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Abstract

We propose an approach to learn image representations
that consist of disentangled factors of variation without ex-
ploiting any manual labeling or data domain knowledge. A
factor of variation corresponds to an image attribute that
can be discerned consistently across a set of images, such
as the pose or color of objects. Our disentangled represen-
tation consists of a concatenation of feature chunks, each
chunk representing a factor of variation. It supports ap-
plications such as transferring attributes from one image
to another, by simply mixing and unmixing feature chunks,
and classification or retrieval based on one or several at-
tributes, by considering a user-specified subset of feature
chunks. We learn our representation without any labeling
or knowledge of the data domain, using an autoencoder ar-
chitecture with two novel training objectives: first, we pro-
pose an invariance objective to encourage that encoding of
each attribute, and decoding of each chunk, are invariant to
changes in other attributes and chunks, respectively; sec-
ond, we include a classification objective, which ensures
that each chunk corresponds to a consistently discernible
attribute in the represented image, hence avoiding degen-
erate feature mappings where some chunks are completely
ignored. We demonstrate the effectiveness of our approach
on the MNIST, Sprites, and CelebA datasets.

1. Introduction

Deep learning techniques have led to highly successful
natural image representations, some focusing on synthesis
of detailed, high resolution images of photographic qual-
ity [5, 14], and others on disentangling image features into
semantically meaningful properties [6, 22, 25].

In this paper, we learn a disentangled image representa-
tion that separates the feature vector into multiple chunks,
each chunk representing intuitively interpretable properties,
or factors of variation, of the image. We propose a com-
pletely unsupervised approach that does not require any la-
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beled data, such as pairs of images where only one fac-
tor of variation changes (different viewpoints, for exam-
ple) [22, 28]. The basic assumption of our technique is that
images can be represented by a set of factors of variation,
each one corresponding to a semantically meaningful im-
age attribute. In addition, each factor of variation can be
encoded using its own feature vector, which we call a fea-
ture chunk. That is, images are simply represented as con-
catenations of feature chunks, in a given order. We obtain
disentanglement of feature chunks by leveraging autoen-
coders, and as a key contribution of this paper, by develop-
ing a novel invariance objective. The goal of the invariance
objective is that each attribute is encoded into a chunk in-
variant to changes in other attributes, and that each chunk
is decoded into an attribute invariant to changes in other
chunks. We implement this objective using a sequence of
two feature mixing and unmixing autoencoders.

The invariance objective using feature mixing on its own,
however, does not guarantee that each feature chunk repre-
sents a meaningful factor of variation. Instead, the autoen-
coder could represent the image with a single chunk, and ig-
nore all the others. This is called the shortcut problem [28].
We address the shortcut problem with a classification con-
straint, which forces each chunk to have a consistent, dis-
cernible effect on the generated image.

We demonstrate successful results of our approach on
several datasets, where we obtain representations consist-
ing of feature chunks that determine semantically meaning-
ful image properties. In summary, we make the following
contributions: 1) A novel architecture to learn image repre-
sentations of disentangled factors of variation without using
any annotation or data domain knowledge, and where the
representation consists of a concatenation of a fixed number
of feature chunks. Our approach can learn several factors of
variation simultaneously; 2) A novel invariance objective
to obtain disentanglement by encouraging invariant encod-
ing and decoding of image attributes and feature chunks, re-
spectively; 3) A novel classification constraint to ensure that
each feature chunk represents a consistent, discernible fac-
tor of variation of the represented image; 4) An evaluation
on the MNIST, Sprites, and CelebA datasets to demonstrate
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the effectiveness of our approach.

2. Related work
Autoencoders. Our architecture is built on autoencoders [4,
12, 1], which are neural networks with two main compo-
nents: an encoder and a decoder. The encoder is designed
to extract a feature representation of the input (image), and
the decoder translates the features back to the input. Dif-
ferent flavors of autoencoders have been trained to perform
image restoration [30, 21, 3] or image transformation [11].
While basic autoencoders do not impose any constraints
on the representation itself, variational autoencoders [16]
add a generative probabilistic formulation, which forces
the representation to follow a Gaussian distribution and al-
lows sampling images by applying the decoder to a Gaus-
sian vector sample. Thanks to their flexibility, autoencoders
have become ubiquitous tools in large systems for domain
adaptation [33, 15], or unsupervised feature learning [23].
Autoencoders are also used to learn feature disentangling
[25, 22, 28]. In our work we also use them as feature ex-
tractors. Our contribution is a novel unsupervised training
method that ensures the separation of factors of variation
into several feature chunks.
GANs. Generative Adversarial Networks (GANs) [9] are
designed to provide samples from a data distribution speci-
fied as a finite set of real data samples. They use two com-
peting neural networks: a generator translates input noise
vectors into fake data samples, while a discriminator tries to
distinguish fake samples from real ones. In the ideal case,
the trained generator produces convincing data samples of
the real data distribution, and the trained discriminator can-
not tell them apart from real ones. GANs have been success-
ful at image to image translation [13], learning representa-
tion [24], sampling images from a specific domain [33], or
ensuring that image-feature pairs have the same distribution
when computing one from another [8]. As the adversarial
loss constrains the distribution of the generated data but not
the individual data samples, it allows to reduce the need for
data labeling. In particular, Shrivastava et al. [26] use GANs
to transfer known attributes of synthetic, rendered examples
to the domain of real images, thus creating virtually unlim-
ited datasets for supervised training. In our work we use
GANs to enforce that images look realistic when their at-
tributes are transferred.
Disentangling. There are many methods [29, 31] that dis-
entangle factors of variation by using manual annotation.
Kulkarni et al. [17] sample the data during the training, such
that only one factor changes within a minibatch. They as-
sociate a feature chunk to the variation of the images in the
minibatch. One of the most immediate methods for disen-
tangling is to mix the feature encodings of two input images
with common known attributes in an autoencoder [25] and
then train a decoder to map the mixed features to the ground

truth image with mixed attributes. In other methods, GANs
and adversarial training have been leveraged to reduce the
need for complete labeling of all factors of variation. For
example, Mathieu et al. [22] apply adversarial training on
the image domain, while Denton et al. [7] propose adver-
sarial training on the feature domain. Szabó et al. [28] stud-
ied the ambiguities in weakly supervised disentanglement.
They can provably avoid a degenerate solution called the
shortcut problem, where the complete image representation
is condensed in only one feature chunk.

In some approaches, the physics of the image formation
model is integrated into the network training, with factors
like the depth and camera pose [32] or the albedo, surface
normals and shading [27]. Shu et al. [27] do no use any
label from the training data. However, an externally trained
3D morphable model guides the training, which is also a
form of annotation.

By maximizing the mutual information between synthe-
sized images and latent features, InfoGAN [6] makes the
latent features interpretable as semantically meaningful at-
tributes. InfoGAN is completely unsupervised, but it does
not include an encoding stage. In contrast, we build on an
autoencoder, which allows us to recover the disentangled
representation from input images, and swap attributes be-
tween them. In addition, we use a novel classification con-
straint instead of the feature consistency in InfoGAN.

Two recent techniques, β-VAE [10] and DIP-VAE [18],
build on variational autoencoders (VAEs) to disentangle in-
terpretable factors in an unsupervised way, similarly to our
approach. They encourage the latent features to be inde-
pendent by generalizing the KL-divergence term in the VAE
objective, which measures the similarity between the prior
and posterior distribution of the latent factors. Instead, we
build on mixing autoencoders [25] and adversarial train-
ing [9]. We encourage disentanglement using an invariance
objective, rather than trying to match an isotropic Gaussian
prior. Notice that our feature space is only designed for at-
tribute transfer and not for sampling. Finally, we can use
high-dimensional feature chunks, while in [10] and [18] the
chunks are one-dimensional.

3. Unsupervised Disentanglement of Factors of
Variation

A representation of images where the factors of varia-
tions are disentangled can be exploited for various computer
vision tasks. At the image level, it allows to transfer at-
tributes from one image to another. At the feature level,
this representation can be used for image retrieval and clas-
sification. To achieve this representation and to enable the
applications at both the image and feature level, we lever-
age autoencoders. Here, an encoder transforms the input
image x to its feature representation f = Enc(x), where
f = [f1, f2, . . . , fn] consists of multiple chunks f i ∈ Rd.



The dimension of the full feature is therefore n × d. In ad-
dition, a decoder transforms the feature representation back
to the image via Dec(f) = x.

Our main objective is to learn a disentangled represen-
tation, where each feature chunk corresponds to an im-
age attribute. For example, when the data x are face im-
ages, chunk f1 could represent the hair color, f2 the gen-
der and so on. With a disentangled representation, we
can transfer attributes from one image to another sim-
ply by swapping the feature chunks. An image x3 =
Dec([f11 , f

2
2 , f

3
2 , . . . , f

n
2 ]) could take the hair color from im-

age x1 and all the other attributes from x2.
In our approach, we interpret disentanglement as invari-

ance. In a disentangled representation, the encoding of each
image attribute into its feature chunk should be invariant to
transformations of any other image property. Vice versa,
the decoding of each chunk into its corresponding attribute
should be invariant to changes of other chunks. In our ex-
ample, if x1 and x2 have the same gender, we must have
f21 = f22 irrespective of any other attribute. Hence, a dis-
entangled representation is also useful for image retrieval,
where we can search for nearest neighbors of a specified at-
tribute. Invariance is also beneficial for classification, where
a simple linear classifier is sufficient to classify each at-
tribute based on its corresponding feature chunk. This ob-
servation inspired previous work [18] to quantify disentan-
glement performance using linear classifiers on the full fea-
tures f .

In the following, we describe how we learn a disentan-
gled representation from data without any additional knowl-
edge (e.g., labels, data domain) by using mixing autoen-
coders. One of the main challenges in the design of the
autoencoder and its training is that the encoder and the de-
coder could just make use of a single feature chunk (pro-
vided that this is sufficient to represent the whole input im-
age) and ignore the other chunks. We call this failure mode
a shortcut taken by the autoencoder during training. We
propose a novel invariance objective to obtain disentangle-
ment, and a classification objective to avoid the shortcut
problem.

3.1. Network Architecture

Our network architecture is shown in Figure 1. There
are three main components: We enforce invariance using a
sequence of two mixing autoencoders, and a discriminator;
we avoid the shortcut problem using a classifier. They are
all implemented as neural networks.
Mixing/Unmixing Autoencoders. We leverage a sequence
of two mixing autoencoders to enforce invariance, ensuring
that we encode each attribute into a feature chunk invari-
ant to changes in other attributes, and that we decode each
chunk similarly in an invariant manner into its attribute.
More precisely, the sequence of two mixing autoencoders

Enc
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x2 x3 x4

f1

f2 f12 f3 f31

L2

x1
Enc

EncDec Dec

Dsc
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x1

x3 “fake”
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m

Figure 1: Overview of our architecture. The core compo-
nent is a sequence of two mixing autoencoders (top). This
implements our invariance objective, which encourages that
the decoding of each feature chunk into an image attribute
is invariant to a perturbation (mixing) in other chunks, and
similarly, the encoding of each attribute into a chunk is in-
variant to a perturbation of other attributes. We include
an adversarial loss to ensure the intermediate images ob-
tained by perturbing some chunks is from our data distribu-
tion (bottom left). Finally, a classification objective avoids
the shortcut problem, where chunks would be ignored com-
pletely. Components with the same name share weights.

performs the following operations (Figure 1):

1. Sample two images x1 and x2 independently, and en-
code them into f1 = Enc(x1) and f2 = Enc(x2).

2. Mix: Define a mask m = [m11,m21, . . . ,mn1],
where mi are uniformly sampled in {0, 1}, and 1 =
[1, 1, . . . , 1] ∈ Rd. Select the i-th feature chunk from
f1 ifmi = 1 and from f2 ifmi = 0; collect them into a
new feature f1⊕2 = m�f1+(1−m)�f2, where� is
the element-wise multiplication and 1 = [1,1, . . . ,1].

3. Decode a new image x3 = Dec(f1⊕2).

4. Encode again, f3 = Enc(x3).

5. Unmix f3 by replacing feature chunks from f2, given
by the mask 1−m, with the corresponding ones from
f1, that is, f3⊕1 = m� f3 + (1−m)� f1.

6. Decode the final image x4 = Dec(f3⊕1), from the
mixed features of f3 and f1.

Finally, we minimize the squared L2 distance between
x1 and x4, thus the loss function can be written as

LM (θEnc, θDec) = Ex1,x2

[∑
m |x4 − x1|2

]
, (1)

where we sum over all possible mask settings, and θEnc and
θDec are the encoder and decoder parameters respectively.



(a) Digit class (b) Rotation angle (c) Stroke width
Figure 2: Attribute transfer on the MNIST dataset by
mixing individual chunks between pairs of source images,
shown in the topmost row and leftmost column. To generate
an image in column i and row j, we take one chunk from
the i-th image in the top row, and the other chunks from the
j-th image in the leftmost column. In each subfigure, the
mixed chunk corresponds to the attribute indicated in the
caption of the subfigure.

Intuitively, the key idea is that the cycle of decoding and
re-encoding of the mixed feature vector f1⊕2 should pre-
serve the chunks from f1 that were copied in f1⊕2. In other
words, these chunks from f1 should be decoded into corre-
sponding attributes of x3. In addition, re-encoding into f3
the intermediate image x3 consisting of a mix of attributes
from x1 and attributes from x2, should return the same fea-
ture chunks originally from x1.
Discriminator. To ensure that the generated perturbed im-
ages x3 are valid images according to the input data distri-
bution, we impose an additional adversarial term, which is
defined as

LG(θEnc, θDec, θDsc) = (2)∑
mEx1,x2

[
log(Dsc(x1)) + log(1− Dsc(x3))

]
,

where θDsc are the discriminator parameters. In the ideal
case when the GAN objective reaches the global optimum,
the distribution of fake images should match the real im-
age distribution. With the invariance and adversarial loss,
however, is still possible to encode all image attributes into
one feature chunk and keep the rest constant. This solution
optimizes both the invariance loss and the adversarial loss
perfectly. As mentioned before, this is called the shortcut
problem and we address it using an additional loss based on
a classification task.
Classifier. The last component of our network takes three
images as inputs: the input images x1 and x2, and the gen-
erated image x3. It decides for every chunk whether the
composite image was generated using the feature from the
first or the second input image. The formal loss function is

LC(θEnc, θDec, θCls) = (3)

Ex1,x2

[
−
∑

m

∑
im

i log(yi) + (1−mi) log(yi))
]
,

Table 1: Network architectures of encoder (Enc), decoder
(Dec), discriminator (Dsc) and classifier (Cls) on different
datasets. We denote the convolutional layer with “c”, the
deconvolutional layer with “d” and the fully connected layer
with “f”. The numbers denote the number of channels. The
kernel size and stride are denoted with “k” and “s”, and they
are omitted when they are equal to 1. The pooling layers “p”
have kernel size 3 and stride 2. After each convolutional and
deconvolutional layer we added a normalization and a leaky
ReLU layer with a leak coefficient of 0.2. For BEGAN, the
discriminator architecture is the same as that of the autoen-
coder. We used ReLU after the convolutional layers, and
“r” stands for reshape and “u” for upsampling by a factor of
2. We choose γ = 0.5 for training.

CelebA (DCGAN)
Enc c64k3s2-c128k3s2-c256k3s2-c512k3s2-c512k2-f
Dec d512k4-d512k4s2-d256k4s2-d128k4s2-d3k2
Dsc c64k3s2-c128k3s2-c256k3s2-c512-f
Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

CelebA (BEGAN)
Enc c32k3-c32k3-c32k3-c64-p-c64k3-c64k3-c96-p-c96k3-c96k3-

c128-p-c128k3-c128k3-c160-c160-p-c160k3-c160k3-f
Dec f4096-r(8,8,64)-c64k3-c64k3-u-c64k3-c64k3-u-c64k3-

c64k3-u-c64k3-c64k3-u-c64k3-c64k3-c3
Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

MNIST
Enc c64k3s2-c128k3s2-c256k3s2-f
Dec d512k4-d256k4s2-d128k4s2-d3k2
Dsc c64k3s2-c128k3s2-c256k3s2-c512-f
Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

Sprites
Enc c64k3s2-c128k3s2-c256k3s2-c512k2s2-c512k2-f
Dec d512k4-d512k4s2-d256k4s2-d128k4s2-d3k2
Dsc c64k3s2-c128k3s2-c256k3s2-c512-f
Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

where θCls are the classifier parameters, and its outputs are
Cls(x1,x2,x3) = y = [y1, y2, . . . , yn]. The classifier con-
sists of n binary classifiers, one for each chunk, that decide
whether the composite image x3 was generated using the
corresponding chunk from the first image or the second. We
use the cross entropy loss for classification, so the last layer
of the classifier is a sigmoid. The classifier loss can only
be minimized if there is a meaningful attribute encoded in
every chunk. Hence, the shortcut problem cannot occur as
it would be impossible to decide which chunks were used
to create the composite image.

Finally, our overall objective consists of the weighted
sum of the three components described above,

minθEnc,θDec,θCls maxθDsc λMLM + λGLG + λCLC . (4)

Note that during training, we randomly sample the masks
m instead of computing a sum over all possibilities for all
image sample pairs (Eqns. (1), (2) and (3)).



(a) MIX (b) MIX+G (c) MIX+C (d) MIX+G+C
Figure 3: Comparison of different methods on Sprites. In all subfigures, images are generated by taking one of the 8 feature
chunks from the topmost row, and the others from the leftmost column. Red frames indicate whether a feature chunk encodes
an attribute. MIX denotes the mixing loss, G the adversarial loss and C the classifier loss in the objective. MIX+G+C
disentangles pose, torso color, hair color, and leg color (columns marked with red boxes, left to right).
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Figure 4: Mean average precision of the nearest neighbor
search averaged across labeled attributes, as a function of
the chunk size on the Sprites dataset with the complete
model: the mixing autoencoder + the classifier + GAN.

3.2. Implementation

We use a network architecture similar to DCGAN [24]
for the encoder, decoder, and discriminator. For the clas-
sifier, we use AlexNet with batch normalization after each
convolutional layer, but we do not use any dropout. The im-
age inputs of the classifier are concatenated along the RGB
channels. We use equal weights λM = λG = λC = 1 for
the mixing autoencoder, GAN, and classifier for our exper-
iments on the MNIST and Sprites datasets. For CelebA, we
increase the weight of the mixing autoencoder to λM = 30.
In all experiments, the feature vector is the output of the
last layer of the encoder. We separate it into 8 chunks,
where each chunk is expected to represent one attribute,
with equal size for each of the eight chunks. Our results are
obtained with chunk size 8 for MNIST, 64 for Sprites and
64 for CelebA. We observed that reducing the chunk size
in CelebA leads to lower rendering quality. For CelebA, we
also show experiments using BEGAN [2] for the adversarial
training. The detailed architectures are shown in Table 1.

4. Experiments
We experimented on three public datasets, the MNIST

handwritten digits [19], Sprites animated figures [25], and
CelebA faces [20]. We show qualitative results on all

datasets and quantitative evaluations and ablation studies on
Sprites and CelebA.
MNIST. The MNIST dataset consists of 60K handwritten
digits for the training and 10K for the test set, given as
grayscale images with a size of 28 × 28 pixels. There are
10 different classes referring to the different digits. Other
attributes like rotation angle or stroke width are not labeled.
Our method can disentangle the labeled attribute as well
as some non-labeled ones. Figure 2 shows visual attribute
transfers for three factors: digit class, rotation angle, and
stroke width. The three chunks were chosen by visually
inspecting which chunk corresponded to which attribute.
All discernible variations seem to be encoded in the three
chunks, and transferring the other chunks seem to have lit-
tle visual effect.
Sprites. The sprites dataset has 672 synthetically rendered
animated characters (sprites). The dataset is split into a
training set with 500, a validation set with 72, and a test set
with 100 sprites. Each sprite is rendered at 178 positions,
thus the number of images is 120K in total. The dataset has
many labeled attributes: body shape, skin color, vest color,
hairstyle, arm and leg color, and finally weapon type. The
pose labels can be extracted from the frame number of the
animations. This rich attribute labeling is ideal for testing
the disentanglement of our algorithms.

We perform ablation studies on the components of our
method. The qualitative results are shown in Figure 3. We
can see that mixing autoencoder already learned to disen-
tangle 2 chunks. Adding only GAN does not improve the
disentangling, as its job is to make the images look more
realistic. However, the rendering quality without GAN is
already good. Adding only the classifier does not improve
disentangling either, it rather creates artifacts in the render-
ing. The intuitive explanation is that the classifier solves
the shortcut problem in the sense that it forces all chunks to
carry information about the inputs. However, the informa-



Table 2: Mean average precision performance of nearest neighbor classification on the Sprites dataset, which comes with
labeled attributes. Each row contains different methods, while the columns show the classification performance of different
attributes. MIX denotes the mixing loss, G the adversarial loss, C the classifier loss and AE is the vanilla autoencoder in the
objective.

Method body skin vest hair arm leg pose average
Random 0.5 0.25 0.33 0.17 0.5 0.5 0.006 0.32
C+G 0.53 0.31 0.41 0.24 0.51 0.52 0.06 0.37
AE 0.56 0.37 0.40 0.31 0.54 0.56 0.46 0.46
AE+C+G 0.59 0.50 0.53 0.46 0.56 0.54 0.44 0.52
MIX 0.57 0.61 0.51 0.62 0.54 0.94 0.53 0.62
MIX + C 0.57 0.65 0.43 0.63 0.55 0.58 0.51 0.56
MIX + G 0.59 0.31 0.44 0.24 0.54 0.96 0.47 0.51
MIX + C + G 0.58 0.80 0.94 0.49 0.58 0.96 0.52 0.70

(a) Pose+arm (b) Undefined (c) Undefined (d) White bar

(e) Vest (f) Skin+hair (g) Leg (h) Undefined

Figure 5: Attribute transfer on the Sprites dataset. For every subfigure (a) to (h), one of the eight chunks is taken from the
topmost row and the rest from the leftmost column. Each subfigure visualizes the role of one of the eight chunks, and the
subfigure captions indicate the attribute (if semantically meaningful) associated with the chunk.

tion seem to be stored as artifacts, while the interpretable
attributes are ignored. The full objective with all three com-
ponents on the other hand improves the performance, as
the artifacts are eliminated by GAN, and the shortcut prob-
lem can only be avoided by disentangling the factors. The
method recovers 4 independent factors.

For quantitative analysis we perform nearest neighbor
search using a chunk of the features and compute the mean
average precision using an attribute as ground truth. We re-
peat the search for all chunk and attribute pairs, and for each
attribute we choose the best performing chunk to represent
it. We ignore the weapon type attribute in our evaluation, as
it is only visible in a small subset of poses. We also com-
pare our method to the vanilla autoencoder. It has only one

chunk, but its dimensionality is the same as the full feature
of the other methods. In Table 2 we compare the results of
our methods. We can see a consistent improvement of our
proposed mixing autoencoder over the vanilla autoencoder,
whether we use the classifier and the GAN or not. The clas-
sifier and the GAN together also consistently help, no mat-
ter which autoencoder was used (MIX, vanilla or none). The
classifier or the GAN alone do not help the performance,
which is in line with the qualitative experiments as well.
Figure 4 shows the effect of the chunk size on the classifi-
cation performance. Increasing the number of dimensions
helps, but we reach a plateau at 16 dimensions. We chose a
large chunk size 64 for our experiments to better highlight
that we can avoid the shortcut problem, the degenerate solu-
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Figure 6: Attribute transfer on the CelebA dataset with our method using (a) DCGAN and (b) BEGAN. For every subfigure,
one chunk is taken from the topmost row and the rest from the leftmost column. Different subfigures show the role of different
chunks. The captions indicate the attribute associated with the chunk.

tion where all information is stored in one chunk. Figure 5
visualizes attribute transfer for all chunks, similarly to Fig-
ure 2, using our complete method. We can recover the leg
and vest colors into single chunks, while the pose and arm
color attribute pair is represented by one chunk. The skin
color and hairstyle attributes are also entangled and repre-
sented by another chunk. There are 6 positions, where the

sprites stand on a white bar. Even though this attribute is
fully determined by the position, our method separates it to
its own chunk.
CelebA. CelebA contains 200K color images of celebrity
faces. The training, validation, and test sizes are 160K,
20K and 20K respectively. There are 40 labeled binary
attributes indicating gender, hair color, facial hair and so



Table 3: The classification performance on CelebA. Each row contains different methods, while the columns show the
different attributes (“eyebr.” is arched eyebrows and “attr.” is attractive).

Method Eyebr. Attr. Bangs Black Blond Makeup Male Mouth Beard Wavy Hat Lips Avg.
VAE 71.8 73.0 89.8 78.0 88.9 79.6 83.9 76.3 87.3 70.2 95.8 83.0 81.5
β=2 71.6 72.6 90.6 79.3 89.1 79.3 83.5 76.1 86.9 67.8 95.9 82.4 81.3
β=4 71.6 72.6 90.0 76.6 88.9 77.8 82.3 75.7 85.3 66.8 95.8 80.6 80.3
β=8 71.6 71.7 90.0 76.0 87.2 76.2 80.5 73.1 85.3 63.7 95.8 79.6 79.2
DIP-VAE 73.7 73.2 90.9 80.6 91.9 81.5 85.9 75.9 85.3 71.5 96.2 84.7 82.6
Ours (DCGAN) 72.2 68.5 88.8 75.7 89.9 76.9 80.1 73.6 83.8 70.5 95.8 78.6 79.5
Ours (BEGAN) 73 69.7 90.2 79.6 89.3 78.9 85.4 77.1 88.1 70.8 96.4 81.7 81.7

(a) Brightness (b) Glasses (c) Hair color (d) Hair style (e) Pose/smile

Figure 7: Image retrieval on CelebA of our method with DCGAN. Subfigures show the nearest neighbor matches for different
feature chunks. For all subfigures, the first column contains the query images and subsequent columns contain the top matches
using the L2 distance. The caption indicates the discovered semantic meaning.

on. We applied our method with both BEGAN and DC-
GAN architectures. Figure 6 shows the attribute transfer for
each chunk. We can see that DCGAN exhibits more pro-
nounced attribute transfer, while BEGAN tends to blur out
the changes. Figure 7 shows the nearest neighbors of some
query images in the dataset using DCGAN. We used the L2

distance on the specified feature chunks to search for top
matches. For each chunk the top matches preserve a seman-
tic attribute of the query image. Our method could recover
five semantically meaningful attributes: brightness, glasses,
hair color, hair style, and pose and smile. Notice that the
attributes discovered with attribute transfer match the at-
tributes in image retrieval. For brevity we only show those
five chunks. We performed quantitative tests on our learned
features. We followed the evaluation technique based on the
equivariant disentanglement property described in [18]. A
feature representation is considered disentangled when the
attributes can be classified using a simple linear classifier.
In our special case when an attribute depends only on one
chunk (a subspace), a linear classifier would perform well
by setting the classifier weights with respect to the other
chunks to zero. We train binary classifiers on the whole fea-
ture vector, each with a different labeled attribute as ground
truth. The classifier prediction is sign(wT f + b), where the
classifier weights are computed as

w = 1
|i:ci=+1|

∑
i:ci=+1 fi −

1
|i:ci=−1|

∑
i:ci=−1 fi, (5)

where ci ∈ {−1,+1} are the attribute labels. The bias term

b is set by minimizing the hinge loss. For a fair compar-
ison we normalize the features by setting the variance for
each coordinate to one, as in [18] the features are already
normalized by the variational autoencoder. The results are
shown in Table 3. We can see that our network is com-
petitive with the state of the art methods, β-VAE [10] and
concurrent work DIP-VAE [18]. The BEGAN architecture
performs slightly better than DCGAN, despite the superior
rendering quality of the latter.

5. Conclusions

We have introduced a novel method to disentangle fac-
tors of variation of a single set of images where no anno-
tation is available. Our representation is computed through
an autoencoder, which is trained by imposing constraints
between the encoded features and the rendered images. We
train the decoder to render realistic images by feeding fea-
tures obtained by randomly mixing features from two im-
ages and by using adversarial training. Moreover, we force
the autoencoder to make full use of the features by training
it jointly with a classifier that determines how features have
been mixed from an input image. We show that this tech-
nique successfully disentangles factors of variation in the
MNIST, Sprites and CelebA datasets.
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