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(a) Input (b) Deep multi-view stereo (c) Sample reconstruction results

Figure 1. (a) Our network takes a set of images with known camera poses and calibration as input; (b) we produce a set of plane-sweep
volumes for a reference view and feed these into a convolutional neural network that predicts a disparity map; (c) our network produces
high-quality disparity maps even for challenging cases containing poorly textured regions and thin structures.

Abstract

We present DeepMVS, a deep convolutional neural net-
work (ConvNet) for multi-view stereo reconstruction. Tak-
ing an arbitrary number of posed images as input, we first
produce a set of plane-sweep volumes and use the proposed
DeepMVS network to predict high-quality disparity maps.
The key contributions that enable these results are (1) su-
pervised pretraining on a photorealistic synthetic dataset,
(2) an effective method for aggregating information across a
set of unordered images, and (3) integrating multi-layer fea-
ture activations from the pre-trained VGG-19 network. We
validate the efficacy of DeepMVS using the ETH3D Bench-
mark. Our results show that DeepMVS compares favor-
ably against state-of-the-art conventional MVS algorithms
and other ConvNet based methods, particularly for near-
textureless regions and thin structures.

1. Introduction

Multi-view Stereo (MVS) methods aim at reconstruct-
ing disparity maps from a collection of images with known
camera poses and calibration, possibly estimated using

Structure from Motion (SFM) algorithms.1 MVS is one of
the fundamental computer vision problems that have seen
decades of research and it is a core component in numerous
important applications, including 3D reconstruction, novel
view synthesis, augmented reality, and medical imaging [9].

Conventional MVS algorithms often estimate the dispar-
ity map by computing plane-sweep volumes and optimizing
photometric consistency with handcrafted error functions to
measure similarity between patches [9]. Aside from photo-
metric consistency, other 3D cues such as lighting [39, 24],
shadows [1], color [11], geometric structures [7], and se-
mantic cues [14] have been incorporated into the MVS
pipeline for improving the reconstruction accuracy. How-
ever, designing algorithms that make explicit use of all these
cues is a non-trivial task. Despite extensive research, the
results of state-of-the-art MVS algorithms often still con-
tain numerous artifacts, in particular around poorly textured
regions, thin structures, and reflective or transparent sur-
faces [9].

Deep Convolutional Neural Networks (ConvNets) have
shown great success in many visual recognition tasks in-
cluding image classification [23] and object detection [12],
as well as in dense pixel-level prediction tasks such as se-
mantic segmentation [25] and optical flow [4, 16].

1Throughout this work, we always refer to “disparities” rather than
“depths”. Disparities are defined as the reciprocal of depths.



For the use of ConvNets in visual reconstruction prob-
lems, early work focuses on learning patch similarity for
stereo matching [42, 41, 26]. More recent work performs
stereo reconstruction using end-to-end learning. However,
these methods either impose constraints on relative camera
poses [17, 19] or the number of input images [5, 37], or
produce a coarse volumetric reconstruction [3, 18].

In this paper, we present DeepMVS, a deep ConvNet for
multi-view stereo that addresses these limitations. Given a
reference image and an arbitrary number of neighbor views
of the scene, we first perform a standard SFM reconstruc-
tion to recover the camera calibration and pose for each im-
age. We then produce a disparity map for the reference im-
age in three stages, as illustrated in Figure 2. First, we gen-
erate a plane-sweep volume for each neighbor image that
contains the warped neighbor colors at every disparity, and
let our network extract features from each patch pair (refer-
ence patch vs. patch in plane-sweep volume). Second, we
use an encoder-decoder architecture with skip connections
to aggregate the features across large spatial regions. We in-
corporate the feature activations from a VGG-Net [35] pre-
trained on ImageNet to guide our decoder for disparity pre-
dictions. Third, we fuse the information extracted by each
neighbor image with a max-pooling layer and produce the
final disparity prediction. In contrast to Recurrent Network-
based approaches [3, 18], the use of max-pooling allows us
to process an arbitrary number of unordered input images

Training deep ConvNets for disparity reconstruction re-
quires a large number of ground truth disparity maps. A so-
lution is to train the network on the combination of a large-
scale synthetic dataset and a smaller real-world dataset [27].
Synthetic datasets provide dense pixel-wise ground truth la-
bels for training, but they do not reflect the complexity of re-
alistic photometric effects, illumination, and natural image
noise. On the other hand, real-world datasets are limited in
scale and often do not have labels for regions in which it is
difficult to obtain ground-truth data, such as sky and reflec-
tive surfaces. To address this issue, we introduce the MVS-
SYNTH dataset — a set of 120 photorealistic sequences of
synthetic urban scenes for learning-based MVS algorithms.
We show that the use of a photorealistic synthetic dataset
greatly improves the quality of disparity prediction.

We validate the effectiveness of DeepMVS on the re-
cently introduced ETH3D benchmark dataset [34]. Our re-
sults show that DeepMVS outperforms DeMoN [37] in the
setting of multi-view stereo, and achieves competitive per-
formance with COLMAP [33], the state-of-the-art among
conventional MVS algorithms. In particular, we observe
that our network is often able to produce correct disparities
in poorly textured regions, such as sky, walls, floors, and
desk surfaces, where conventional algorithms fail.

In summary, we make the following contributions:

• We propose DeepMVS, a novel learning-based method

for multi-view stereo.

• Unlike existing work [5, 37, 19], DeepMVS can pro-
cess an arbitrary number of input images. The dispar-
ity estimation result is invariant to the order in which
the inputs are processed.

• Through extensive evaluation, we show that the in-
corporation of semantic features, training on photore-
alistic synthetic MVS-SYNTH dataset, and encoder-
decoder architecture for aggregating features over
large areas all contribute to the improved performance.

2. Related Work
Multi-view stereo reconstruction. Conventional MVS
algorithms focus on designing neighbor selection algo-
rithms and photometric error measures. Recent advances
include robust neighbor view selection [24], incorpora-
tion of visibility consistency [10], and clustering-based
techniques for efficient reconstruction [13, 8]. Recently,
Schönberger et al. present a MVS system — COLMAP [33]
— that jointly estimates depth and surface normal, lever-
ages photometric and geometric priors for pixelwise view
selection, and uses geometric consistency for simultane-
ous refinement. Through a tight integration of multiple
techniques, COLMAP performs among the best algorithms
in several public multi-view stereo benchmarks. We refer
readers to [9] for a comprehensive overview of multi-view
stereo reconstruction algorithms.

While impressive results have been shown, conventional
MVS algorithms rely heavily on photometric consistency
and often have difficulty in handling poorly textured and
reflective surfaces where photometric consistency is unre-
liable. In addition, these algorithms do not consider other
visual cues for depth perceptions such as lighting, shadows,
and semantics (e.g., a building has a planar structure). In-
corporating such information through hand-crafted objec-
tive functions is non-trivial. In this work, we aim at implic-
itly leveraging these cues through learning from data.

Learning-based MVS. A line of work focuses on learn-
ing a good similarity measure for patch matching across
two views [42] and multiple views [15] using ConvNets.
With the learned stereo matching cost, these methods pro-
duce disparity maps by a series of post-processing steps. In
contrast, DeepMVS produces disparity maps directly from
a set of posed images.

Another line of recent work uses ConvNets that take a
plane-sweep volume as input and produce disparity maps
(or synthesizes novel view) for the reference images. How-
ever, these approaches assume a fixed number of input im-
ages [19, 5, 37]. Our proposed DeepMVS can take an ar-
bitrary number of images to produce high-quality dispar-
ity maps. Several recent works approach multi-view recon-



struction with volumetric methods [3, 18]. These methods
take a sequence of images captured from different views
and generate a 3D shape of the object using a voxel occu-
pancy grid. Nevertheless, the dimension of the voxel grid
is quite constrained by the available GPU memory (e.g.,
coarse grids of 32×32×32 voxels). It is unclear how the
volumetric algorithms can be generalized and applied to
high-resolution stereo reconstruction in the real-world.

Learning from simulation. Synthetic datasets alleviate
the difficulty and the cost of collecting large-scale train-
ing datasets from the real world. Examples of synthetic
datasets for training and evaluating computer vision algo-
rithms include indoor scene understanding [43], seman-
tic segmentation [31, 30, 29], and depth and flow estima-
tion [27, 29]. We also found that training with a synthetic
dataset improves performance in our context. Our newly
collected MVS-SYNTH dataset complements the missing
ground truth depth measurements in the real-world such as
sky and reflective surfaces like windows.

3. Learning Multi-view Stereopsis

The entire pipeline of our algorithm can be broken into
four steps. We first preprocess the input image sequence
(Section 3.1), and then generate plane-sweep volumes (Sec-
tion 3.2). Next, our network estimates disparity maps from
the plane-sweep volumes (Section 3.3), followed by final
refinement to improve the results (Section 3.4).

3.1. Input

The input to our algorithm is a sequence of images and
their camera poses and calibration (if necessary, we use the
SFM algorithm in COLMAP [32] to estimate them). One
of the input images is designated as the reference image,
for which we seek to obtain a disparity map.

We start by selecting a subset of neighbor images for
the reference to be used in the stereopsis using a similar
approach to COLMAP [33]. The images which share the
most common features with the reference are chosen to be
neighbor images. However, unlike COLMAP, we do not
discard the neighbor images which have small triangulation
angles with the reference, and we do not estimate per-image
weights, since we intend to train the network so it automat-
ically determines whether a plane-sweep volume is reliable
or not by comparing it with the reference image.

We also estimate the disparity range of the reference im-
age. Following the approach as COLMAP, we estimate
the maximum disparity by projecting all the features in the
sparse reconstruction model to the reference view and com-
puting the disparities of the features.

3.2. Plane-sweep Volume Generation

For each neighbor image we compute a plane-sweep vol-
ume with respect to the reference image as follows. We as-
sume that the scene geometry is an infinite plane, fronto-
parallel to the reference view, and at specific disparities:
{0,δ ,2δ , . . . ,(D− 1)δ}. The disparity step, δ , is chosen
such that (D− 1)δ equals to the estimated maximum dis-
parity of the reference image. We warp the neighbor image
accordingly and store the result as a layer in the volume.
If any of the assumed disparity is correct and that portion
of the scene is not occluded in the neighbor image, we ex-
pect that the warped neighbor image matches the reference
image well.

By doing this with all the neighbor images, we obtain a
stack of plane-sweep volumes with N ×D images, which
we denote as V =

{
Vn,d : 0≤ n < N,0≤ d < D

}
. We nor-

malize the RGB values to the range [−0.5,0.5] and fill the
parts in the plane-sweep volumes that are not visible to the
corresponding neighbor image with zeros.

The number of disparity levels, D, is predetermined. In-
creasing D allows us to use a smaller disparity step δ to
reduce the quantization errors in the results, but also in-
creases the number of parameters in the network and thus
the GPU memory. As a compromise, we choose disparity
level D = 100.

3.3. Network Architecture

Figure 2 and Figure 3 illustrate the architecture of Deep-
MVS with the hyper-parameters. Our network can be bro-
ken into three parts: 1) the patch matching network, 2) the
intra-volume feature aggregation network, and 3) the inter-
volume feature aggregation network. Except for the very
last layer of the network, all the convolutional layers in the
network are followed by a Scaled Exponential Linear Unit
(SELU) layer [21].

Patch matching. The goal of our patch matching network
is to extract a set of per-pixel features that can better aid in
the comparison of patches than hand-crafted photometric
descriptors could do alone. The patch matching network
takes a patch from the reference image IR and a single patch
Vn,d from the plane-sweep volume that corresponds to the
n-th neighbor image at d-th disparity level as input. The
first convolutional layer extracts 64-channel features from
the two patches. The features are then concatenated and
passed through three more convolutional layers before turn-
ing into 4-channel patch matching features. We repeat this
process for all N×D plane-swept images.

Intra-volume feature aggregation. For each neighbor
image, we concatenate the 4-channel patch matching fea-
tures of all D disparity levels to form a 4×D-channel vol-



Figure 2. DeepMVS network architecture.

Figure 3. Network architecture of the intra-volume feature aggregation network.

ume. Following that is a U-Net structure composed of an
encoder, a decoder, and skip connections. Each level of
the encoder is formed by a stride-2 convolutional layer fol-
lowed by an ordinary convolutional layer; each level of the
decoder is formed by two convolutional layers followed
by a bilinear upsampling layer. We show in Figure 3 the
detailed structures and hyper-parameters of the proposed
intra-volume feature aggregation network.

In addition, we add semantic features at each level of
the decoder. We pass the reference image into the VGG-
19 [35] network pre-trained on ImageNet, and take the lay-
ers conv1 2, conv2 2, conv3 2, conv4 2, and conv5 2 as se-
mantic features. These semantic features are first multiplied
by 0.01 and passed through a convolutional layer so as to
reduce dimensionality and to improve numerical stability.
Finally, these feature maps are concatenated to each level
of the decoder as shown in Figure 3.

This part of the network is intended to pass the features
to larger spatial regions and enable the network to make pre-
dictions with non-local information. It also aids the dispar-
ity predictions using the VGG feature inputs. The output
of the intra-volume feature aggregation network is an 800-
channel volume Fn containing the disparity prediction infor-
mation gathered from the n-th neighbor image.

Inter-volume feature aggregation. In this step, we take
the N volumes, {F0, . . . ,FN−1}, generated from each of the
neighbor images and aggregate them using element-wise
max-pooling. The use of max-pooling enables the network
to gather information from an arbitrary number of neighbor
images, and also ensures that the results are invariant with
respect to the order of the neighbor images. This technique
was previously used in PointNet [28] and in the work by
Hartmann et al. in [15] to allow inputs with varying sizes.
Finally, we use two convolutional layers converting the ag-
gregated volume into the pixel-wise disparity predictions.

During training, we randomly select the number of
neighbor images N from {1,2,3,4}. By varying N, the net-
work learns to make use of the max-pooling to collect only
the useful information from each neighbor image. Even
though N is restricted to be no larger than 4 during training
(due to the limited size of the GPU memory), we show that
our trained network can be applied to an arbitrary number
of neighbor images in Section 4.4.

Training loss. We pose disparity prediction as a multi-
class classification problem, and use the cross-entropy loss
to train the network. The predicted disparity map can be
made by taking the disparity level at which the predicted
probability is the highest for each pixel. Namely, for the



Figure 4. Samples from the proposed MVS-SYNTH dataset, which
provides photorealistic images with ground truth disparities even
for the sky, reflective surfaces, and thin structures.

output distribution y = (y0, . . . ,yD−1) of each pixel, the pre-
dicted disparity can be chosen by

d̂raw = argmax
d

yd .

We refer to this d̂raw as the raw predictions.

3.4. Refinement

To further improve the quality of the results, we ap-
ply the Fully-Connected Conditional Random Field (Dense-
CRF) [22] to our raw disparity predictions. The use of
DenseCRF encourages the pixels which are spatially close
and with similar colors to have closer disparity predictions.

4. Experimental Results

4.1. Datasets

DeMoN datasets. We train our network with the same
datasets as used in DeMoN [37]. The dataset con-
sists of short sequences ranging from two to tens of im-
ages including real-world datasets (SUN3D [40], RGB-
D SLAM [36], CITYWALL and ACHTECK-TURM [6])
of outdoor and indoor scenes and a synthesized dataset
(SCENES11 [37, 2]) with random objects flying in the
air. As suggested in [37], mixing real-world and synthetic
datasets is important since each has its own limitations. The
ground truth for real-world datasets contains measurement
errors, whereas synthesized datasets have unrealistic ap-
pearance, and may not be capable of reflecting some charac-
teristics of real imagery, such as illumination, depth of field,
and noise. The image resolution of this dataset is 640×480
pixels.

MVS-Synth dataset. To address the limitations of the
DeMoN datasets, we introduce the MVS-SYNTH dataset,
which consists of 120 sequences of urban scenes captured
in the video game Grand Theft Auto V.2 Each sequence is
composed of 100 RGB frames of size 1920×1080, ground

2This academic article may contain images and/or data from sources
that are not affiliated with the article submitter. Inclusion should not be
construed as approval, endorsement or sponsorship of the submitter, article
or its content by any such party.

truth disparity maps, and the extrinsic and intrinsic cam-
era parameters. Figure 4 shows examples from the MVS-
SYNTH dataset.

Compared to existing synthetic datasets, the MVS-
SYNTH dataset is more realistic in terms of context and
shading. Compared to real-world datasets, MVS-SYNTH
provides complete ground truth disparities which cover re-
gions such as the sky, reflective surfaces, and thin struc-
tures, whose ground truths are usually missing in real-world
datasets. Therefore, training with MVS-SYNTH allows us
to predict disparities for these challenging regions. We train
the network using both image resolution 1280×720 and
960×540 pixels as data augmentation.

ETH3D datasets. For evaluation, we use the high-res
multi-view dataset in the recently introduced ETH3D
benchmark datasets [34]. It consists of 13 sequences of real-
world outdoor and indoor scenes with ground truth point
clouds captured by laser scanners. We project the point
clouds back to each view to obtain a ground truth dispar-
ity map for each reference image. Note that ground truth
data are not complete and contain holes in the sky, reflec-
tive surfaces, and thin objects. Nevertheless, we use it to
validate the efficacy of our method for real-world scenes.
We resize the images to 810×540 pixels for evaluation.

4.2. Implementation Details

Our training process consists of two stages. First, we
train the network by replacing the intra-volume feature ag-
gregation network with two simple 3×3 convolutional lay-
ers. Here, our goal in the first stage is to pre-train the net-
work so it can be transferred to the second stage. Then,
we add the intra-volume feature aggregation network back
with weights initialized from the pre-trained network, and
train the entire network using both DeMoN and the MVS-
SYNTH datasets.

For both training stages, we use the Adam solver [20]
with learning rates 10−5 and 10−6, respectively, for 320k
iterations per stage. We apply gradient clipping to prevent
gradient explosion by constraining the L2-norm of the gra-
dients at each layer to be no more than 1.0 at the first stage
and 0.1 at the second stage. We implement the network in
PyTorch. Training the network with an NVIDIA P100 GPU
with 16GB memory takes two days for each stage.

We use 64px×64px patches as our inputs so as to fit
our network into the GPU memory at the training stages.
We generate the semantic features by a feed-forward pass
of a VGG-19 network using the entire image. We then
take only the region of interest corresponding to the input
patches from the intermediate features. At test time, we
feed 128px×128px patches into the network, and take only
the center 64px×64px of the output to reduce boundary ar-
tifacts. The 64px×64px output patches are then tiled to



achieve full-resolution results.

4.3. Evaluation Metrics
Geometric errors. We compute geometric error by tak-
ing the L1 distance between the predicted disparity and the
ground truth. Unavailable pixels are ignored.

Photometric errors. We also measure photometric
rephotography error [38] — the L1 distance between the
reference and the rephotography image. We generate the
rephotography using the predicted disparity map, warping
the pixels to all other neighbor images, sampling colors
from the neighbor images, and finally selecting the median
among all color candidates for each pixel.

Completeness. Another important factor for evaluation is
completeness. We measure completeness using the percent-
age of pixels whose errors are below a certain threshold.
Plotting the relationship between different error thresholds
and their corresponding completeness helps visualize the
distributions of the errors. The curves lying in the lower
right represent more pixels having lower errors and thus
have better performance.

4.4. Evaluation
COLMAP. Several conventional MVS algorithms have
been proposed, including PMVS [10], MVE [6], and
COLMAP [33]. We choose to compare with COLMAP as
it is the top performer on the ETH3D dataset [34].

We follow the default settings of COLMAP unless other-
wise mentioned. COLMAP provides an option to filter out
the predictions that are not geometrically consistent. How-
ever, the filtered disparity maps may significantly reduce
completeness. We show both unfiltered and filtered maps
for comparison.

Note that we do not use DenseCRF to refine COLMAP’s
noisy unfiltered maps since COLMAP predicts a determin-
istic disparity for each pixel, whereas DenseCRF requires
pixel-wise distributions as inputs.

DeMoN. We compare our approach with DeMoN [37] be-
cause it is the closest to ours among the existing learning-
based stereopsis methods. However, as their network only
works with image pairs, we propose two ways to extend
their approach to multi-view stereo applications.

The first method is to choose the best result among all the
disparity maps generated from the image pairs formed by
the reference image and its neighbor images. This method
is not practical in real applications since the ground truths
are not available. Nevertheless, the method establishes the
upper-bound performance of DeMoN. The second method
is to compute the per-pixel median among all the generated
disparity maps so as to aggregate information from all avail-
able image pairs.

Table 1. Quantitative comparisons between different algorithms on
ETH3D dataset.

Algorithm Completeness Geo. error Pho. error

DeMoN (best) 100% 0.045 0.288
DeMoN (median) 100% 0.201 0.367
COLMAP (filtered) 71% 0.007 0.178
COLMAP (unfiltered) 100% 0.046 0.218
Ours 100% 0.036 0.224

Since DeMoN is trained with images taken with fixed
focal lengths and image resolutions, we crop and resize the
images from ETH3D dataset before using them to evaluate
DeMoN’s performance. This leads to the incomplete re-
construction results in Figure 5 and Figure 6. The cropped
regions are ignored when the error is computed. In addition,
DeMoN assumes that the translation between the input im-
age pair is a unit vector. Therefore, we multiply the depth
maps produced by DeMoN by the actual translational dis-
tance between the two views before comparing them with
the ground truths.

Qualitative comparisons. Figure 5 shows qualitative
comparisons between DeMoN, COLMAP, and our ap-
proach. While DeMoN detects the overall structure of
the scene, it fails to predict accurate scaling factors and
thus results in inaccurate predictions. On the other hand,
COLMAP and our approach give accurate predictions wher-
ever the depth cues are sufficient. However, for textureless
regions like the sky, the wall, and the surface of the white
desks, the predictions made by COLMAP are very noisy,
whereas our network is capable of assigning zero disparity
to the sky, and interpolating or extrapolating disparities for
poorly textured regions.

Figure 6 shows several rephotography results. The re-
sults from DeMoN are often blurry and distorted, indicat-
ing that the predictions are not accurate. COLMAP per-
forms well in rephotography in the regions where the pre-
dictions are clean. However, for challenging regions, the
results contain large holes. Our rephotography results gen-
erally recover the reference images with only small holes.
However, edges appear to be jagged because of the dispar-
ity quantization in our approach.

Quantitative comparisons. Table 1 shows quantitative
comparisons of the average errors over the entire ETH3D
dataset between DeMoN, COLMAP, and our approach.
First, DeMoN gives much larger errors than COLMAP and
our approach with respect to both metrics. COLMAP’s fil-
tered predictions have significantly lower average errors,
but it discards 29% of the pixels to achieve that. Finally,
COLMAP’s unfiltered maps and our results have similar er-
rors. While COLMAP gives slightly lower photometric er-
rors, our approach gives slightly lower geometric errors.



Reference Ground truth DeMoN [37]
(best)

DeMoN [37]
(median)

COLMAP [33]
(filtered)

COLMAP [33]
(unfiltered)

Our result

Figure 5. Qualitative comparisons between different algorithms on ETH3D dataset.

Figure 7 shows the distributions of the errors. We ob-
serve that COLMAP predicts 85% of the pixels with smaller
geometric errors than our approach, whereas our approach
gives more accurate results for the other 15% pixels. A
possible reason is that for regions with sufficient depths
cues, COLMAP produces accurate predictions. Our ap-
proach, on the other hand, suffers from the quantized dispar-
ity effects. However, for the challenging regions, COLMAP
gives noisy predictions which lead to large errors, whereas
our approach produces plausible predictions. As for the dis-
tributions of the photometric errors, our approach produces
almost the same curve as COLMAP does.

Progressive improvement. Figure 8 shows two examples
of the progressive improvements by COLMAP and our ap-
proach for an increasing number of input images. When N
is small, COLMAP tends to produce large geometric errors,
whereas our network can still generate accurate predictions

Table 2. Contributions of different components in our algorithm.
Components Geo. error Pho. error

Pretraining 0.051 0.242
+ U-net 0.043 0.230
+ U-net + VGG 0.040 0.226
+ U-net + VGG + DenseCRF 0.036 0.224
+ U-net + VGG + DenseCRF − MVS-SYNTH 0.037 0.225

and hallucinate disparities for the regions lacking of good
depth cues.

4.5. Ablation Studies
DenseCRF. As shown in Figure 9, applying DenseCRF
removes a large portion of the noisy patches in low-
confidence regions such as the reflective wall, and encour-
ages the disparity predictions to follow the color edges. As
shown in Table 2, DenseCRF improves the results with re-
spect to both error metrics.



DeMoN [37]
(best)

COLMAP [33]
(unfiltered)

Our result

Figure 6. Comparisons of rephotography results. See Figure 5 for
the ground truth reference images.

Geometric errors Photometric errors
Figure 7. The distributions of the errors of different approaches on
ETH3D dataset.
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Our result COLMAP [33]
(unfiltered)

Geometric Errors

Figure 8. Examples of progressive improvements for increasing
number of input images.

MVS-Synth dataset. Table 2 shows that removing MVS-
SYNTH dataset from the training set results in slightly larger
errors for both metrics. Qualitatively, we observe that the
network trained without MVS-SYNTH dataset works very
poorly for the sky and reflective surfaces, as Figure 10
shows. These regions usually lack ground truth data, so

Image Ours Ours w/o
DenseCRF

Figure 9. Example of the improvements from the DenseCRF re-
finement. Applying DenseCRF removes the noisy predictions.

Image Ours Ours w/o
MVS-SYNTH

Figure 10. Comparisons between networks trained with and with-
out the MVS-SYNTH dataset. Without MVS-SYNTH dataset, the
network has difficulty in handling regions such as the sky because
real-world datasets do not cover these regions.

the errors do not reflect much on the quantitative errors. We
suggest that the poor predictions result from the fact that
the ground truths in DeMoN dataset does not cover such
regions.

U-Net and VGG features. As Table 2 shows, adding the
U-net and VGG features each provides improvements in
both error metrics. This shows that allowing non-local in-
formation and providing semantic features both help the
network in better disparity predictions.

4.6. Limitations

Following are some limitations of our network. First, the
quantization of disparity results in undesired geometric and
photometric errors. Second, our network often fails to pre-
dict correct disparities for vegetation areas containing trees
or grass. Finally, the computation speed of our algorithm is
constrained by the time-consuming generation of the plane-
sweep volumes and the deep and large network structures.

5. Conclusions

With DeepMVS, we demonstrate the feasibility of learn-
ing Mulit-View Stereopsis with a convolutinoal neural net-
work, and show that learning-based approaches can over-
come the weaknesses of conventional algorithms.
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