3   refrigerator 4.0 13.2 15.5

  sports ball 7.9 1.9 9.8   book 0.4 7.5 12.3

  kite 9.1 10.3 17.4   clock 17.8 16.5 20.7

  baseball bat 1.0 1.7 4.8   vase 18.4 13.4 23.9

  baseball glove 0.6 0.5 1.2   scissors 16.5 12.2 17.3

  skateboard 7.1 6.6 14.4   teddy bear 47.0 41.0 46.3

  surfboard 7.7 3.3 13.5   hair dryer 0.0 0.0 0.0

  tennis racket 9.1 5.5 6.8   toothbrush 2.8 2.0 4.5

  bottle 13.2 9.6 22.3   mean IOU 22.4 20.4 26.0
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e.g. the improvement for segmenting dog/horse/cow/person
is about 10%. Besides, we first employ the trained seg-
mentation model of “+DSRG” to on all the training im-
ages. Then, the predicted segmentation masks are used as
supervision for training the segmentation network for an-
other round in a fully-supervised way. As shown in Table 2,
the performance provided by this extra training (denoted as
“+Retrain”) is further improved from 57.6% to 59.0%. We
do not observe further performance gain by performing ad-
ditional retrain steps.

In addition, we tried different values of θf and θb to
find the best performing region growing strategy. The re-



Table 4. Performance on PASCAL VOC 2012 val dataset for dif-
ferent θ

θb

θf 0.99 0.95 0.90 0.85 0.80

0.99 57.45 57.59 57.63 57.69 57.66

0.95 57.43 57.56 57.64 57.67 57.63

0.90 57.23 57.35 57.40 57.44 57.45

sults are shown for different values of θ in Tab 4. The re-
sults show that our method is robust to the region growing
thresholds θ. To explore the effect of only performing re-
gion growing for foreground or background object, we set
θb = ∞, θf = 0.85 for only conducting region growing
for foreground object, the performance on PASCAL VOC
val dataset is 55.9% mIoU. When θb = 0.99, θf = ∞,
the performance is 54.3% mIoU. The results show that only
conducting region growing for foreground object or back-
ground object is also improve the performance. However,
it can achieve best performance when simultaneously con-
ducting region growing for foreground object and back-
ground object.

4.5. The quality improvement of dynamic supervi-
sion over epochs

In this section the qualities of the new pixel labels as dy-
namic supervision, obtained from DSRG, at each epoch, are
evaluated. Compared with ground truths that are annotated
by human, we could use the mean accuracy, mean recall and
IoU to measure the quality of the supervision refined by our
approach. In Fig. 4, the supervision that generated by classi-
fication network has somewhat high precision(62.6%), low
recall(32.1%) and low IoU(30.0%). With the increasing of
epochs, the precision of seed remains a high value, and the
recall and IoU get significant improvements. At epoch #12,
the mean precision, mean recall and mean IoU are 63.9%,
65.4%, and 57.1%, respectively. It demonstrates that DSRG
can find the object extent and improve the quality of su-
pervision, which explains why the proposed DSRG training
procedure works excellently on the weakly supervised se-
mantic segmentation task. Additional examples in the sup-
plementary materials shows the gradually refining supervi-
sion starting from seed cues during training.

4.6. COCO results

To further demonstrate the generality of our method, we
conducted a set of experiments on COCO. Unlike in PAS-
CAL VOC, the majority of COCO samples were collected
from non-iconic images in a complex natural context. We
provide the per-class IoU of SEC [14], BFBP [27] and our
approach in Table 3. Our VGG16 based DSRG obtains re-
markable better results, especially in Person, Animal, Ve-
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Figure 4. The quality of the dynamic supervision (%) with respect
to the epochs.

hicle etc, but performs poorly on small ones, such as In-
door and Kitchenware. Altogether, our DSRG method im-
proves upon the best performance by over 3.6% on val set.
It can be seen that our method achieves 26.0% mIoU on val
set. Meanwhile, compared with the performance of fully
supervised method (40.98% mIoU), these results on COCO
evidence that there is much space for progress in weakly-
supervised semantic segmentation. Developing solutions
that handle small objects could be an interesting direction
for future research.

5. Conclusion and future work
We have addressed the problem of training semantic

segmentation networks only using image-level supervision.
Image-level labels alone can provide high-quality seeds, or
discriminative object regions, but inferring full object ex-
tents is a very difficult problem. We propose a DSRG train-
ing approach gradually improves the quality and extent ob-
ject regions and itself is supervised the object regions. We
demonstrate that our approach outperforms previous state-
of-the-art methods under the same experimental conditions.
We also clearly identify the effectiveness of region growing
mechanism within the semantic segmentation network in
the experiments. In future work, we will focus on designing
more effective weakly-supervised strategies and improving
seed quality.
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