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Abstract

Unseen Action Recognition (UAR) aims to recognise
novel action categories without training examples. While
previous methods focus on inner-dataset seen/unseen splits,
this paper proposes a pipeline using a large-scale train-
ing source to achieve a Universal Representation (UR) that
can generalise to a more realistic Cross-Dataset UAR (CD-
UAR) scenario. We first address UAR as a Generalised
Multiple-Instance Learning (GMIL) problem and discover
‘building-blocks’ from the large-scale ActivityNet dataset
using distribution kernels. Essential visual and semantic
components are preserved in a shared space to achieve the
UR that can efficiently generalise to new datasets. Pre-
dicted UR exemplars can be improved by a simple se-
mantic adaptation, and then an unseen action can be di-
rectly recognised using UR during the test. Without fur-
ther training, extensive experiments manifest significant im-
provements over the UCF101 and HMDB51 benchmarks.

1. Introduction
The field of human action recognition has advanced

rapidly over the past few years. We have moved from
manually designed features [41, 8] to learned convolutional
neural network (CNN) features [39, 15]; from encoding
appearance information to encoding motion information
[37, 40, 36]; and from learning local features to learning
global video features [42, 6, 19]. The performance has con-
tinued to soar higher as we incorporate more of the steps
into an end-to-end learning framework [56, 55]. However,
such robust and accurate action classifiers often rely on
large-scale training video datasets using deep neural net-
works, which require large numbers of expensive annotated
samples per action class. Although several large-scale video
datasets have been proposed like Sports-1M [15], Activi-
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tyNet [13], YouTube-8M [1] and Kinetics [16], it is prac-
tically infeasible and extremely costly to annotate action
videos with the ever-growing need of new categories.

Zero-shot action recognition has recently drawn consid-
erable attention because of its ability to recognize unseen
action categories without any labelled examples. The key
idea is to make a trained model that can generalise to unseen
categories with a shared semantic representation. The most
popular side information being used are attributes, word
vectors and visual-semantic embeddings. Such zero-shot
learning frameworks effectively bypass the data collection
limitations of traditional supervised learning approaches,
which makes them more promising paradigms for UAR.

Extensive work on zero-shot action recognition has been
done in the past five years. [22, 10, 12, 26, 24] considered
using attributes for classifications. These attribute-based
methods are easy to understand and implement, but hard
to define and scale up to a large-scale scenario. Semantic
representations like word vectors [9, 3, 25] are thus pre-
ferred since only category names are required for construct-
ing the label embeddings. There also has been much recent
work on using visual-semantic embeddings extracted from
pre-trained deep networks [14, 44, 28] due to their superior
performance over single view word vectors or attributes.

However, whichever side information we adopt, the gen-
eralisation capability of these approaches is not promising,
which is referred to as the domain shift problem. Most pre-
vious work thus still focuses on inner-dataset seen/unseen
splits. This is not very practical since each new dataset or
each category will require re-training. Motivated by such
a fact we propose to utilise a large-scale training source
to achieve a Universal Representation (UR) that can auto-
matically generalise to a more realistic Cross-Dataset UAR
(CD-UAR) scenario. Unseen actions from new datasets can
be directly recognised via the UR without further training
or fine-tuning on the target dataset.

The proposed pipeline is illustrated in Fig. 1. We first
leverage the power of deep neural networks to extract vi-
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Figure 1. The proposed CD-UAR pipeline: 1) Extract deep features for each frame and summarise the video by essential components that
are kernelised by GMIL; 2) Preserve shared components with the label embedding to achieve UR using NMF with JSD; 3) New concepts
can be represented by UR and adjusted by domain adaptation. Test (green line): unseen actions are encoded by GMIL using the same
essential components in ActivityNet to achieve a matching using UR.

sual features, which results in a Generative Multiple In-
stance Learning (GMIL) problem. Namely, all the visual
features (instances) in a video share the label while only a
small portion is determinative. Compared to conventional
global summaries of visual features using Bag-of-Visual-
Word or Fisher Vector encoding, GMIL aims to discover
those essential “building-blocks” to represent actions in the
source and target domains and suppress the ambiguous in-
stances. We then introduce our novel Universal Representa-
tion Learning (URL) algorithm composed of Non-negative
Matrix Factorisation (NMF) with a Jensen-Shannon Diver-
gence (JSD) constraint. The non-negativity property of
NMF allows us to learn a part-based representation, which
serves as the key bases between the visual and semantic
modalities. JSD is a symmetrised and bounded version of
the Kullback-Leibler divergence, which can make balanced
generalisation to new distributions of both visual and se-
mantic features. A representation that can generalise to both
visual and semantic views, and both source and target do-
mains, is referred to as the UR. More insighs of NMF, JSD,
and UR will be discussed in the experiments. Our main
contributions can be summarised as follows:

• This paper extends conventional UAR tasks to more
realistic CD-UAR scenarios. Unseen actions in new
datasets can be directly recognised via the UR without
further training or fine-tuning on the target dataset.

• We propose a CD-UAR pipeline that incorporates
deep feature extraction, Generative Multiple Instance
Learning, Universal Representation Learning, and se-
mantic domain adaptation.

• Our novel URL algorithm unifies NMF with a JSD
constraint. The resultant UR can substantially preserve
both the shared and generative bases of visual semantic

features so as to withstand the challenging CD-UAR
scenario.

• Extensive experiments manifest that the UR can ef-
fectively generalise across different datasets and out-
perform state-of-the-art approaches in inductive UAR
scenarios using either low-level or deep features.

2. Related Work
Zero-shot human action recognition has advanced

rapidly due to its importance and necessity as aforemen-
tioned. The common practice of zero-shot learning is to
transfer action knowledge through a semantic embedding
space, such as attributes, word vectors or visual features.

Initial work [22] has considered a set of manually de-
fined attributes to describe the spatial-temporal evolution of
the action in a video. Gan et al. [12] investigated the prob-
lem of how to accurately and robustly detect attributes from
images or videos, and the learned high-quality attribute de-
tectors are shown to generalize well across different cate-
gories. However, attribute-based methods suffer from sev-
eral drawbacks: (1) Actions are complex compositions in-
cluding various human motions and human-object interac-
tion. It is extremely hard (e.g., subjective, labor-intensive,
lack of domain knowledge) to determine a set of attributes
for describing all actions; (2) Attribute-based approaches
are not applicable for large-scale settings since they always
require re-training of the model when adding new attributes;
(3) Despite the fact that the attributes can be data-driven
learned or semi-automatically defined [10], their semantic
meanings may be unknown or inappropriate.

Hence, word vectors have been preferred for zero-shot
action recognition, since only category names are required
for constructing the label embeddings. [9, 45] are among
the first works to adopt semantic word vector spaces as the



intermediate-level embedding for zero-shot action recogni-
tion. Following [45], Alexiou et al. [3] proposed to explore
broader semantic contextual information (e.g., synonyms)
in the text domain to enrich the word vector representation
of action classes. However, word vectors alone are deficient
for discriminating various classes because of the semantic
gap between visual and textual information.

Thus, a large number of recent works [14, 21, 44, 43]
exploit large object/scene recognition datasets to map ob-
ject/scene scores in videos to actions. This makes sense
since objects and scenes could serve as the basis to construct
arbitrary action videos and the semantic representation can
alleviate such visual gaps. The motivation can also be as-
cribed to the success of CNNs [49, 51, 48]. With the help of
off-the-shelf object detectors, such methods [28] could even
perform zero-shot spatio-temporal action localization.

There are also other alternatives to solve zero-shot ac-
tion recognition. Gan et al. [11] leveraged the semantic
inter-class relationships between the known and unknown
actions followed by label transfer learning. Such similarity
mapping doesn’t require attributes. Qin et al. [32] formu-
lated zero-shot learning as designing error-correcting out-
put codes, which bypass the drawbacks of using attributes
or word vectors. Due to the domain shift problem, several
works have extended the methods above using either trans-
ductive learning [9, 46] or domain adaptation [17, 47].

However, all previous methods focus on inner-dataset
seen/unseen splits while we extend the problem to CD-
UAR. This scenario is more realistic and practical; for ex-
ample, we can directly recognise unseen categories from
new datasets without further training or fine-tuning. Though
promising, CD-UAR is much more challenging compared
to conventional UAR. We contend that when both CD and
UAR are considered, the severe domain shift exceeds the
generalization capability of existing approaches. Hence, we
propose the URL algorithm to obtain a more robust univer-
sal representation. Our novel CD-UAR pipeline dramati-
cally outperforms both conventional benchmarks and state-
of-the-art approaches, which are in inductive UAR scenar-
ios using low-level features and CD-UAR using deep fea-
tures, respectively. One related work also applies NMF to
zero-shot image classification [50]. Despite the fact that
promising generalisation is reported, which supports our in-
sights, it still focuses on inner-class splits without consid-
ering CD-UAR. Also, their sparsity constrained NMF has
completely different goals to our methods with JSD.

3. Approach
In this section, we first formalise the problem and clar-

ify each step as below. We then introduce our CD-UAR
pipeline in detail, which includes Genearalised Multiple-
Instance Learning, Universal Representation Learning and
semantic adaptation.

Solution: Feature Learning+ Ambiguity Removal

Figure 2. Visualisation of feature distributions of action ‘long-
jump’ and ‘triple-jump’ in the ActivityNet dataset using tSNE.

Training Let (x1, y1), · · · , (xNs
, yNs

) ⊆ Xs × Ys denote
the training actions and their class labels in pairs in the
source domain Ds, where Ns is the training sample size;
each action xi has Li frames in aD-dimensional visual fea-
ture space [xi] = (x1

i , ...,x
Li
i ) ∈ RD×Li ; yi ∈ {1, · · · , C}

consists of C discrete labels of training classes.
Inference Given a new dataset in the target domain Dt

with Cu unseen action classes that are novel and distinct,
i.e. Yu = {C + 1, ..., C + Cu} and Yu ∩ Ys = ∅, the
key solution to UAR needs to associate these novel con-
cepts to Ds by human teaching. To avoid expensive anno-
tations, we adopt Word2vec semantic (S) label embedding
(ŝ1, ŷ1), · · · , (ŝCu

, ŷCu
) ⊆ Su × Yu. Hat and subscript

u denote information about unseen classes. Inference then
can be achieved by learning a visual-semantic compatibility
function minL(Φ(Xs),Ψ(Ss)) that can generalise to Su.
Test Using the learned L, an unseen action x̂ can be recog-
nised by f : Φ(x̂)→ Ψ(Su)× Yu.

3.1. Genearalised Multiple-Instance Learning

Conventional summary of xi can be achieved by Bag-
of-Visual-Words or Fisher Vectors [31]. In GMIL, it is as-
sumed that instances in the same class can be drawn from
different distributions. Let P (·) denote the space of Borel
probability measures over its argument, which is known as
a bag. Conventionally, it is assumed that some instances are
attractive P+(x) while others are repulsive P−(x). This
paper argues that many instances may exist in neutral bags.
In Fig. 2, we show an example of visual feature distribu-
tions of ‘long-jump’ and ‘triple-jump’. Each point denotes
a frame. While most frames fall in the neutral bags (red
thumb), only a few frames (green thumb) are attractive to
one class and repulsive to others. The neutral bags may
contain many basic action bases shared by classes or just
background noise. Conventional Maximum Mean Discrep-
ancy [7] may not well represent such distributions. Instead,
this paper adopts the odds ratio embedding, which aims to
discover the most attractive bases to each class c and sup-
press the neutral ones. This can be simply implemented by



the pooled Naive Bayes Nearest Neighbor (NBNN) kernel
[33] at the ‘bag-level’. We conduct k-means on each class
to cluster them into H bags. The associated kernel function
is:

k(x,x′) = φ(x)Tφ(x′), (1)

where Φ(Xs) = [φ(xi)] = [φ1(xi), ..., φ
CH(xi)]

T is the
kernelised representation with odds ratio [27] applies to
each kernel embedding: φci(x) =

∑Li

l=1 log p(c|xl)
p(c̄|xl)

. Spe-
cific implementation details can be found in the supplemen-
tary material. In this way, we discover C × H bases as
‘building-blocks’ to represent any actions in both the source
and target domains.

3.2. Universal Representation Learning

For clarity, we use A = Φ(Xs) and B = Ss to de-
fine the visual and semantic embeddings in the source do-
main Ds : A × B. Towards universal representation, we
aim to find a shared space that can: 1) well preserve the key
bases between visual and semantic modalities; 2) generalise
to new distributions of unseen datasets. For the former, let
A = [a1, · · · ,aNs ] ∈ RM1×Ns

≥0 and B = [b1, · · · ,bNs ] ∈
RM2×Ns

≥0 ; M1 = C × H and M2 = L. NMF is employed
to find two nonnegative matrices from A: U ∈ RM1×D1

≥0

and V1 ∈ RD1×Ns

≥0 and two nonnegative matrices from B:
W ∈ RM2×D2

≥0 and V2 ∈ RD2×Ns

≥0 with full rank whose
product can approximately represent the original matrix A
and B, i.e., A ≈ UV1 and B ≈ WV2. In practice, we set
D1 < min(M1, Ns) and D2 < min(M2, Ns). We constrain
the shared coefficient matrix: V1 = V2 = V ∈ RD×Ns

≥0 .
For the latter aim, we introduce JSD to preserve the gen-
erative components from the GMIL and use these essential
‘building-blocks’ to generalise to unseen datasets. Hence,
the overall objective function is given as:

L = min
U,W,V

‖A− UV ‖2F +‖B −WV ‖2F

+η JSD, s.t. U,W, V ≥ 0,
(2)

where ‖·‖F is the Frobenius norm; η is a smoothness pa-
rameter; JSD is short for the following equation:

JSD(PA||PB) =
1

2
KL(PA||Q) +

1

2
KL(PB ||Q)

=
1

2

∑
i

∑
j

pijA log pijA − p
ij
A log qij

+
1

2

∑
i

∑
j

pijB log pijB − p
ij
B log qij

(3)

where PA and PB are probability distributions in space A
andB. We aim to find the joint probability distributionQ in
the shared space V that is generalised to by PA and PB and
their shifted distributions in the target domain. Specifically,

JSD can be estimated pairwise as:

pijA =
g(ai,aj)∑
k 6=l g(ak,al)

pijB =
g(bi,bj)∑
k 6=l g(bk,bl)

qij =
(1 + ‖vi − vj‖2)−1∑
k 6=l(1 + ‖vk − vl‖2)−1

.

(4)

Without loss of generality, this paper use the cross-
entropy distance to implement g(·).

3.2.1 Optimization

Let the Lagrangian of Eq. 2 be:

L = ‖A− UV ‖2 + ‖B −WV ‖2 + η JSD

+ tr(ΦUT ) + tr(ΘWT ) + tr(ΨV T ),
(5)

where Φ, Θ and Ψ are three Lagrangian multiplier matrices.
tr(·) denotes the trace of a matrix. For clarity, JSD in Eq. 3
is simply denoted as G. We define two auxiliary variables
dij and Z as follows:

dij = ‖vi − vj‖ and Z =
∑
k 6=l

(1 + d2
kl)
−1. (6)

Note that if vi changes, the only pairwise distances that
change are dij and dji. Therefore, the gradient of function
G with respect to vi is given by:

∂G

∂vi
= 2

N∑
j=1

∂G

∂dij
(vi − vj). (7)

Then ∂G
∂dij

can be calculated by JS divergence in Eq. (3):

∂G

∂dij
=−η

2

∑
k6=l

(pklA+pklB)

(
1

qklZ

∂((1+d2
kl)
−1)

∂dij
−1

Z

∂Z

∂dij

)
. (8)

Since ∂((1+d2
kl)

−1)
∂dij

is nonzero if and only if k = i and
l = j, and

∑
k 6=l pkl = 1, it can be simplified as:

∂G

∂dij
= η(pijA + pijB − 2qij)(1 + d2

ij)
−1. (9)

Substituting Eq. (9) into Eq. (7), we have the gradient of
the JS divergence as:

∂G

∂vi
=2η

N∑
j=1

(pijA+pijB−2qij)(vi−vj)(1+‖vi−vj‖2)−1.

(10)



Let the gradients of L be zeros to minimize Of :

∂L
∂V

=2(−UTA+UTUV−WTB+WTWV )+
∂G

∂V
+Ψ=0, (11)

∂L
∂U

= 2(−AV T + UV V T ) + Φ = 0, (12)

∂L
∂W

= 2(−BWT +WV V T ) + Θ = 0. (13)

In addition, we also have KKT conditions: ΦijUij = 0,
ΘijWij = 0 and ΨijVij = 0, ∀i, j. Then multiplying Vij ,
Uij and Wij in the corresponding positions on both sides of
Eqs. (11), (12) and (13) respectively, we obtain:(

2(−UTA+UTUV−WTB+WTWV )+∂G
∂vi

)
ij
Vij=0, (14)

2(−AV T + UV V T )ijUij = 0, (15)

2(−BV T +WV V T )ijWij = 0. (16)

Note that(
∂G

∂vj

)
i

=

(
2η

N∑
k=1

(pjkA + pjkB − 2qjk)(vj − vk)

1 + ‖vj − vk‖2

)
i

= 2η

N∑
k=1

(pjkA + pjkB − 2qjk)(Vij − Vik)

1 + ‖vj − vk‖2
.

The multiplicative update rules of the bases of both W
and U for any i and j are obtained as:

Uij←
(AV T )ij

(UV V T )ij
Uij , (17)

Wij←
(BV T )ij

(WV V T )ij
Wij . (18)

The update rule of the shared space preserving the coeffi-
cient matrix V between the visual and semantic data spaces
is:

Vij←
(UTA)ij+(WTB)ij+Υ

(UTUV )ij+(WTWV )ij+Γ
Vij , (19)

where for simplicity, we let Υ = η
N∑
k=1

(pjk
A+pjk

B )Vik+2qjkVij

1+‖vj−vk‖2 ,

Γ = η
N∑
k=1

(pjk
A+pjk

B )Vij+2qjkVik

1+‖vj−vk‖2 .

All the elements in U , W and V can be guaranteed to
be nonnegative from the allocation. [20] proves that the ob-
jective function is monotonically non-increasing after each
update of U , W or V . The proof of convergence about U ,
W and V is similar to that in [53, 5].

3.2.2 Orthogonal Projection

After U , W and V have converged, we need two projection
matrices PA and PB to project A and B into V . However,
since our algorithm is NMF-based, a direct projection to the
shared space does not exist. Inspired by [4], we learn two
rotations to protect the data originality while projecting it
into the universal space, which is known as the Orthogonal
Procrustes problem [35]:

min
PA

‖PAA− V ‖, s.t. PT
APA = I,

min
PB

‖PBB − V ‖, s.t. PT
BPB = I,

(20)

where I is an identity matrix. According to [52], orthogonal
projection has the following advantages: 1) It can preserve
the data structure; 2) It can redistribute the variance more
evenly, which maximally decorrelates dimensions. The op-
timisation is simple. We first use the singular value de-
composition (SVD) algorithm to decompose the matrix:
ATV = QΣST . Then PA = SΛQT , where Λ is a con-
nection matrix as Λ = [I,0] ∈ RD×M and 0 indicates all
zeros in the matrix. PB is achieved in the same way. Given
a new dataset Dt, semantic embeddings Bu = Su can be
projected into V as class-level UR prototypes in an unseen
action gallery V̂B = PBBu. A test example â can be simply
predicted by nearest neighbour search:

ŷ = arg max
C+16u6C+Cu

‖PAâ− v̂Bu
‖22, (21)

where v̂Bu
∈ V̂B . The overall Universal Representation

Learning (URL) is summarised in Algorithm 1.

Algorithm 1 Universal Representation Learning (URL)
Require:

Source domain Ds: A ∈ RM1×N and B ∈ RM2×N ;
number of bases D; hyper-parameter η;

Ensure: The basis matricesU ,W , orthogonal projections
PA and PB .

1: Initialize U , W and V with uniformly distributed ran-
dom values between 0 and 1.

2: repeat
3: Compute the basis matrices U and W and UR matrix
V via Eqs. (17), (18) and (19), respectively;

4: until convergence
5: SVD decomposes the matrices ATV and BTV to ob-

tain QAΣS
T
A and QBΣS

T
B

6: PA = SAΩQ
T
A; PB = SBΩQ

T
B

3.3. Computational Complexity Analysis

The UAR test can be achieved by efficient NN search
among a small number of prototypes. The training con-



sists of three parts. For NMF optimisation, each it-
eration takes O(max{M1ND,M2ND}). In compari-
son, the basic NMF algorithm in [20] applied to A and
B separately will have complexity of O(M1ND) and
O(M2ND) respectively. In other words, our algorithm is
no more complex than the basic NMF. The second regres-
sion requires SVD decomposition which has complexity
O(2N2D). Therefore, the total computational complexity
is: O(max{M1ND,M2ND}t+2N2D), w.r.t. the number
of iterations t.

3.4. Semantic Adaptation

Since we aim to make the UR generalise to new datasets,
the domain shift between Ds and Du is unknown. For
improved performance, we can use the semantic informa-
tion of the target domain to approximate the shift. The
key insight is to measure new unseen class labels using
our discovered ‘building blocks’. Because the learnt UR
can reliably associate visual and semantic modalities, i.e.
V̂A ∼ V̂B we could approximate the seen-unseen discrep-
ancy VA → V̂A by VA → V̂B .

To this end, we employ Transfer Joint Matching
(TJM) [23], which achieves feature matching and instance
reweighing in a unified framework. We first mix the
projected semantic embeddings of unseen classes with
our training samples in the UR space by [VA, V̂B ] ∈
RD×(Ns+Cu), where VA = PAA. TJM can provide an
adaptive matrix A and a kernel matrix K:

LTJM (VA, V̂B)→ (A,K), (22)

through which we can achieve the adapted unseen class
prototypes V̂ ′B in the UR space via Z = ATK = [V ′A, V̂

′
B ].

Unseen Action Recognition Given a test action x̂, we
first convert it into a kernelised representation using the
trained GMIL kernel embedding in Eq. 1: â =
[φ1(x̂), ..., φCH(x̂)]T . Similar to Eq. 21, we can now make
a prediction using the adapted unseen prototypes:

ŷ = arg max
C+16u6C+Cu

‖PAâ− v̂′Bu
‖22. (23)

4. Experiments

We perform the URL on the large-scale ActivityNet [13]
dataset. Cross-dataset UAR experiments are conducted on
two widely-used benchmarks, UCF101 [38] and HMDB51
[18]. UCF101 and HMDB51 contain trimmed videos while
ActivityNet contains untrimmed ones. We first compare our
approach to state-of-the-art methods using either low-level
or deep features. To understand the contribution of each
component of our method, we also provide detailed analysis
of possible alternative baselines.

Method Feature Setting HMDB51 UCF101
ST [45] BoW T 15.0±3.0 15.8±2.3
ESZSL [34] FV I 18.5±2.0 15.0±1.3
SJE [2] FV I 13.3±2.4 9.9±1.4
MTE [47] FV I 19.7±1.6 15.8±1.3
ZSECOC [32] FV I 22.6±1.2 15.1±1.7
Ours FV I 24.4±1.6 17.5±1.6
Ours FV T 28.9±1.2 20.1±1.4
Ours GMIL-D CD 51.8±0.7 42.5±0.9

Table 1. Comparison with state-of-the-art methods using standard
low-level features. Last two sets of results are just for reference.
T: transductive; I: inductive; Results are in %.

4.1. Settings

Datasets ActivityNet1 consists of 10024 training, 4926 val-
idation, and 5044 test videos from 200 activity classes.
Each class has at least 100 videos. Since the videos are
untrimmed, a large proportion of videos have a duration be-
tween 5 and 10 minutes. UCF101 is composed of realistic
action videos from YouTube. It contains 13320 video clips
distributed among 101 action classes. Each class has at least
100 video clips and each clip lasts an average duration of
7.2s. HMDB51 includes 6766 videos of 51 action classes
extracted from a wide range of sources, such as web videos
and movies. Each class has at least 101 video clips and each
clip lasts an average duration of 4.3s.
Visual and Semantic Representation For all three
datasets, we use a single CNN model to obtain the video
features. The model is a ResNet-200 initially trained on
ImageNet and fine-tuned on ActivityNet dataset. Overlap-
ping classes between ActivityNet and UCF101 are not used
during fine-tuning. We adopt the good practices from tem-
poral segment networks (TSN) [42], which is one of the
state-of-the-art action classification frameworks. We extract
feature from the last average pooling layer (2048-d) as our
frame-level representation. Note that we only use features
extracted from a single RGB frame. We believe better per-
formance could be achieved by considering motion infor-
mation, e.g. features extracted from multiple RGB frames
[39] or consecutive optical flow [37, 57, 54]. However, our
primary aim is to demonstrate the ability of universal rep-
resentations. Without loss of generality, we use the widely-
used skip-gram neural network model [29] that is trained
on Google News dataset and represent each category name
by an L2-normalized 300-d word vector. For multi-word
names, we use accumulated word vectors [30].
Implementation Details For GMIL, we estimate the
pooled local NBNN kernel [33] using knn = 200 to esti-
mate the odds-ratio in [27]. The best hyper-parameter η for
URL and that in TJM are achieved through cross-validation.
In order to enhance the robustness, we propose a leave-one-
hop-away cross validation. Specifically, the training set of

1We use the latest release 1.3 of ActivityNet for our experiments



Method Train Test Splits Accuracy (%)
Jain et al. [14] - 101 3 30.3
Mettes and Snoek [28] - 101 3 32.8
Ours - 101 3 34.2
Kodirov et al. [17] 51 50 10 14.0
Liu et al. [22] 51 50 5 14.9
Xu et al. [47] 51 50 50 22.9
Li et al. [21] 51 50 30 26.8
Mettes and Snoek [28] - 50 10 40.4
Ours - 50 10 42.5
Kodirov et al. [17] 81 20 10 22.5
Gan et al. [12] 81 20 10 31.1
Mettes and Snoek [28] - 20 10 51.2
Ours - 20 10 53.8

Table 2. Comparison with state-of-art methods on different splits
using deep features.

ActivityNet is evenly divided into 5 hops according to the
ontological structure. In each iteration, we use 1 hop for
validation while the other furthest 3 hops are used for train-
ing. Except for feature extraction, the whole experiment is
conducted on a PC with an Intel quad-core 3.4GHz CPU
and 32GB memory.

4.2. Comparison with State-of-the-art Methods

Comparison Using Low-level Features Since most exist-
ing methods are based on low-level features, we observe a
significant performance gap. For fair comparison, we first
follow [32] and conduct experiments in a conventional in-
ductive scenario. The seen/unseen splits for HMDB51 and
UCF101 are 27/26 and 51/50, respectively. Visual features
are 50688-d Fisher Vectors of improved dense trajectory
[41], which are provided by [47]. Semantic features use
the same Word2vec model. Without local features for each
frame, our training starts from the URL. Note some meth-
ods [45] are also based on a transductive assumption. Our
method can simply address such a scenario by incorporating
V̂A into the TJM domain adaptation. We report our results
in Table 1. The accuracy is averaged over 10 random splits.

Our method outperforms all of the compared state-of-
the-art methods in the same inductive scenario. Although
the transductive setting to some extent violates the ‘unseen’
action recognition constraint, the TJM domain adaptation
method shows significant improvements. However, none
of the compared methods are competitive to the proposed
pipeline even though it is completely inductive plus cross-
dataset challenge.
Comparison Using Deep Features In Table 2, we follow
recent work [28] which provides the most comparisons to
related zero-shot approaches. Due to many different data
splits and evaluation metrics, the comparison is divided into
the three most common settings, i.e. using the standard su-
pervised test splits; using 50 randomly selected actions for
testing; and using 20 actions randomly for testing.

The highlights of the comparison are summarised as fol-

1 2

3 4
Figure 3. Convergence analysis w.r.t. # iterations. (1) is the overall
loss in Eq. 2. (2) is the JSD loss. (3) and (4) show decomposition
losses of A and B, respectively.

lows. First, [28] is also a deep-feature based approach,
which employs a GoogLeNet network, pre-trained on a
12,988-category shuffle of ImageNet. In addition, it adopts
the Faster R-CNN pre-trained on the MS-COCO dataset.
Secondly, it also does not need training or fine-tuning on
the test datasets. In other words, [28] shares the same spirit
to our cross-dataset scenario, but from an object detection
perspective. By contrast, our CD-UAR is achieved by pure
representation learning. Overall, this is a fair comparison
and worthy of a thorough discussion.

Our method consistently outperforms all of the com-
pared approaches, with minimum margins of 1.4%, 2.1%,
and 2.6% over [28], respectively. Note that, other than [14]
which is also deep-model-based, there are no other compet-
itive results. Such a finding suggests future UAR research
should focus on deep features instead. Besides visual fea-
tures, we use the similar skip-gram model of Word2vec for
label embeddings.Therefore, the credit of performance im-
provements should be given to the method itself.

4.3. In-depth Analysis

Since our method outperforms all of the compared
benchmarks, to further understand the success of the
method, we conduct 5 baselines as alternatives to our main
approach. The results are summarised in Table 3.
Convergence Analysis Before analysing baselines, we first
show examples of convergence curves in Fig. 3 during our
URL optimisation. It can be seen the overall loss reliably
converges after approximately 400 iterations. The JSD con-
straint in (2) gradually resolves while the decomposition
losses (3) and (4) tend to be competing to each other. This
can be ascribed to the difference of ranks betweenA andB.
While A is instance-level kernelised features, B is class-
level Word2vec that has much lower rank than that of A.
The alternation in each iteration reweighs A and B once in
turn, despite the overall converged loss.



Dataset HMDB51 UCF101
Setting Cross-Dataset Transductive Cross-Dataset Transductive
GMIL+ESZSL[34] 25.7 30.2 19.8 24.9
UR Dimensionality Low High Low High Low High Low High
Fisher Vector 47.7 48.6 53.9 54.6 35.8 39.7 42.2 43.0
NMF (no JSD) 17.2 18.0 19.2 20.4 15.5 17.4 18.2 19.8
CCA 13.8 12.2 18.2 17.1 8.2 9.6 12.9 13.6
No TJM 48.9 50.5 51.8 53.9 32.5 36.6 38.1 38.6
Ours 49.6 51.8 57.8 58.2 36.1 42.5 47.4 49.9

Table 3. In-depth analysis with baseline approaches. ‘Ours’ refers to the complete pipeline with deep features, GMIL kernel embedding,
URL with NMF and JSD, and TJM. (Results are in %).

Pipeline Validation Due to the power of deep features
demonstrated by the above comparison, an intuitive as-
sumption is that the CD-UAR can be easily resolved by
deep features. We thus use the same GMIL features fol-
lowed by a state-of-the-art ESZSL [34] using RBF ker-
nels. The performance in Table 1 (15.0%) is improved to
(19.8%), which is marginal to our surprise. Such a results
shows the difficulty of CD-UAR while confirms the contri-
bution of the proposed pipeline.
GMIL vs FV As we stated earlier, the frame-based action
features can be viewed as the GMIL problem. Therefore,
we change the encoding to conventional FV and keep the
rest of the pipeline. It can be seen that the average per-
formance drop is 2% with as high as 6.9% in transductive
scenario on UCF101.
Separated Contribution Our URL algorithm is arguably
the main contribution in this paper. To see our progress over
conventional NMF, we set η = 0 to remove the JSD con-
straint. As shown in Table 3, the performance is severely
degraded. This is because NMF can only find the shared
bases regardless of the data structural change. GNMF [5]
may not address this problem as well (not proved) because
we need to preserve the distributions of those generative
bases rather than data structures. While generative bases
are ‘building blocks’ for new actions, the data structure may
completely change in new datasets. However, NMF is bet-
ter at preserving bases than canonical correlation analysis
(CCA) which is purely based on mutual-information max-
imisation. Therefore, a significant performance gap can be
observed between the results of CCA and NMF.
Without Domain Adaptation In our pipeline, TJM is used
to adjust the inferred unseen prototypes from Word2vec.
The key insight is to align the inferred bases to that of GMIL
in the source domain that is also used to represent unseen
actions. In this way, visual and semantic UR is connected
by V̂B ∼ VA ∼ V̂A. Without such a scheme, however, we
observe marginal performance degradation in the CD-UAR
scenario (roughly 3%). This is probably because Activi-
tyNet is rich and the concepts of HMDB51 and UCF101 are
not very distinctive. We further investigate the CD trans-
ductive scenario, which assumes V̂A can be observed for

TJM. As a result, the benefit from domain adaptation is
large (roughly 5% on HMDB51 and 1% on UCF101 be-
tween ‘Ours’ and ‘No TJM’).
Basis Space Size We propose two sets of size according to
the original sizes ofA andB (recall section 3.2), namely the
high one Dhigh = 1

2 (M1 + M2) and the low one Dlow =
1
4 (M1 + M2). As shown in Table 3, the higher dimension
gives better results in most cases. Note that the performance
difference is not significant. We can thus conclude that our
method is not sensitive to the basis space size.

5. Conclusion
This paper studied a challenging Cross-Dataset Unseen

Action Recognition problem. We proposed a pipeline con-
sisting of deep feature extraction, Generative Multiple-
Instance Learning, Universal Representation Learning, and
Domain Adaptation. A novel URL algorithm was proposed
to incorporate Non-negative Matrix Factorisation with a
Jensen-Shannon Divergence constraint. NMF was shown
to be advantageous for finding shared bases between visual
and semantic spaces, while the remarkable improvement
of JSD was empirically demonstrated in distributive basis
preserving for unseen dataset generalisation. The resulting
Universal Representation effectively generalises to unseen
actions without further training or fine-tuning on the new
dataset. Our experimental results exceeded that of state-
of-the-art methods using both conventional and deep fea-
tures. Detailed evaluation manifests that most of contribu-
tion should be credited to the URL approach.

We leave several interesting open questions. For method-
ology, we have not examined other variations of NMF or
divergences. The GMIL problem is proposed without in-
depth discussion, although a simple trial using pooled local-
NBNN kernel showed promising progress. In addition, the
improvement of TJM was not significant in inductive CD-
UAR. A unified framework for GMIL, URL and domain
adaptation could be a better solution in the future.
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