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Abstract

Automated counting of people in crowd images is a chal-
lenging task. The major difficulty stems from the large di-
versity in the way people appear in crowds. In fact, fea-
tures available for crowd discrimination largely depend on
the crowd density to the extent that people are only seen as
blobs in a highly dense scene. We tackle this problem with
a growing CNN which can progressively increase its capac-
ity to account for the wide variability seen in crowd scenes.
Our model starts from a base CNN density regressor, which
is trained in equivalence on all types of crowd images. In
order to adapt with the huge diversity, we create two child
regressors which are exact copies of the base CNN. A differ-
ential training procedure divides the dataset into two clus-
ters and fine-tunes the child networks on their respective
specialties. Consequently, without any hand-crafted crite-
ria for forming specialties, the child regressors become ex-
perts on certain types of crowds. The child networks are
again split recursively, creating two experts at every divi-
sion. This hierarchical training leads to a CNN tree, where
the child regressors are more fine experts than any of their
parents. The leaf nodes are taken as the final experts and
a classifier network is then trained to predict the correct
specialty for a given test image patch. The proposed model
achieves higher count accuracy on major crowd datasets.
Further, we analyse the characteristics of specialties mined
automatically by our method.

1. Introduction

Crowds are common in public places; be it the daily city
traffic or some special gatherings, analysing crowds is be-
coming increasingly important both in terms of security as
well as planning. Counting people in crowds, especially
dense gatherings, is a difficult task even for humans. This
is primarily because of the large diversity in the way people
appear in crowded scenes. In highly dense crowds, peo-
ple are only seen as blobs, while in less dense gatherings
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Figure 1. Predictions of a typical regressor fine-tuned for sparse or
dense crowds. Models perform better on their own specialties.

facial features may be visible. Hence, the visibility of fea-
tures for crowd discrimination is related to the density of
the crowd. Severe occlusion, pose changes and view-point
variations further compound the problem. Head or body
detection based methods fails to adapt to such huge diver-
sity. As a result, most modern approaches solve counting
by regression. With advent of deep learning, often Convolu-
tional Neural Networks (CNN) are trained to predict crowd
density map. Density maps represent count per unit area
and provide spatial information. These models learn to map
crowd features (head or shoulder patterns as they appear in
crowds) to its density as opposed to detecting individuals
with facial or body features.

Typical CNN density regressors [2, 10, 26] are optimized
over an entire dataset containing images of all densities.
And in many datasets, the density of crowd is not uniform.
For example, in PartA of Shanghaitech dataset [26], the dis-
tribution is skewed with less number of dense crowd images
than sparse ones. Consequently, performance of models
varies widely across different categories of crowds. This
usually results in over-estimating count for sparse images
and under predicting for dense images as shown in [16].

One obvious solution to address this wide variability is
having multiple regressors, each specialized for a particular
type of crowd. This is illustrated in Figure 1 with predic-
tions made by regressors fine-tuned for sparse and dense
crowds. The experts perform well in their own specialties
but worse in others. The major difficulty in such approaches



is determining a criteria for creating experts. For Figure 1,
we choose division based on density, but it can be based on
other characteristics too. Even if the criteria is chosen, what
would be the basis of division (how many people make a
crowd dense or sparse)? These metrics are dataset as well
as model dependent and need to be manually specified. In
crowd counting, till now no principled method has been pro-
posed to do this. Moreover, improper divisions can lead to
suboptimal solutions. Learning experts automatically with
classical mixture of expert [5] models do not work well in
this scenario as shown by some works like [6].

The aim of this work is to introduce a principled method-
ology for creating experts, without any handcrafted dataset
dependent criteria for specialization. Hence, we propose an
Incrementally Growing CNN (IG-CNN) for crowd count-
ing. IG-CNN starts from a base CNN density regressor
which is trained on the entire dataset. Then we replicate the
base CNN into two child networks by copying the weights
of the parent. To make these child regressors specialized,
we do differential training [13], where clustering of the
dataset is done jointly with fine-tuning of the child net-
works (Section 3.4). In the next growing step, we replicate
each of the child regressors again into two networks and
perform differential training. This procedure is done recur-
sively forming a hierarchical CNN tree where each node has
two child nodes which are more specialized than their par-
ent. At the end of the growing, a set of experts are created
at the leaf nodes of the CNN tree. At test time, a classi-
fier routes the input image patches to the appropriate expert
regressors.

In a nutshell, this paper introduces the following:

• A hierarchical clustering method that jointly creates
image clusters and a set of expert neural networks spe-
cialized on their respective clusters.

• A crowd counting system that can adapt and grow
based on the complexity of the dataset.

2. Previous Work
Crowd Counting: There are numerous crowd counting

methods in the literature which detect individual humans
by identifying heads or other body structures [23, 20]. Such
models primarily rely on hand-crafted features to train de-
tectors. Stewart et al. [17] use a recurrent framework to
sequentially detect people. All these detection methods fail
in highly dense crowds as the discriminative features on
which they can be trained are absent. Hence, regression
based methods have gained traction. For example in [4],
head detections along with features from interest points and
Fourier analysis are used to regress crowd count.

With deep learning, CNN based regressors become pop-
ular and give better performance than classical models. The
counting CNN introduced in [25], is trained by alternatively

optimizing both crowd density loss as well as crowd count
loss. The deep CNN employed by [19] directly regresses the
crowd count instead of a density map. But such approaches
prevent the CNN from acquiring good feature detectors and
lead to lower performance than training for density map pre-
diction. Walach et al. [18] train multiple CNNs where each
network predicts corrections on the density map generated
by the previous. In contrast, top-down feedback is lever-
aged by [12] to rectify initial detections of the bottom-up
CNN regressor. Further works like [15, 16] supplement the
main density regressors with high-level, low-level or both
prior information. These priors are in the form of confi-
dences predicted by a network trained to classify images
based on density (sparse, dense etc.). This helps regressors
to select specialized pathways based on the prior for gen-
erating density maps. But training of the classifiers require
manual division based on density and is dataset dependent.

Approach by [10] makes use of multi-scale input and
CNNs are trained for a particular scale. The last layer fea-
tures of the networks are fused through learned fully con-
nected layers. Though feeding multi-scale images can ac-
count for some scale variability, multi-columns CNNs are
shown to be better. Boominathan et al. [2] propose a VGG
based deep CNN along with a shallow CNN. The shallow
CNN is designed to capture dense crowds while deep net-
work is for sparse crowds. Multi-column network from
[26] has three CNN columns, each having different recep-
tive fields and hence can capture crowds at multiple scales.
Features of the columns are fused through a learned 1 × 1
filter to generate the final density map. Since in these multi-
column approaches the entire model is trained together, spe-
cialization gained among the columns need not be drastic.
Sam et al. [13] address this issue by performing a differen-
tial training procedure to accentuate the specialization be-
tween CNN columns of varied architecture. But the model
is limited by the availability of regressors with different ar-
chitectures. In contrast, our method requires only one base
regressor. More specific standard mixture of experts [5]
based model is used in [6] for direct count regression, but
performs worse than the hard switching mechanism of [13].

Growing Networks: The concept of a neural network
that incrementally enlarges its capacity while learning has
been there for a while. Several such Growing Neural Net-
work models have been proposed in the literature [11, 3] for
supervised as well as unsupervised learning. Few works like
[9] grow a CNN progressively by adding new neurons in a
data-dependent fashion. In the domain of transfer learning,
[21] analyse different approaches for developmental net-
works which can increase its model capacity as and when
new tasks are given. They explore adding new layers along
the depth or width of the neural network.

Specialization based Methods: Expert specialization
approaches like [24], increase classification performance by



imposing coarse and fine class hierarchy onto a deep CNN.
But this method requires coarse labels which is not required
by method introduced in [1]. In a generalist-specialist set-
ting, Ahmed et al. [1] jointly train specialty branches along
with a generalist CNN which can classify the specialties.
Specialty groups are formed such that they can be easily
discriminated by the classifier. The algorithm proposed in
[22] can learn a CNN tree where the nodes down the tree
capture progressively fine-grained features. Our model also
hierarchically grows a CNN tree, but it is employed only
as a method to create a set of experts without any manually
specified specialization criteria. In contrast to works like
[22], the hierarchy is discarded in IG-CNN after training
and only the networks at the leaf nodes of the CNN tree are
kept. These leaf networks are finer experts and are selec-
tively used at test time to evaluate inputs corresponding to
their specialties.

3. Our Approach

3.1. Creating Experts with Hierarchical Differential
Training

As motivated in Section 1, counting models have to han-
dle severe diversity in the way people appear in crowds.
We try to mitigate this issue with a set of expert regres-
sors, each of which are specialized on one particular subset
of the training data. Many previous works leveraging such
specialization methods require the specialty information to
be given either in the form of priors [15, 16] or indirectly
as regressors with different architectures [13]. In this sce-
nario, naive mixture of experts based methods are shown to
perform subpar [6]. Hence, we design a model which does
not require any specialty criteria to be manually specified
for training experts and yet achieves better count estimates.

Our incrementally growing CNN or IG-CNN architec-
ture is shown in Figure 2. IG-CNN training begins with a
base CNN regressor, which is trained on the full dataset to
estimate crowd density. To create specialties, a hierarchical
training procedure is employed. Let R0 represent the base
CNN and D0 = {XN

i=0} denotes the dataset of N images
on which the base regressor R0 is trained. Initially, the base
CNN is replicated into two networks R00 and R01. Now
with differential training, R00 and R01 need to be made ex-
perts in separate specialties. The differential training pro-
cedure divides the dataset into two and fine-tunes the two
regressors on their respective clusters. For a given image
patch, only the regressor with the best count accuracy is
trained. This way the oracle loss [7] of the set of regressors
is minimized. Oracle loss is the minimum loss achievable if
the correct regressor is chosen for all samples (see Section
3.4). We use a modified version of the differential train-
ing introduced in [13]. Our algorithm does not require re-
gressors with different architectures as in [13] and also uses
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Figure 2. Hierarchical Differential Training in IG-CNN. Regres-
sors are recursively replicated and specialized forming a CNN tree.

count loss function for fine-tuning.
After the first level of training, we have two expert re-

gressors R00 and R01 along with their corresponding spe-
cialty subsets D00 and D01. Each of the networks R00 and
R01, is replicated again to form respective child networks in
the second iteration of growing. Regressors R000 and R001

will have same weights as of R00 while R01 is copied to
R010 and R011. Differential training is performed on R000

and R001 with dataset D00 only. Similarly, D01 is used for
fine-tuning R010 and R011. This makes sure that special-
ization acquired by the parent is propagated to its child net-
works. The two way replicating and specialization process
is recursively continued forming a CNN tree. A child node
in the tree is more specialized than any of their parent net-
work. More deeper the tree, more finer the specialties with
leaf nodes being the finest experts. Section 3.4 elucidates
training algorithm in detail.

3.2. Growing CNN Architecture

The hierarchical differential training procedure results in
the creation of a set of regressors at the leaf nodes of the
CNN tree. All the regressors have the same architecture but
give better performance on their specialties. Additionally, a
classifier is trained for selecting the right expert for a given
scene patch. Figure 3 shows the test time architecture of
IG-CNN.

A neural network with five convolutional layers is used
as the base CNN. Because of two pooling layers, the density
prediction is at 1

4 th scale of the input image. All convolu-
tional layers use ReLU activation function. This simple re-
gressor is introduced in [26] and delivers reasonable perfor-
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Figure 3. Test time architecture of IG-CNN. The expert classifier
routes crowd patches to the appropriate specialized regressor.

mance. But it is to be noted that our training methodology
is generic and is not limited by any particular base CNN.
For expert classifier, we use a modified VGG-16 [14] net-
work. Features of the last convolution layer of VGG-16 are
reduced via global average pooling followed by two fully
connected layers and softmax prediction at the end. The
number of units in the last fully connected layer depends on
how many expert regressors are generated with the hierar-
chical training.

During testing, we take overlapping patches from the im-
age. Each patch extracted is of the size PW ×PH . A region
of interest (RoI) of sizeRW×RH is defined for the patch on
which the CNN regressor predicts the crowd density. Area
outside the RoI acts as context and aids in better regression.
The RoI is slided over the entire image with an overlap. The
predictions of the overlapping areas are averaged to get the
final density. Characteristics of crowd in the RoI is assumed
to be constant. For IG-CNN hierarchical differential train-
ing, patches are extracted at random locations from images
and the loss is computed only on the RoI. The expert clas-
sifier also uses the RoI part of a patch to select the suitable
regressor. Typical patch size is 224 × 224 with an RoI size
of 80× 80.

3.3. Pretraining of Base CNN

The base CNN is trained on the entire dataset to regress
crowd density map. The network is trained by backprop-
agating l2 loss between the predicted and the ground truth

density maps. There are numerous methods in the literature
to generate ground truth density maps from head annota-
tions available with the datasets [25, 26]. The most widely
used method is to place a Gaussian at every head location.
This helps CNN to train better as otherwise it would have
to predict exactly at the annotation point. The spread of the
Gaussian is an hyper-parameter and depends on the dataset.
Since Gaussian blurring of each annotation sums to one, the
crowd count can be obtained by summing the density map.

Let MXi
(x; Θ) denote the density map predicted by the

CNN regressor and MGT
Xi

(x) be the ground truth for image
Xi. Then, the l2 loss function is defined as

Ll2(Θ) =
1

2N

N∑
i=1

‖MXi(x; Θ)−MGT
Xi

(x)‖22, (1)

where Θ refers to the trainable parameters of the CNN and
N is the total number of training samples. The parameters
Θ are found by optimizing Ll2 using standard stochastic
gradient descent (SGD) with momentum. Even though our
objective is to minimize the count error, l2 loss acts as proxy
for the count loss. Reduction in l2 distance implicitly low-
ers the count error between the prediction and ground truth.
For pretraining, we crop patches at different locations from
every image and apply flip augmentation.

3.4. Training Algorithm for IG-CNN

The overall training procedure of IG-CNN is depicted
in Algorithm 1. The first step is the pretraining of the base
CNNR0. For any regressor, the final metric of performance
is the count error which needs to be minimized. Count pre-
dicted by a regressor R for an image Xi is computed as
CR

Xi
=

∑
xMXi

(x; ΘR), where its ground truth count is
CGT

Xi
=

∑
xM

GT
Xi

(x). The count error for regressor R on
image Xi is the absolute difference of predicted and actual
count or mathematically, EXi

(R) = |CR
Xi
− CGT

Xi
|.

After pretraining of the base CNN, a CNN tree is pro-
gressively built where each node represents a regressor fine-
tuned on a subset of the dataset. This is done by replicating
each regressor at the tree leaves into two and specializing
the child networks with differential training. At any node
m, let Rm0 and Rm1 be the child regressors and Dm be the
subset of dataset available for the node. NowRm0 andRm1

need to be made experts in the specialty sets Dm0 and Dm1

respectively. But we have neither the specialty sets nor the
expert regressors. Differential training allows to jointly ob-
tain the specialties and the expert regressors by minimizing
the oracle count error. The oracle count error for patchXi is
Eoracle

Xi
= min

R∈[Rm0,Rm1]
|CR

Xi
− CGT

Xi
|, the minimum of the

count errors obtained by the two regressors. The basic idea
is to evaluate both the regressors on a particular image patch
and fine-tune only the one giving lesser count error. Choose
the best regressor by rbestXi

= argmin
R∈[Rm0,Rm1]

|CR
Xi
− CGT

Xi
|.



Note that when count predictions by both networks are
same, which mostly happens at the start of the training, the
first regressor is chosen to break the tie. This makes sure
that the differentiation between the networks builds up pro-
gressively. By selectively fine-tuning Rm0 and Rm1 based
on its performance on the training patches, the regressors
become more and more specialized in two groups Dm0 and
Dm1. These specialty subsets might be skewed and com-
pletely depends on the dataset as well as the regressors. The
fine-tuning is done with lower learning rate (10−6) and con-
tinue till validation accuracy stops improving.

Unlike differential training in [13], count loss is used in-
stead of l2 loss for fine-tuning regressors. We define the
count loss as,

LC(Θ) =
λ

2N

N∑
i=1

(CXi
− CGT

Xi
)2. (2)

Here constant λ is used to check the magnitude of the loss.
For all experiments, λ is set as 10−2. Since the CNN is
pretrained with l2 loss, it has good initial features and fine-
tuning with count loss provides complementary informa-
tion. This is found to give better clustering and more ac-
curate count estimation.

Differential training minimizes oracle error over the
training set. This count error is achievable only if there is
an oracle to classify a test patch to the correct regressor. But
the ability of a classifier to achieve high results in determin-
ing the specialty depends on the quality of the specializa-
tion. If the expert specialties do not have any generalizable
features, the performance might decay on the test set.

The leaf regressors (Rleaf ) at a particular level of growth
are experts on specific specialties. As shown in Figure 3, at
test time, a classifier selects the right expert regressor for the
image patch. The classifier is trained on the labels obtained
from the expert regressors. For a given image patch Xi,
the corresponding label is attributed to the regressor with
minimum count error, Rbest

Xi
= argmin

R∈Rleaf

|CR
Xi
− CGT

Xi
|. As

the samples per expert specialty need not be uniform, class
balancing is done before training the classifier.

At every increment of the growing process, regressors
at the leaf nodes of the CNN tree are split and new expert
regressors are created. We monitor the Oracle MAE and
Actual MAE for the leaf regressors over a validation set.
Mean Absolute Error or MAE is the performance metric
used for counting models (see Section 4.1). While Oracle
MAE indicates the count error incurred when right expert
is always chosen for regression, Actual MAE is obtained
with the expert classifier. Note that the validation set is ran-
domly sampled from the training images and is fixed across
entire training procedure (irrespective of tree level). The hi-
erarchical tree splitting is stopped when the Actual MAE on
validation set is not improving (see Table 4).

input : Dataset D0 = {Xi,M
GT
Xi
}Ni=1 (image & map)

output: Parameters {Θr} of experts and classifier Θc

Random initialize Θ0 for base CNN R0;
Pretrain R0;
Rleaf = {R0};
Dleaf [R0] = D0;
/* Hierarchical Differential Training */
for l = 0 to max tree depth do

/* Replicate R twice */
for R in Rleaf do

Rchild[R] = {R,R};
end
/* Differential Training */
/* R predicts count CR

i while CGT
i is the actual */

for i = 1 to max iterations do
for Rl in Rleaf do

for X,M in Dleaf [Rl] do
r = argmin

R∈Rchild[Rl]

|CR
X − CGT

X |;

Fine-tune Rr with X to update Θr;
end

end
Break if validation Oracle MAE stagnates;

end
/* Dataset division for leaf regressors */
Dleaf = [];
for X,M in D0 do

for Rl in Rleaf do
r = argmin

R∈Rchild[Rl]

|CR
X − CGT

X |;

Add (X,M) to Dleaf [r];
end

end
/* Training of Expert Classifier */
Initialize Θc with VGG-16 weights;
for X,M in D0 do

r = argmin
R∈Rleaf

|CR
X − CGT

X |;

Add (X, r) to Dc;
end
Train classifier with Dc and update Θc;
Break if validation Actual MAE stagnates;

end

Algorithm 1: IG-CNN training algorithm.

4. Experiments

4.1. Evaluation Scheme

We benchmark our IG-CNN model on three crowd
counting datasets. For a given test image, patches are ex-
tracted and evaluated by the expert classifier to route them
to the regressors specialized for the specific crowd types.
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Figure 4. Predictions made by IG-CNN on images of Shanghaitech dataset [26].

Two metrics are commonly used to evaluate crowd counting
models. MAE or Mean Absolute Error is the most impor-
tant metric and indicates the count accuracy of the model. If
the count predicted by the model is CXi

for an actual count
of CGT

Xi
, then MAE is defined as

MAE =
1

N

N∑
i=1

|CXi − CGT
Xi
|, (3)

where the test set has N images. The second metric is
the Mean squared error or MSE to measure the variance of
count estimation. MSE is given by,

MSE =

√√√√ 1

N

N∑
i=1

(CXi − CGT
Xi

)2. (4)

4.2. Shanghaitech dataset

The Shanghaitech dataset [26] is partitioned into two
sets, namely Part A and Part B. The sets are quite distinc-
tive with Part A images sourced from the Internet and have
crowd counts ranging from 33 to 3139. In contrast, the
crowds in Part B are sparser with counts varying from 9 to
578 and are captured from streets of Shanghai. Part A has
482 images, of which 300 images are used for training and
the rest are used for testing. Similarly, the 716 images of
Part B are partitioned into chunks of 400 training and 316
testing images. Gaussian kernels with fixed sigma are used
to generate the ground truth density maps.

For both Part A and Part B, we grow IG-CNN to 3 levels
resulting in 8 expert regressors. Table 1 tabulates the perfor-
mance metrics for IG-CNN on the dataset along with that

of other models. It can be observed that IG-CNN outper-
forms all other methods in Part B by a significant margin
both in terms of MAE and MSE. IG-CNN achieves better
count accuracy in Part A as well. Though our model nar-
rowly outperforms CP-CNN [16], it is to be noted that the
authors of CP-CNN use adversarial training to boost their
base performance from 76.1 to 73.6. Figure 4 shows den-
sity maps predicted by IG-CNN and the base CNN along
with the corresponding ground truths. The predicted den-
sity maps closely resemble the ground truth as well as have
accurate count estimates. This demonstrates the ability of
IG-CNN to better capture the crowd density.

4.3. UCF CC 50 dataset

UCF CC 50 dataset introduced by [4], serves to be a
hard challenge because of the relatively small size of the
dataset and the large variability of crowd density in the im-
ages. The crowd count in 50 images of the dataset vary con-
siderably from 94 to 4543. The ground truth density maps

Part A Part B
Method MAE MSE MAE MSE

Zhang [25] 181.8 277.7 32.0 49.8
MCNN [26] 110.2 173.2 26.4 41.3
SCNN [13] 90.4 135.0 21.6 33.4

TDF-CNN [12] 97.5 145.1 20.7 32.8
CP-CNN [16] 73.6 106.4 20.1 30.1

IG-CNN 72.5 118.2 13.6 21.1

Table 1. Performance of IG-CNN on Part A and Part B of Shang-
haitech dataset [26]. IG-CNN outperforms other methods in MAE.



Method Scene1 Scene2 Scene3 Scene4 Scene5 Average
Zhang et al. [25] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [26] 3.4 20.6 12.9 13.0 8.1 11.6
SCNN [13] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [16] 2.9 14.7 10.5 10.4 5.8 8.9
IG-CNN 2.6 16.1 10.15 20.2 7.6 11.3

Table 2. MAEs obtained by models for the 5 test scenes of WorldExpo’10 dataset [25].

are created with fixed variance Gaussian kernel. We follow
5-fold cross-validation protocol adopted by [4] to evaluate
the model on the dataset.

IG-CNN hierarchical growing is done for two levels, cre-
ating 4 expert regressor on UCF CC 50 dataset. It can be
seen from Table 3 that IG-CNN has the lowest count er-
ror. Despite being a challenging dataset, our model delivers
an improvement of 4.4 points in MAE and has comparable
performance in MSE metric also.

Method MAE MSE
Lempitsky et al. [8] 493.4 487.1

Idrees et al. [4] 419.5 541.6
Zhang et al. [25] 467.0 498.5

CrowdNet [2] 452.5 -
MCNN [26] 377.6 509.1
Hydra2s [10] 333.7 425.3
SCNN [13] 318.1 439.2

Cascaded-MTL [15] 322.8 397.9
CP-CNN [16] 295.8 320.9

IG-CNN 291.4 349.4

Table 3. Comparison of IG-CNN with other methods on
UCF CC 50 dataset [4]. Our model gives lower error than other
methods.

4.4. WorldExpo’10 dataset

The World Expo’10 dataset introduced by [25] is a large
dataset containing 1132 video sequences captured by 108
surveillance cameras covering a set of scenes. On an aver-
age, each image has 50 people in it. The dataset is divided
into two parts for training and testing. Training data con-
sists of 3380 frames from 103 different scenes, whereas the
test data comprising of 5 different scenes has a total of 600
frames. Along with the images, the authors have also pro-
vided the Region of Interest (RoI) and the perspective maps.
The RoIs are used during training to backpropogate only in
those regions. Also, only the prediction in the RoI is used
to report crowd count while testing.

Table 2 lists the performance of all major methods. IG-
CNN is grown only just one level with two experts. World
Expo’10 dataset proves to be extremely challenging for our
model due to the sparse nature of the crowd with the lack
of significant variability in crowd density. This affects the

ability of our model to generate experts catering to different
crowd types. Despite these limitations, our model shows
comparable performance with respect to other models.

5. Analysis and Ablations
5.1. Effect of Growing

In this section, we study the effect of the hierarchical
CNN tree growing on the oracle accuracy and the final ac-
curacy at test time. All ablations are performed on Part A
of the Shanghaitech dataset [26] as it is sufficiently large
and has high variation in crowd density. Table 4 lists count
errors for the base CNN along with that of the IG-CNN at
different levels of growth. It also shows for each level, the
classifier accuracy and Oracle MAE. This oracle error is the
MAE that the model would achieve if the expert classifier is
100% accurate. There is significant improvement of MAE
for IG-CNN at higher levels than the base CNN but satu-
rates after level 3. Although the oracle error decreases down
drastically with each increment of the growth, the expert
classifier is unable to keep up and causes more switching
error as evident from the Table 4. This is primarily due to
the reduction in number of training samples per expert re-
gressor at higher tree levels. For example at level 2, the
distribution of samples for the four regressors is so skewed
that one of the expert gets only 2.9% of the total test patches.
This is more severe for level 3 with only 0.5% for the ex-
pert with the least number of samples and the corresponding
class wise classifier accuracy is just around 2%. The num-
ber of samples for some of the regressors are so small that
the classifier is unable to generalize significant discrimina-
tive features for the specialties. We also show in Table 4,
the performance when the regressor with the least number
of samples is not split, leading to an unbalanced tree. In this
way, there are only 7 expert regressors at level 3 instead of
8 experts. The MAE in this case is comparable to IG-CNN
at level 3, but higher.

5.2. Expert Specialty Characteristics

It is important to shed more light on the specialization
process involved in the IG-CNN training. Hence, we anal-
yse the features of specialty groups automatically inferred
in the hierarchical differential training. The specialty group-
ings might be based on some latent features such that the



Method Oracle Actual Classifier
MAE MAE Accuracy

Base CNN - 120.9 -
2 Experts (Level 1) 38.1 115.3 77.2
4 Experts (Level 2) 17.8 80.3 62.3
7 Experts (Level 3) 11.4 78.1 45.7
8 Experts (Level 3) 8.5 72.5 45.5

16 Experts (Level 4) 4.4 74.6 21.8

Table 4. Effect of hierarchical growth of IG-CNN on Part A of
Shanghaitech [26] dataset. Though the oracle loss is steadily de-
creasing with depth, classifier error is increasing leading to higher
MAE at test time.

oracle error is minimized. But are there observable charac-
teristics based on crowd types? Crowd density could be
one of the factors for specialization. Number of people
in a image patch is a proxy for crowd density. We com-
pute the distribution of crowd counts on the specialty sub-
sets of the expert regressors (see Section 3.4 for classifier
label creation). For the experiment, the test set of Part A
Shanghaitech dataset [26] is used. Figure 5 indicates a pos-
sible clustering of crowd patches based on count. Note that
patches with few people go to one regressor while more
denser ones get distributed across the other experts. This
multichotomy observed in the specialties reinforces the fact
that IG-CNN training creates experts based on certain la-
tent factors. Some of the factors could be correlated with
crowd density as density variation accounts for much of the
variability seen in crowd images.

5.3. Hierarchical Training Vs Baseline Methods

In short, IG-CNN training mines latent specialties hier-
archically and creates a set of expert regressors. Here we
compare this methodology with other similar methods. The
standard mixture of experts (MoE) approach uses a gating
network to weigh the output of the set of regressors. In the
same setting as that of IG-CNN, we use VGG-16 classifier
as gating CNN to output softmax confidences. The 8 regres-
sors are initialized with base CNN weights and their outputs
are multiplied by the classifier confidences. Table 5 shows
MAE numbers for MoE and is clearly inferior to IG-CNN.
MoE is unable to bring significant specialization among the
regressors.

We also compare with differential training introduced in
[13]. Instead of performing hierarchical training, N-way
differential training is done on the set of regressors as in
[13]. For this ablation, we use four and eight regressors
which are exact copies of the base CNN, is comparable to
IG-CNN with the same number of experts. The oracle loss
of the expert set is minimized by selectively fine-tuning
the best regressor for the given training sample. It can be
observed from Table 5, that the oracle MAE is lower for
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Figure 5. Mean and standard deviation of crowd count distribution
preferred by expert regressors at different hierarchies of IG-CNN.
Computed on patches from Shanghaitech [26] Part A test set.

IG-CNN than that of N-way differentially trained model.
In fact, the final performance with the expert classifier is
also inferior in the case of N-way differential training. This
emphasizes that the hierarchical training creates specialties
with better discriminative features.

Method Oracle Actual
MAE MAE

Mixture of Experts - 281.8
4-way Differential Training 20.6 99.0
8-way Differential Training 9.9 75.1

IG-CNN (Level 3) 8.5 72.5

Table 5. Comparison of IG-CNN with other specialization based
methods on Part A of Shanghaitech [26] dataset. IG-CNN outper-
forms other architectures.

6. Conclusion
We address the problem of better capturing large diver-

sity seen in crowd scenes for accurate regression of crowd
density. The proposed model, IG-CNN iteratively expands
its model capacity based on the complexity of the training
data. IG-CNN starts growing from a base CNN, which is
trained to regress crowd density. The base CNN is repli-
cated into two child regressors, each of which are imposed
specialization with differential training and recursively di-
vided again forming a CNN tree. The regressors at the
leaf nodes of the tree are finer experts on certain specialties
mined without any manually specified criteria. An expert
classifier predicts the right expert for a given test patch. We
evaluate on standard benchmarks and show better perfor-
mance for the model. Additionally, analysis of the special-
ties created by IG-CNN reveals correlation with observable
crowd characteristics such as crowd density.
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perspective-free object counting with deep learning. In Eu-
ropean Conference on Computer Vision, pages 615–629.
Springer, 2016.

[11] X. Qiang, G. Cheng, and Z. Wang. An overview of some
classical growing neural networks and new developments.
In International Conference on Education Technology and
Computer (ICETC), volume 3, pages V3–351. IEEE, 2010.

[12] D. B. Sam and R. V. Babu. Top-down feedback for crowd
counting convolutional neural network. In Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI), 2018.

[13] D. B. Sam, S. Surya, and R. V. Babu. Switching convolu-
tional neural network for crowd counting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, page 6, 2017.

[14] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. A. Sindagi and V. M. Patel. CNN-based cascaded multi-
task learning of high-level prior and density estimation for
crowd counting. In Advanced Video and Signal Based
Surveillance (AVSS), 2017 14th IEEE International Confer-
ence on, pages 1–6. IEEE, 2017.

[16] V. A. Sindagi and V. M. Patel. Generating high-quality crowd
density maps using contextual pyramid CNNs. In IEEE In-
ternational Conference on Computer Vision, 2017.

[17] R. Stewart and M. Andriluka. End-to-end people detection
in crowded scenes. arXiv preprint arXiv:1506.04878, 2015.

[18] E. Walach and L. Wolf. Learning to count with CNN boost-
ing. In European Conference on Computer Vision, pages
660–676. Springer, 2016.

[19] C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao. Deep
people counting in extremely dense crowds. In Proceedings
of the 23rd ACM international conference on Multimedia,
pages 1299–1302, 2015.

[20] M. Wang and X. Wang. Automatic adaptation of a generic
pedestrian detector to a specific traffic scene. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3401–3408, 2011.

[21] Y.-X. Wang, D. Ramanan, and M. Hebert. Growing a brain:
Fine-tuning by increasing model capacity. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2471–2480, 2017.

[22] Z. Wang, X. Wang, and G. Wang. Learning fine-grained fea-
tures via a CNN tree for large-scale classification. Neuro-
computing, 2017.

[23] B. Wu and R. Nevatia. Detection of multiple, partially oc-
cluded humans in a single image by bayesian combination
of edgelet part detectors. In IEEE International Conference
on Computer Vision, volume 1, pages 90–97, 2005.

[24] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste,
W. Di, and Y. Yu. HD-CNN: hierarchical deep convolutional
neural networks for large scale visual recognition. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2740–2748, 2015.

[25] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd
counting via deep convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 833–841, 2015.

[26] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-
image crowd counting via multi-column convolutional neu-
ral network. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 589–597, 2016.


