
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis

Nitika Verma Edmond Boyer Jakob Verbeek

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
firstname.lastname@inria.fr

Abstract

Convolutional neural networks (CNNs) have massively
impacted visual recognition in 2D images, and are now
ubiquitous in state-of-the-art approaches. CNNs do not
easily extend, however, to data that are not represented by
regular grids, such as 3D shape meshes or other graph-
structured data, to which traditional local convolution op-
erators do not directly apply. To address this problem, we
propose a novel graph-convolution operator to establish
correspondences between filter weights and graph neigh-
borhoods with arbitrary connectivity. The key novelty of
our approach is that these correspondences are dynami-
cally computed from features learned by the network, rather
than relying on predefined static coordinates over the graph
as in previous work. We obtain excellent experimental re-
sults that significantly improve over previous state-of-the-
art shape correspondence results. This shows that our ap-
proach can learn effective shape representations from raw
input coordinates, without relying on shape descriptors.

1. Introduction

In recent years, deep learning has dramatically improved
the state of the art in several research domains including
computer vision, speech recognition, and natural language
processing [13]. In particular, convolutional neural net-
works (CNNs) have now become ubiquitous in computa-
tional solutions to visual recognition problems such as im-
age classification [8], semantic segmentation [34], object
detection [21], and image captioning [32]. CNNs also ex-
tend beyond 2D visual information, and easily generalize to
other data that come in the form of regular rectangular grids.
This has been demonstrated with for instance 1D convolu-
tion for audio signal [18] and 3D convolution over space
and time for video signal [28].

Of particular interest beyond 2D image understanding
are 3D shape models for which two main categories of rep-
resentations can be considered. Extrinsic or Eulerian rep-

Figure 1. Three examples of texture transfer from a reference
shape in neutral pose (left) using shape correspondences predicted
by FeaStNet (multi-scale architecture, without refinement).

resentations are based on parametrizations external to the
shape, the most common being voxel grids. Such represen-
tations enable standard CNNs to be applied over 3D grids,
but lack invariance to even the most basic transformations of
the shape. A simple rigid transformation of the shape can
lead to significant changes in the 3D grid representation.
Moreover, discretizing space instead of shapes tends to be
inefficient, in particular with moving and deforming objects
for which a significant part of the space grid can be empty,
resulting in representations with poor shape resolutions [7],
or requiring special data structures to handle sparse inputs
and/or outputs [22, 26]. On the other hand, intrinsic or La-
grangian representations, for example 3D meshes or vol-
umetric quantizations, are robust to many shape transfor-
mations and describe 3D entities more efficiently with dis-
cretizations that are attached to shapes and not to the sur-
rounding space. CNNs are, however, not readily extended
to such representations with irregular structures represented
as graphs where nodes can have a varying number of neigh-
bors. The challenge is to define convolution-like operators
over irregular local supports which can be used as layers in
deep networks for prediction tasks such as shape correspon-
dence over 3D meshes, see Figure 1.

A number of architectures that generalize beyond data

1

organized in regular grids have been recently proposed
[2, 4, 5, 9, 11, 12, 14, 15, 20, 25]. Some of these tech-
niques generalize beyond 3D shape data to other domains
where data can be organized into graph structures, includ-
ing for instance social networks or molecular graphs [4, 11].
The existing approaches come however with several limita-
tions. Spectral filtering approaches [4, 5, 9, 11] rely on the
eigen-decomposition of the graph Laplacian. Unfortunately
this decomposition is often unstable, making the generaliza-
tion across different shapes difficult [15]. Local filtering ap-
proaches [2, 14, 15] on the other hand, rely on possibly sub-
optimal hard-coded local pseudo-coordinates over the graph
to define filters. Other approaches rely on point-cloud rep-
resentations [12, 20] which cannot leverage surface infor-
mation encoded in meshes, or need ad-hoc transformations
of mesh data to map it to the unit sphere [25].

In this paper we present FeaStNet, a deep neural network
based on a novel graph convolution operator which, un-
like previous work, does not rely on static pre-defined local
pseudo-coordinate systems over the graph, but instead uses
the learned features of the preceding network layer to dy-
namically determine the association between filter weights
and the nodes in a local graph neighborhood. Excellent ex-
perimental results on the FAUST 3D shape correspondence
benchmark validate our approach, and significantly improve
over recent state-of-the-art approaches. Figure 1 shows sev-
eral examples of texture transfer using correspondences pre-
dicted with our model. Importantly, these results were ob-
tained with the raw 3D shape coordinates as input instead
of 3D shape descriptors as traditionally used for shape cor-
respondence estimation. They demonstrate that FeaStNet
learns better local shape properties than existing engineered
3D descriptors. Additional results on shape part labeling
over point clouds are comparable to the state of the art, and
illustrate that our approach generalizes to 3D data without
explicit surface information.

2. Related work

In this section we briefly review related work on graph-
convolutional networks, other deep learning approaches to
process 3D shapes, and CNNs with data-adaptive filters.

Graph-convolutional networks. Existing approaches
to generalize convolutional networks to irregular graph-
structured data can be divided into two broad categories:
spectral filtering methods and local filtering methods. Spec-
tral methods build on a mathematically elegant approach to
develop convolution-like operators using the spectral eigen-
decomposition of the graph Laplacian [4, 5, 9, 11]. Any
function defined over the graph nodes, e.g . features, can be
mapped, by projection on the eigenvectors of the Laplacian,
to the spectral domain where filtering consists of scaling the
signals in the eigenbasis. While successful with noise-free

data such as synthetic 3D shape models, spectral techniques
are less suitable for acquired real shapes since global de-
compositions are unstable across different graphs, encoding
for instance different shape meshes in various poses.

In an effort to better generalize across graphs, a num-
ber of techniques follow a strategy based on local graph
filtering [2, 14, 15, 16, 24]. These methods differ in how
they establish a correspondence between filter weights and
nodes in local graph neighborhoods. Niepert et al . [16]
rely on a heuristic ordering of the nodes, and then apply
1D CNNs. The geodesic CNN model of Masci et al . [14]
extracts local patches on meshes which are convolved with
filters expressed in polar coordinates. The orientation am-
biguity of filters is dealt with by means of angular max-
pooling, i.e . filters are applied in all possible orientations,
and the maximum responses are retained. Boscani et al . [2]
proposed the anisotropic CNN model which further extends
the geodesic CNN model by using an anisotropic patch-
extraction method, exploiting the maximum curvature di-
rections to orient patches. Monti et al . [15] also param-
eterize local patches of the graph using fixed local polar
pseudo-coordinates around each node. They learn filter
shapes by estimating the means and variances of Gaussians
that associate filter weights to the local pseudo-coordinates.
Simonovsky & Komodakis [24] use edge labels, which
play a similar role as the local pseudo coordinates, as in-
put to a filter-generating subnetwork. Our work is related,
though instead of relying on hand-designed local pseudo-
coordinates, we learn the mapping between local graph
patches and filter weights using the features in the previous
network layer.

Deep networks for 3D shape data. Besides spectral and
local filtering approaches on graphs, a number of other tech-
niques have been developed to handle 3D shape data in
deep neural networks. Sinha et al . [25] use a spherical
parametrization, filling holes in the mesh when needed, to
map shapes onto octahedra. These octahedra are cut and
unfolded to square images, which can then be processed us-
ing regular CNNs. Wei et al . [30] render depth maps of
shapes, and process them with conventional CNNs to learn
features that can be matched to establish shape correspon-
dence. Contrary to these approaches which transform 3D
shape input data into 2D images that are fed to conventional
CNNs, we propose instead a novel graph convolution that
can directly process irregular graph-structured data.

Recently, two architectures have been proposed to pro-
cess point cloud data. Klokov & Lempitsky [12] propose
a deep network based on kd-trees over 3D point clouds,
sharing parameters across the tree based on the depth and
direction of splits. Qi et al . [19, 20] combine local per-
point processing layers, with max-pooling layers to process
3D point clouds. By construction, these approaches ignore
the surface information available in mesh data, and require

sufficiently dense sampling to avoid artifacts due to spatial
proximity of points that are geodesically remote.
Data-adaptive convolutional networks. The convolu-
tional layers in a conventional CNN multiply together ac-
tivations of the preceding feature map and learned filter
weights, and sum the results to obtain the output as a linear
function of the input, after which a point-wise non-linearity
is applied. In spatial transformer networks [10] and dy-
namic filter networks [3], a subnetwork, which takes the
preceding feature map as input, replaces a standard convo-
lutional layer with a data-adaptive transformation. In the
former, a localization subnetwork computes the parameters
of a spatial transformation, e.g . cropping or re-sizing, which
is used to spatially re-sample the preceding feature map be-
fore convolution. In the latter, a subnetwork is used to gen-
erate the convolutional filters that will be applied to the pre-
ceding feature maps. Our approach is related in the sense
that we use a subnetwork to associate elements of a local
“patch” of the graph to the filter weights.

3. Graph convolutions using dynamic filters
In this section we briefly revisit conventional CNNs, and

then present our graph-convolutional network. We also
compare the number of parameters and computational cost
of our network with those of conventional CNNs.

3.1. Reformulating convolutional CNN layers

A convolutional CNN layer maps D input feature maps
to E output feature maps. The parameters are commonly
represented as a set of D×E filters Fd,e, each of size h×w
pixels, with d ∈ {1, . . . , D} and e ∈ {1, . . . , E}. The com-
putations in the convolutional layer to compute one of the
E output channels can be described as convolving each of
the D input channels with the corresponding filters, sum-
ming the D convolution results and adding a constant bias
to compute the output feature map.

An equivalent but less common representation, is useful
to develop extensions for irregular graph-structured data.
We rearrange the convolutional filter weights in a set of
M = h×w weight matrices Wm ∈ IRE×D. Each of these
weight matrices is used to project input features x ∈ IRD

to output features y ∈ IRE . The result of the convolution
at a pixel is obtained by summing for each of the M neigh-
bors the projection of its feature vector with the Wm corre-
sponding to its relative position, considering pixel i a neigh-
bor of itself. See Figure 2 for an illustration. The activation
yi ∈ IRE of pixel i in the output feature map is written as

yi = b +

M∑
m=1

Wmxn(m,i), (1)

where b ∈ IRE denotes a vector of bias terms, and n(m, i)
gives the index of the neighbor in the m-th relative position

w.r.t. pixel i. For example, the indices n(1, i), . . . , n(9, i)
may refer to the pixels in a 3×3 patch centered at pixel i.

3.2. Generalization to non-regular input domains

In the case of CNNs for regular inputs, e.g . pixel grids,
there is a clear one-to-one mapping between the weight ma-
trices Wm ∈ IRE×D and the neighbors at relative positions
m ∈ {1, . . . ,M} w.r.t. the central pixel of the convolution.
The main challenge in the case of irregular data graphs is to
define this correspondence between neighbors and weight
matrices. We propose to establish this correspondence in
a data-driven manner, using a function over features com-
puted in the preceding layer of the network, and learning
the parameters of this function as a part of the network.

Instead of assigning each neighbor j of a node i to a sin-
gle weight matrix, we use a soft-assignment qm(xi,xj) of
the j-th neighbor across all the M weight matrices. Given
these soft-assignments, we generalize Eq. (1) and define the
function that maps the features from one layer to the next as

yi = b +

M∑
m=1

1

|Ni|
∑
j∈Ni

qm(xi,xj)Wmxj , (2)

where qm(xi,xj) is the assignment of xj to the m-th weight
matrix, andNi is the set of neighbors of i (including i), and
|Ni| its cardinal.

We define the weights using a soft-max over a linear
transformation of the local feature vectors as

qm(xi,xj) ∝ exp
(
u>mxi + v>mxj + cm

)
, (3)

with
∑M

m=1 qm(xi,xj) = 1, and um, vm and cm
are the parameters of the linear transformation. The
weights involved in the update of node i sum to 1 re-
gardless of the number of neighbors of a node, since∑

j∈Ni

1
|Ni|

∑M
m=1 qm(xi,xj) =

∑
j∈Ni

1
|Ni| = 1. There-

fore, our formulation is robust to variations in the degree of
the nodes. Instead of using a single linear transformation of
the features in Eq. (3), more general transformations may
be used, such as a multi-layer sub-network. Conventional
CNNs over grid-graphs are recovered if ∀i|Ni| = M , and
the assignments are binary, i.e . qm(xi,xj) ∈ {0, 1}, based
on the relative position of neighbors w.r.t. node i. In Fig-
ure 2 we illustrate the computations in a standard grid CNN
and in our graph convolutional network.

In our experiments, Ni contains vertex i and all vertices
connected to i by an edge, i.e . the first ring around vertex
i. Our approach, however, enables using larger neighbor-
hoods, e.g . up to ring k ≥ 2 or or all vertices up to a certain
geodesic distance. This is analogous to filters with larger
spatial support in conventional CNNs. Importantly, and in
contrast to standard CNNs, the above formulation decou-
ples the neighborhood size |Ni| from the number of weight

S
✱

E

=

ED
W1

E

w

h
X

X

D

i
iY

j

W1

E
D

Xj

W1

N

D

M

S

M

E

Yi

E

=
W1

N

Xi

Figure 2. Left: Illustration of a standard CNN, representing the parameters as a set of M = w × h weight matrices, each of size D × E.
Each weight matrix is associated with a single relative position in the input patch. Right: Our graph convolutional network, where each
node in the input patch is associated in a soft manner to each of the M weight matrices based on its features using the weight qm(xi,xj).

matrices M , and thus the number of parameters. As a con-
sequence, filters with larger supports do not necessarily in-
crease the number of parameters. Rather than relying on di-
lation [34] or weight-sharing for large filters, our approach
learns the mapping between weights and neighbors.
Translation invariant assignments in feature space. As
a special case, we can set um = −vm in Eq. (3), which re-
sults in qijm ∝ exp

(
u>m(xj − xi) + cm

)
, and leads to trans-

lation invariance of the weights in the feature space. This is
of particular interest in applications where the input features
include spatial coordinates, in which case it is natural to im-
pose translation invariance on the assignment function. Our
experimental results confirm the positive effect of transla-
tion invariance when using raw spatial 3D coordinates as
input features for shape meshes.
Assignment by Mahalanobis distance in feature space.
Another interesting case occurs when considering a Ma-
halanobis distance to determine the assignments weights
qm(xi,xj). The Mahalanobis distance, parameterized by a
positive definite matrix Σ, between reference points zm and
a centered version of the neighbor features xij = xj − xi,
is given by

dΣ(xij , zm) = (xij − zm)>Σ(xij − zm) (4)
= −2x>ijΣzm + z>mΣzm + x>ijΣxij . (5)

The soft-assignments based on the Mahalanobis distances
fit the form of Eq. (3) with cm = z>mΣzm, um = −2Σzm,
and vm = −um. These soft-assignments may be inter-
preted as the posterior assignments of the neighbor’s cen-
tered feature vectors xij over the components of a Gaussian
mixture model in feature space with means zm and shared
covariance matrix Σ−1.

This mixture model interpretation of the soft-
assignments highlights the connection between our
approach and that of Monti et al . [15]. In the latter, a
similar formulation is used in which centers zm are learned
along with covariance matrices Σm. This mixture is, how-
ever, defined over a-priori defined local pseudo-coordinates
xij over the graph, e.g . local polar coordinates over a mesh,
rather than learned features as in our formulation.

Using this formulation, we can also recover conventional
CNNs over pixel grids as a special case by letting the pixel
coordinates be part of the feature vectors x, having the Ma-
halanobis distance depend only on these coordinates, and
placing the centers zm precisely on the relative positions of
the neighboring pixels. Multiplying the Mahalanobis dis-
tances by a large constant will recover the hard-assignments
used in the standard CNN model of Eq. (1).

3.3. Complexity analysis

The weight matrices Wm are common between a con-
ventional CNN and our approach, and contain MDE pa-
rameters. The only additional parameters in our approach
w.r.t. a conventional CNN are the vectors um,vm, which
contain 2MD parameters. Thus the total number of param-
eters increases only by a factor (E + 2)/E = 1 + 2/E,
ignoring bias terms which contribute very few parameters.

To efficiently evaluate the activations, we first multiply
all feature vectors xi with the weight matrices Wm and
weight vectors um, and vm. This takes O(NMDE) oper-
ations, where N is the number of nodes in the graph. Let K
denote the average number of neighbors of each vertex, we
can then compute the weights in Eq. (3) and the activations
in Eq. (2) in O(NMKE) operations. The total computa-
tional cost is thus O(NME(K + D)).

The cost of a convolutional layer in a conventional CNN
is O(NMED), c.f . Eq. (1). The computational cost of our
approach is thus comparable, provided the number of neigh-
bors K is comparable or smaller than the number of features
D, as is typically the case in practice.

4. Experimental evaluation
We evaluate our approach on 3D shape correspondence

between 3D meshes. In addition, we present results on part
labeling of point cloud data, where we apply our model on
ad-hoc neighborhood graphs.

4.1. 3D shape correspondence

Experimental setup. We follow the experimental setup
in [2, 14, 15] based on the FAUST human shape dataset [1].

Figure 3. Our multi-scale graph convolution architecture.

This dataset consists of 100 watertight meshes with 6,890
vertices each, corresponding to 10 shapes in 10 different
poses each. The shape correspondence problem, between a
given reference shape and any other shape, is formulated as
a vertex labeling problem where the label set consists of all
the 6,890 vertices on the reference shape. The first 80 shape
meshes are used as training data, and the last 20 meshes
are used as test data, corresponding to the 10 poses of two
shapes not seen during training. Exact ground-truth corre-
spondence is known, and the first shape in the first pose is
used as reference. The output of the last soft-max layer at
each vertex gives a probability distribution over the corre-
sponding point on the reference shape.

Unless specified otherwise, we follow the network ar-
chitecture of [14], which is similar to the ones used
in [2, 15]. It consists of the following sequence of lin-
ear layers (1×1 convolutions) and graph convolutions:
Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890; the
numbers indicate the amount of output channels of each
layer. In addition we developed a multi-scale architecture
with pooling and unpooling layers inspired by U-Net [23],
which increases the field of view without losing spatial res-
olution. Following Defferrard et al . [5], we use the Graclus
algorithm [6] to define max-pooling over the graph. Given
a graph with edge weights wij and degrees di =

∑
j wij ,

this greedy clustering algorithm merges in each step the
unmarked nodes that maximize the local normalized cut
wij(d

−1
i +d−1

j), and then marks these nodes as visited. For
simplicity we set all initial edge weights equal to 1. The
coarsened graph has approximately two times fewer nodes,
and the weights in the coarsened graph are set to the sum of
the corresponding weights before coarsening. This process
is repeated to construct a binary tree over the nodes. This
induces a complete ordering which can be used to apply
standard 1-dimensional max-pooling layers, as well as frac-
tionally strided convolution upsampling layers. Our multi-
scale architecture is illustrated in Figure 3.

The models are trained using the standard cross-entropy
classification loss. We use learning rate of 10−2, and a

Translation inv. yes no

XYZ 86% 28%
SHOT 63% 58%

Table 1. Shape correspondence accuracy using different input fea-
tures, with and without translation invariance, M = 9 in all cases.

XYZ SHOT XYZ SHOT

Figure 4. Geodesic errors on two test shapes estimated using
single-scale architecture with XYZ and SHOT feature inputs.

weight decay of 10−4. As input features over the mesh we
either use the 544-dimensional SHOT descriptor [27] used
in earlier work, or the raw 3D XYZ vertex coordinates. The
accuracy is defined as the number of vertices for which the
correspondence prediction is exact, but we also evaluate the
number of correspondence predictions within a certain tol-
erance on the error in terms of geodesic distance.

Results. In Table 1 we evaluate our single-scale model us-
ing the XYZ coordinates and the SHOT descriptor as input,
and with and without translation invariance in our model.
For both descriptors translation invariance improves results.
As expected translation invariance is more important in the
case of raw XYZ inputs, since the coordinates have no built-
in translation invariance while the SHOT descriptor is in-
variant to the absolute position of the local shape. With
translation invariance, the XYZ inputs clearly outperform
the SHOT descriptor, demonstrating that our model can
learn shape features that outperform state-of-the-art hand-
crafted shape descriptors. Unless specified otherwise, we
use XYZ inputs and translation invariance in the remaining
experiments. In Figure 4 we visualize geodesic correspon-
dence errors for both descriptors, clearly showing superior
results using the raw XYZ coordinate input.

We evaluate the impact of the number of weight matri-
ces M in Figure 5. We observe that the performance quickly
improves from M = 2 to M = 8, after which the improve-
ments are smaller. This shows that the internal features
learned by our model are effective to steer the graph con-
volutions and to successfully assign different weight matri-
ces across a graph neighborhood. We use M = 32 for the
remaining experiments.

In Table 2, we present the accuracy obtained with FeaSt-

Figure 7. Visualization of correspondence errors in terms of the geodesic distance to the groundtruth correspondence on three test shapes,
using (from left to right) the single-scale architecture (w/o refinement) and multi-scale architecture without and with refinement.

Method Input Accuracy

Logistic Regr. SHOT 39.9%
PointNet [19] SHOT 49.7%
GCNN [14], w/o refinement SHOT 42.3%
GCNN [14], w/ refinement SHOT 65.4%
ACNN [2], w/o refinement SHOT 60.6%
ACNN [2], w/ refinement [17] SHOT 62.4%
MoNet [15], w/o refinement SHOT 73.8%
MoNet [15], w/ refinement [29] SHOT 88.2%

FeaStNet, w/o refinement XYZ 88.1%
FeaStNet, w/ refinement [29] XYZ 92.2%
FeaStNet, multi scale, w/o refinement XYZ 98.6%
FeaStNet, multi scale, w/ refinement [29] XYZ 98.7%
FeaStNet, multi scale, w/o refinement SHOT 90.9%

Table 2. Correspondence accuracy on the FAUST dataset of our
model and recent state-of-the-art approaches.

2 4 8 16 32 64
50

60

70

80

90

M (Number of weight matrices)

A
cc

ur
ac

y

Figure 5. Accuracy as a function of the number of weight matrices
for the FAUST dataset, using the single scale architecture.

Net using the single-scale and multi-scale architecture, and
compare to state-of-the-art methods. We also evaluate our
best model (translation invariant multi-scale architecture)
using SHOT descriptors, and obtain an accuracy signif-

0 4 8 12 16 20

Geodesic error (cm)

0 0.02 0.04 0.06 0.08 0.1
0.6

0.7

0.8

0.9

1

Geodesic error (% diameter)

%
co

rr
es

po
nd

en
ce

s

GCNN
ACNN
MoNet
FeaStNet

Figure 6. Fraction of geodesic shape correspondence errors within
a certain distance. Dashed curves show results without refinement.

icantly above previous state of the art. Accuracies for
[2, 14, 15] are directly taken from the corresponding pa-
pers, and for PointNet we trained a model using the publicly
available code. For sake of direct comparability, we evalu-
ate the quality of the correspondences directly predicted by
our model, and after post-processing them with the refine-
ment algorithm of Vestner et al . [29] which was also used
by Monti et al . [15]. Using our models we obtain excellent
correspondence predictions. Our multi-scale architecture,
which allows to use more contextual information across the
mesh, predicts 98.6% of the correspondences without any
error. In Figure 6 we plot the percentage of correspon-
dences that are within a given geodesic distance from the
ground truth on the reference shape. Figure 7 visualizes
the geodesic correspondence errors using our single-scale
and multi-scale architectures, and the effect of refinement.
While refinement has only a marginal effect on the accu-
racy, it does in certain cases correct some of the rare rela-
tively large errors. The correspondences predicted by our
multi-scale network improve significantly over the previous
state-of-the-art results of Monti et al . [15].

0 0.05 0.1 0.15 0.2 0.25 0.3
40

50

60

70

80

90

100

Standard deviation of Gaussian noise

A
cc

ur
ac

y

Trained w/o noise
Trained w/ noise

0.05 0.1 0.2

Figure 8. Left: Accuracy as a function of standard deviation of Gaussian noise added to FAUST test shapes. Right: Texture transfer on
test shapes with various levels of additive Gaussian noise using our multi-scale FeaStNet architecture (trained with noisy data).

To evaluate the robustness of our models, we add Gaus-
sian noise to each vertex of the shapes, where we use a
locally adaptive standard deviation proportional to the lo-
cal average inter-vertex distance. We visualize the results
of multi-scale FeaStNet model on these new shapes in Fig-
ure 8. The blue curve demonstrates how the predictive per-
formance deteriorates as the noise increases, when training
on noise-free data. The red curve is obtained when also us-
ing noisy training data, using noise levels 0.01, 0.05, 0.1,
0.15 and 0.2. Adding noise to the training data can be seen
as a form of data augmentation, and makes the model sig-
nificantly more robust.

In Figure 9, we show activations of some randomly se-
lected features learned across some layers our single-scale
model. Across the layers the features become more pose
invariant and more localized as required by the task.

4.2. Part labeling

Experimental setup. To validate our approach on graphs
that are less clean than the ones in the FAUST dataset, we
test it on the ShapeNet part benchmark [33]. The dataset
consists of 16,881 shapes from 16 categories, labeled with
50 parts in total. Ground-truth labels are available on points
sampled from the original shapes, but not on the original
meshes themselves. Therefore, we apply our model on k-
nearest neighbor graphs over the labeled 3D points. We fol-
low the standard experimental protocol [12, 19, 31, 33], and
report the mean intersection over union (mIoU) metric per
category and across all shapes.

For each class a subset of the part labels is used, and
the category labels are know for test shapes. Therefore, we
train the model with a cross-entropy loss over the part la-
bels corresponding to the category of each sample. We use
k = 16 neighbors to construct the graph, and use M = 16
weight matrices. Our architecture consists of the following
layers: Lin16-Conv32-Conv64-Conv128-Lin512-Lin2048-
MaxPool. We concatenate the features from all the layers

Figure 10. Part labeling results on ShapeNet. On each row we
show three test shapes with accurate labeling, and one shape with
the worst labeling in that category. Best viewed in color.

with the global max-pooled features, and feed them to two
linear layers (Lin1024-Lin50) to get the final output.

Results. The results in Table 3 show that we obtain results
that are comparable to the state of the art. This demon-
strates that our approach is not only effective on clean mesh
graphs, but is also directly applicable to nearest neighbor
graphs constructed from point clouds. We show results with
number of nearest neighbors k = 16 as we did not observe

L
ay

er
1

(L
in

16
)

L
ay

er
5

(L
in

25
6)

Figure 9. Visualization of activations of randomly selected features across first and last layers of our single-scale FeaStNet architecture
using coordinates (xyz) as input. The first four columns show different features on a single shape, while the last four columns show another
random feature across different shapes.

overall aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
plane phone bike board

Number of shapes 16,881 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

Wu [31] - 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8
Yi [33] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
PointNet [19] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
Kd-network [12] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

FeaStNet (this paper) 81.5 79.3 74.2 69.9 71.7 87.5 64.2 90.0 80.1 78.7 94.7 62.4 91.8 78.3 48.1 71.6 79.6

Table 3. Part labeling accuracy in mIoU on the ShapeNet part dataset of our model and recent state-of-the-art approaches.

much difference when varying k. In particular, we obtained
mIoU of 79.9% (k = 4), 80.8% (k = 8), 81.5% (k = 16),
80.9% (k = 32). We provide part labeling results on sev-
eral test shapes from seven categories in Figure 10. The
failure cases mostly concern atypical shapes, e.g . for table
and chair, and cases where the boundary between object la-
bels is poorly estimated, e.g . for bag, guitar and gun.

5. Conclusion
We presented FeaStNet, a novel graph-convolutional

architecture which is based on local filtering and applies
to generic graph structures, both regular and irregular. The
main novelty is that our architecture determines local filters
dynamically based on the features in the preceding layer of
the network. The network thus learns features that are (i)

effective to shape the local filters, and (ii) informative for
the final prediction task. We obtain results that significantly
improve over the state-of-the-art for 3D mesh correspon-
dence on the FAUST dataset, and results comparable to the
state of the art for part labeling on the ShapeNet dataset
where we apply our model on k-nearest neighbor graphs
over point clouds. In the future we plan to extend our
architecture to model other properties of 3D shapes, such
as appearance or motion patterns. The TensorFlow-based
implementation to replicate our experiments can be found
at: https://github.com/nitika-verma/FeaStNet

Acknowledgment. This work was in part supported
by the French research agency contracts ANR16-CE23-
0006 and ANR-11-LABX-0025-01.

References
[1] F. Bogo, J. Romero, M. Loper, and M. Black. FAUST:

Dataset and evaluation for 3D mesh registration. In CVPR,
2014.

[2] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-
ing shape correspondence with anisotropic convolutional
neural networks. In NIPS, 2016.

[3] B. D. Brabandere, X. Jia, T. Tuytelaars, and L. V. Gool. Dy-
namic filter networks. In NIPS, 2016.

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral net-
works and locally connected networks on graphs. In ICLR,
2014.

[5] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In NIPS, 2016.

[6] I. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts with-
out eigenvectors: A multilevel approach. PAMI, 29(11),
2007.

[7] R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta. Learn-
ing a predictable and generative vector representation for ob-
jects. In ECCV, 2016.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV, 2016.

[9] M. Henaff, J. Bruna, and Y. LeCun. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

[10] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu. Spatial transformer networks. In
NIPS, 2015.

[11] T. Kipf and M. Welling. Semi-supervised classification with
graph convolutional networks. In ICLR, 2017.

[12] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-
networks for the recognition of 3D point cloud models. In
ICCV, 2017.

[13] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
52:436–444, 2015.

[14] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on Riemannian
manifolds. In ICCV Workshops, 2015.

[15] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and
M. Bronstein. Geometric deep learning on graphs and mani-
folds using mixture model CNNs. In CVPR, 2017.

[16] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolu-
tional neural networks for graphs. In ICML, 2016.

[17] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and
L. Guibas. Functional maps: A flexible representation of
maps between shapes. ACM Trans. Graph., 31(4), 2012.

[18] D. Palaz, M. Magimai-Doss, and R. Collobert. Analysis of
CNN-based speech recognition system using raw speech as
input. In InterSpeech, 2015.

[19] C. Qi, H. Su, K. Mo, and L. Guibas. Pointnet: Deep learn-
ing on point sets for 3D classification and segmentation. In
CVPR, 2017.

[20] C. Qi, L. Yi, H. Su, and L. Guibas. Pointnet++: Deep hier-
archical feature learning on point sets in a metric space. In
NIPS, 2017.

[21] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: to-
wards real-time object detection with region proposal net-
works. In NIPS, 2015.

[22] G. Riegler, A. Ulusoy, and A. Geiger. Octnet: Learning deep
3d representations at high resolutions. In CVPR, 2017.

[23] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical Image Computing and Computer-Assisted Intervention,
2015.

[24] M. Simonovsky. Dynamic edge-conditioned filters in convo-
lutional neural networks on graphs. In CVPR, 2017.

[25] A. Sinha, J. Bai, and K. Ramani. Deep learning 3D shape
surfaces using geometry images. In ECCV, 2016.

[26] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-
erating networks: Efficient convolutional architectures for
high-resolution 3D outputs. In ICCV, 2017.

[27] F. Tombari, S. Salti, and L. D. Stefano. Unique signatures of
histograms for local surface description. In ECCV, 2010.

[28] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3D convolutional net-
works. In ICCV, 2015.

[29] M. Vestner, R. Litman, E. Rodola, A. Bronstein, and D. Cre-
mers. Product manifold filter: Non-rigid shape correspon-
dence via kernel density estimation in the product space. In
CVPR, 2017.

[30] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense
human body correspondence using convolutional networks.
In CVPR, 2016.

[31] Z. Wu, R. Shou, Y. Wang, and X. Liu. Interactive shape co-
segmentation via label propagation. Computers & Graphics,
38:248–254, 2014.

[32] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In ICML,
2015.

[33] L. Yi, V. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu,
Q. Huang, A. Sheffer, and L. Guibas. A scalable active
framework for region annotation in 3D shape collections. In
SIGGRAPH Asia, 2016.

[34] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In ICLR, 2016.

