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Figure 1: Gaudi’s Casa Mila is famous for its irregular shapes. Single-image NLV idealizes each image independently,
resulting in utterly different geometries – the building’s facade is flat and some of the porches are straightened only in the top
image. Reconstruction of a corresponding 3D structure completely fails. Conversely, our multiview NLV approach reduces
the irregularities in both images in a synchronized manner and the corresponding 3D shape shows straightened verandas.

Abstract
We present an algorithm for modifying small non-local

variations between repeating structures and patterns in
multiple images of the same scene. The modification is con-
sistent across views, even-though the images could have
been photographed from different view points and under
different lighting conditions. We show that when modify-
ing each image independently the correspondence between
them breaks and the geometric structure of the scene gets
distorted. Our approach modifies the views while maintain-
ing correspondence, hence, we succeed in modifying ap-
pearance and structure variations consistently. We demon-
strate our methods on a number of challenging examples,
photographed in different lighting, scales and view points.

1. Introduction
Repetition of patterns and structures is a widespread phe-

nomenon, e.g, in the leaves of plants and flowers, animal

furs or rocks and sand dunes. Recurring structures can
be also found in man-made environments, for example, a
row of chairs in a large stadium or a pile of boxes in a
shoe store. In many cases, the recurring structures are not
perfectly identical and sometimes the deviations from an
‘ideal’ structure are small and hard to notice by the naked
eye. Revealing these deviations may be useful in many sit-
uations, for example, revealing deformations in a produc-
tion line or detecting irregular cells in a petri dish. Modify-
ing these variations and correcting them could be useful for
beautification of images.

Recently, a method was devised for revealing the Non-
Local Variations (NLV) in a single image [7]. Their method
recovers a simple geometric transformation that can be ap-
plied to the input image in order to obtain an ‘ideal’ image
in which the variations between repeated structures are min-
imal. By applying the inverse transformation, these non-
local variations can be exaggerated. Their method was used
for several applications such as idealizing images, revealing
object properties and visualizing defects in material inspec-
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tion. Their approach is based on generating an ideal image
where each patch is replaced by the average of its nearest-
neighbors (in terms of appearance), and then estimating the
deviation of the input image from this ideal image.

In the modern media age we live in, oftentimes multi-
ple images of the same scene are taken. Different people
capture the same monuments, events, and objects, and share
them publicly. In this paper, we present an approach to mul-
tiview NLV which extends the single-image NLV of [7] to a
pair of images of the same scene that could have been taken
under different lighting conditions and from different view-
points. We show that applying single-image NLV indepen-
dently to each image leads to inconsistent corrections, and
hence, the ability to reconstruct a corresponding 3D shape is
damaged (see Figure 1 ). In order to preserve the geometri-
cal consistency, we add a correspondence constraint which
enforces the images to be idealized together. We show that
this approach reveals and corrects not only appearance vari-
ations but also non-local 3D shape variations.

We suggest two ways to guarantee consistency across
multiple views. The first requires geometrical consistency
between the idealizing transformations, while the second
approach requires similarity between the appearances of
the idealized images. Demanding similar appearance im-
plicitly requires that the idealizing geometrical transforma-
tions that the images undergo are consistent. An advantage
of the transformation-based approach is its applicability to
images with different lighting and illumination while the
appearance-based approach is appropriate only when the in-
put images are very similar in their colors, e.g., a stereo pair
or frames of a video. We examine multiview-NLV on pairs
of images taken by different people, at different times, from
different viewpoints and varying illuminations.

The rest of the paper is organized as follows. Section 2
surveys related work. Mathematical formulation with a
short overview of the multi-view NLV problem is described
in Section 3, and a detailed description of the algorithm is
provided in Section 4. Experimental validation is presented
in Section 5 and conclusions are drawn in Section 6.

2. Related Work
Non-Local Variations in a Single Image. In a recent
work, Dekel et al. [7] presented a non-parametric algorithm
for detecting and visualizing small variations between re-
peating structures within a single image. Their method can
handle complex deformations that cannot be modeled by
a parametric model. Their algorithm iteratively alternates
between two steps: first, computing an ‘ideal’ average im-
age, in which every patch is replaced by the average of its
nearest neighbors, and second, computing the ‘idealizing’
transform between the ideal image and the original input
image. Lukáč et al. [26] proposed generating a symme-
try feature set, and then using it as input to the NLV algo-
rithm of [7], thus, extending the idealizing transformation

to work with rounded symmetry repeating structures. Wad-
hwa et al. [37] presented a different approach for revealing
tiny deformations within a single image using a local para-
metric method. In their algorithm, a parametric model is
fitted to objects in the input image. Then, the residual be-
tween the ideal model and the fitted model is calculated. In
our work, we extend the non-parametric approach of [7], to
handle non-parametric, complex deformations consistently
between multiple images of similar content.

Texture Manipulation. Also related to our problem
are works that estimate the geometric deformation
between multiple images for texture replacement in
videos [19][33][39]. These methods first find a texture de-
formation, and then compute the correspondence in order
to track the motion between frames. Another approach for
texture replacement in multi-view images uses depth in-
formation to recover near-regular texture deformation [34].
Somewhat related is also the work of Yücer et al. [42], that
propose a method for consistent manipulation of multiple
images of a common object based on an adaptation of the
Lucas-Kanade [25] framework.

Methods for single-image texture manipulation have var-
ious applications, such as texture symmetrization [16][24],
texture replacement [8][23][24], or shape from texture
[5][27]. Another widely-discussed application is texture
synthesis, where high quality texture is synthesized from
a small texture patch or image[8][16].

A different method for single-image texture synthesis [1]
is synthesizing time-varying weathered textures by estimat-
ing an ”age map” for the input image, which is based on
prevalence analysis of image patches. Dekel et al. [7] dif-
fers from previous texture manipulation works in three prin-
ciple aspects: (i) Most texture manipulation methods are
based on a single texton repetition to form a lattice and
rely on finding the deformation in the lattice. In the NLV
the repeating structures can be located in different locations
in the image. (ii) Some of the methods [16] do not rely
on near-regular textures, however they cannot treat images
with multiple textures . (iii) The NLV [7] algorithm works
in different scales, hence locates even small scale variations
in a near-regular texture. Since our image editing algorithm
is based on [7] , all the above are relevant to us as well.

Motion Magnification. A series of studies on revealing
and magnifying tiny variations in video-sequences has re-
ceived great acknowledgement inside and outside the com-
puter vision community [21][38][40]. These articles present
several approaches to reveal and magnify temporal varia-
tions that are invisible to the naked eye using frequency
analysis of the video. Our goal, however, is finding vari-
ations within each of the input images while preserving the
correspondence between the modified images.



Co-Saliency. Identifying unique patterns in recurring
structures correspondingly in a set of images is also used for
co-saliency detection [4][6][9][14][15][17][18][30]. Most
of these methods integrate two kinds of cues: inner image
saliency and multi-image correspondence which enforces
similar objects to be salient together [6][9][15][17][18].
Other methods, use the correspondence information to force
physical constraints on the mutual saliency maps [4][30].
Unlike the co-saliency methods, our algorithm locates vari-
ations between very similar recurrent structures correspond-
ingly in multi-view images.

Co-Segmentation. Co-segmentation algorithms are re-
lated to our work since they also deal with synchronous
analysis of multiple images of the same scene, albeit their
goal is segmentation. Rother et al. [31] co-segment a
pair of images using a graph based solution for generative
model estimation while forcing histogram matching of the
foreground pixels. Other unsupervised algorithms for co-
segmentation [36][28][29][13][32][41] use variations of op-
timization methods and different sets of features for corre-
spondence. Unlike co-segmentation methods, our approach
requires dense pixel-wise matching between the images to
obtain consistent images manipulation.

3. Problem Formulation
To outline the problem formulation we start by briefly

reviewing the single-image NLV formulation of Dekel et
al. [7] in Section 3.1. Then we lay out our extension to
multiple views in Section 3.2.

3.1. Single-Image NLV
Given an input image I , the NLV method seeks to deter-

mine a smooth geometric deformation T corresponding to
a dense flow field (u(x, y), v(x, y)), which maximizes the
resemblance between recurring patches in I . This is done
by introducing an auxiliary ‘ideal’ image J , which is re-
stricted to: (i) have strong patch repetitions, and (ii) be sim-
ilar to T {I} for some deformation T . More specifically,
the ‘ideal’ image J and the idealizing deformation T are
obtained through the minimization of the energy

ENLV(T , J,DB) =
Erec(J,DB) + λEdata(T {I}, J) + αrEreg(T ) (1)

over both J and T . Here, the first term is a “recurrence” en-
ergy, which measures the dissimilarity between each patch
p∈J and its nearest neighbor patches {q} from the database
DB of all overlapping patches in J . It is defined as

Erec(J,DB) = −
∑
p∈J

log

∑
q∈DB

exp{− 1
2h2 ‖p− q‖2}

 ,

(2)

where h is some bandwidth parameter. The second term
in (1) aims for similarity between the ideal image J and the
deformed input image T {I}. Specifically,

Edata(T {I}, J) =
∫∫

ψ(‖J(x, y)− T {I}(x, y)‖2)dxdy,
(3)

where ψ(a2) =
√
a2 + ε2, for some small ε. Finally, the

last term in (1) is a regularizer on the transformation T ,
which directs the flow field to be smooth,

Ereg(T ) =
∫∫

ψ(‖∇u(x, y)‖2+‖∇v(x, y)‖2)dxdy. (4)

To minimize the energy (1), the NLV algorithm alter-
nates between updating the transformation T , the ideal im-
age J , and the patch database DB. The updates of T and J
are performed with an Iterative Reweighted Least Squares
(IRLS) type algorithm [2].

3.2. Multiview NLV

When more than a single view of the scene is avail-
able, we want the detection and correction of the non-local
variations to be consistent across views. In this section
we present our formulation for revealing non-local varia-
tions in a pair of images. This formulation can be easily
extended to more than two images. Due to space limita-
tions the extension to k-views is not included in this ver-
sion (go to our website http://cgm.technion.ac.il/Computer-
Graphics-Multimedia/Software/MultiViewNLV for an ex-
tended version of this work).

Let I1 and I2 be two images of the same scene which
contain inherent recurring structures with small variations.
The images could be a stereo pair, or taken from different
views and differently illuminated. The aim of our formu-
lation is to recover two idealized images J1 and J2 with
reduced structural variance, which are consistent with each
other such that they correspond to a plausible valid scene.
For example, in Figure 1, we want the porches on Gaudi’s
Casa Mila to deform consistently across the two views, cor-
responding to a 3D building with fewer depth variations. As
can be seen in the figure, idealizing each image separately
destroys the geometrical structure of the scene since each
image is manipulated differently and converges to a differ-
ent local minimum.

Denote by T1 and T2 the idealizing transformations
with corresponding flow-fields (u1(x, y), v1(x, y)) and
(u2(x, y), v2(x, y)), so that the corrected input images are

T1{I1}(x, y) = I1(x+ u1(x, y), y + v1(x, y)),

T2{I2}(x, y) = I2(x+ u2(x, y), y + v2(x, y)). (5)

A naive way to determine T1 and T2, would be to mini-
mize the single-view energy (1) for each of the views in-
dependently (with two auxiliary ‘ideal’ images J1 and J2,



respectively). However, in order to obtain consistent trans-
formations, we also incorporate a geometrical consistency
constraint through a correspondence loss Ecorr. Our multi-
view energy is thus defined as:

EMV-NLV(T1, J1,DB1, T2, J2,DB2) =

ENLV(T1, J1,DB1) + ENLV(T2, J2,DB2)

+ αcEcorr(T1, T2, J1, J2), (6)

where αc is a parameter tuning the importance of multiview
consistency. We examine two options for the correspon-
dence loss, described below.

Before we define the loss, we note that it is important to
solve our optimization problem in a single coordinate sys-
tem. To do so, we set one of the images as the anchor view
and the second image is warped to the anchor image co-
ordinates. Without loss of generality, we choose I1 as the
anchor and I2 is warped to the anchor coordinates. To make
our formulation as simple as possible, we refer to I2 as the
warped input image. The recovered ideal images J1 and J2,
and transformations T1 and T2, are obtained in the anchor
view coordinate system. To get back to the original coor-
dinate system, we unwarp the recovered transformation and
apply it to the original input image.

Transformation consistency The first option for the cor-
respondence loss is to constrain the idealizing transforma-
tions T1 and T2 to be similar. This can be done by de-
manding similarity between their corresponding flow-fields.
Specifically, letting wx(x, y) = u1(x, y) − u2(x, y) and
wy = v1(x, y)−v2(x, y), we define the transformation con-
sistency loss to be

Ecorr(T1, T2) =
∫∫ (

w2
x(x, y) + w2

y(x, y)
)
dxdy. (7)

This loss penalizes large deviations between the recovered
transformations of the two views.

Appearence consistency A second option for the corre-
sponds loss is to constrain the idealized images to have sim-
ilar appearance, while constraining the transformation dif-
ferences to be smooth. For this penality to be meaningful,
we work in the coordinates of the input images, thus

Ecorr(T1, J1, T2, J2) =

λ
αc

∫∫
ψ
(
‖T −11 {J1}(x, y)− T

−1
2 {J2}(x, y)‖2

)
dxdy

+

∫∫
ψ
(
‖∇wx(x, y)‖2 + ‖∇wy(x, y)‖2

)
dxdy. (8)

Here ψ is as in (3) and (4), (wx, wy) is as in (7), and the
integrals are only over valid pixels (where I2 was mapped
to I1 with high confidence).

Algorithm 1 Multi-View NLV

Input: Images I1, I2; Correspondence field Dx, Dy .
Output: Ideal images J1, J2, Idealizing transformations
T1, T2.

Down-sample to coarsest scale
Warp I2 to I1 coordinates using Dx, Dy .
Initialize T1 and T2 to be identity mapping, J1 = I1 and
J2 = I2.
repeat

1. Database Update:
Set DB1, DB2 as all overlapping patches from J1

and J2, respectively.
2. Image Update:

Minimize 6 w.r.t. J1,J2
3. Transformation Update:

Minimize 6 w.r.t. T1, T2 ,
Upscale images and transformations

until Fine scale

Each of the proposed formulations has its advantages.
The transformation consistency formulation of (7), enables
processing images with completely different illuminations,
or even more extreme appearance differences. The appear-
ance consistency formulation of (8), assumes visual similar-
ity between the images. This is more limiting, on one hand,
but in scenarios when this assumption holds (e.g., video
frames or a stereo pair) the additional constraint could lead
to more accurate results. In practice, we have found that the
transformation consistency provided satisfactory results in
all our experiments. Therefore, we henceforth provide the
detailed algorithm description only for the transformation
consistency option, and leave the appearance consistency
algorithm to the supplementary.

4. Detailed Description of the Algorithm
To solve the optimization problem (6), we alternate be-

tween updating the patch databases DB1,DB2, the ideal
images J1, J2, and the transformations T1, T2, as summa-
rized in Algorithm 1. We run the algorithm in a coarse-to-
fine pyramid structure in order to find variations in different
scales. The scale of the coarsest pyramid level is selected
by the user according to the size of the repeating structures
of interest.

Database update In this step we update the databases
DB1,DB2 by extracting all overlapping patches from the
current ideal images J1, J2, respectively. These databases
are then held fixed throughout the other algorithm steps.

Image update In this step, we minimize the objective (6)
with respect to the ideal images J1, J2 while holding



all other variables fixed. This step drives the patches
in J1, J2 to be similar to those in the current databases
DB1,DB2, while constraining the images to remain close
to the geometrically corrected versions of the input images,
T1{I1}, T2{I2}, and to each other. This has the effect of
strengthening the patch repetitions within J1, J2. To sim-
plify the exposition, we denote the geometrically corrected
input images as Ic

1 = T1{I1} and Ic
2 = T2{I2}.

Substituting the transformation consistency loss (7)
in (6), and retaining only the terms that depend on J1, J2,
we obtain the objective

Erec(J1, DB1) + Erec(J2, DB2)+

+ λEdata(T1{I1}, J1) + λEdata(T2{I2}, J2).

This objective is separable in J1 and J2, and each sub-
problem is identical to the one in the image update objective
of the single-image NLV algorithm. We thus use the same
solution technique as in [7]. Specifically, setting the gradi-
ent w.r.t. to J1 to zero, we get that

J1(x, y) = β1(x, y)Z1(x, y)+(1−β1(x, y))Ic1(x, y), (9)

where Z1 is an image obtained by replacing each patch in
J1 by a weighted combination of its K Nearest Neighbor
(NN) patches from the database DB1, and

β1(x, y) =
W 1

data(x, y)

W 1
data(x, y) +

h2

M2

. (10)

Here,M denotes the patch width, h is the bandwidth param-
eter in (2), and W 1

data(x, y) =
1
λψ(‖J1(x, y)− I

c
1(x, y)‖2).

Since Z1 and β1 are both functions of the unknown J1, we
alternate between updating J1 according to (9) and comput-
ing β1 using (10). The image J2 is updated similarly.

Transformation update In this step, we update the ide-
alizing transformations T1, T2 while keeping the images
J1, J2 fixed. We force T {I} to be similar to J and the trans-
formation to be piece-wise spatially smooth. The objective
to be minimized is

λEdata(T1{I1}, J1) + λEdata(T2{I2}, J2)
+ αrEreg(T1) + αrEreg(T2) + Ecorr(T1, T2). (11)

Substituting (3), (4), and (7), this objective becomes

λ

∫∫
ψ(‖J1(x, y)− I1(x+ u1, y + v1)‖2)dxdy

+ λ

∫∫
ψ(‖J2(x, y)− I2(x+ u2, y + v2)‖2)dxdy

+ αr

∫∫
ψ(|∇u1(x, y)|2 + |∇v1(x, y)|2)dxdy

+ αr

∫∫
ψ(|∇u2(x, y)|2 + |∇v2(x, y)|2)dxdy

+ αc

∫∫
(w2

x(x, y) + w2
y(x, y))dxdy, (12)

where (wx, wy) is the difference between the flow fields, as
in (7). This formulation is very similar to that of conven-
tional optical flow estimation. Only here we need to simul-
taneously determine two flow fields, which conform to two
data terms, two smoothness terms, and a consistency term
between them. We solve this optimization problem simi-
larly to the IRLS optical flow method of [20]. The (lengthy)
detailed derivations are provided in the Supplementary.

Implementation details To perform the initial coordinate
warping to the anchor view’s coordinates system, we com-
pute the correspondence field Dx, Dy between I1 and I2.
When the input is a stereo pair, we calculate the disparity
field using Semi-Global Matching (SGM) [12]. For uncon-
strained multi-view images that could have similar content,
but with different scales and illuminations, we used either
the robust correspondenc of [35] or that of SIFT-flow [22].

5. Empirical Evaluation
In this section we assess the capabilities of our proposed

multiview NLV algorithm and compare it to the single-
image NLV algorithm of [7]. Our results exhibit the main
contribution of the proposed approach that produces geo-
metrically consistent idealized image pairs that preserve the
original 3D structure properties, only idealized.

Our experiments were preformed on natural images with
a variety of textures and different kinds of repeated objects.
Some images were captured by us, and some were found
online. In addition we also tested several images that were
rendered from a 3D model using [11], in order to examine
specific phenomena under controlled conditions. More re-
sults are presented in the supplementary.

In all our experiments we applied the algorithms to the
original input images, using 3–4 pyramid levels, such that
in the coarsest level the patch size covers the largest repeat-
ing structure in the input image. A patch size ofM=15×15
was fixed for all scales, so that we cover different sizes of
repeating objects. For example, in the corn example in Fig-
ure 4, we can create uniform corn kernels (fine scale) as
well as aligned kernels rows (coarse scale). The results ob-
tained with appearance consistency and transformation con-
sistency were pretty much similar (when appearance con-
sistency could be applied), hence, we show here results for
the latter. The parameters were set to λ = 3, αr = 0.03,
αc=0.06, h=0.1, ε=1e−6, and K=30 NNs.

Multiview: Figures 1, 2 and 3 show example results for
images photographed from different views. In the case of
Figures 1 and 3 also at different occasions and by different
people, resulting in severe scale and illumination changes.
It can be seen that our multiview approach corrects the
variations in a consistent manner across views, resulting in
a corresponding idealized 3D shape, whereas, the single-
view NLV leads to different transformations and distorted
shapes. The visualization of the transformation flow-fields



Input Multiview NLV Single-image NLV

Figure 2: Multiview vs. Single-image: NLV can reveal and correct the disorganization in the lollipop stand and cookie
box. However, “idealizing” each image independently with Single-image NLV results in inconsistencies, e.g., the lollies
on the top-left of the stand and rightmost cookies (we zoom-in on regions to highlight this). It is easier to see that in the
3D reconstructions that have holes in those areas and show overall awkward geometries. Conversely, our multiview NLV
approach reduces the irregularities in both images in a synchronized manner resulting in straightened candies and cookies, a
cylindrical stand and rectangular box.

in Figure 3 illustrates the importance of multiview corre-
spondence. The variations we wish to discover are those
inherent to the structures in the scene. However, when each
image is processed independently, a local minima solution
could be found. Enforcing the geometric correspondence
drives the optimization to find a solution that complies with
both images, and hence, tends to better comply with the
actual shape variations in the scene. We show the actual
modified images in the supplementary.

Stereo: Figure 4 shows results when the input images
are either taken by a stereo pair, or rectified images (we
used the ’Epipolar Rectification Toolkit’ [10]). It is evident
that single-image NLV results in inconsistent transforma-
tions, ruining the correspondence and leading to a 3D shape
with holes and distortions. Conversely, our multiview NLV
algorithm produces idealized images, and a corresponding
idealized 3D shape. For example, the corn kernels are reg-
ular and the cob’s shape is a smooth cylinder.

Correction vs. exaggeration: In Figure 5 we exemplify
how multiview NLV can both correct and exaggerate the
variations within the images. It is interesting to see how
both the color and the shape of the berries become more (or
less) regular when processed by our algorithm.

Different illuminations: We further tested our approach
on pairs of images taken from the same viewpoint, but with
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Figure 3: Flow correspondence: Given two images of the
colonnade in Piazza San Marco we can reveal the variations
between the seemingly identical colons and arches. Here
we show the transformation field between each input im-
age and its version with exaggerated variations via NLV. In
Multiview NLV the transformation fields of the two images
correspond, e.g., arches were expanded or shrunk consis-
tently in both views. Conversely, in Single-image NLV the
transformations are quite different and inconsistent, e.g., the
right region is purple (moves up and right) in one image and
green and yellow (moves down and left) in the other. This
indicates breaking the geometrical consistency.



Input Multiview NLV Single-Image NLV Input Multiview NLV Single-Image NLV

Figure 4: Stereo: In these stereo-pairs NLV can straighten the wall relief patterns and regularize the corn kernels. When using
multiview NLV the corresponding 3D shapes are regularized as well. Conversely, single-image NLV ruins the geometrical
consistency, implying no corresponding correct 3D shape exists, hence the holes in the reconstruction.

Input Correction Exaggeration

Figure 5: Correction vs. exaggeration: NLV can reorga-
nize the berries to be of more similar color and shape, or
vice versa, it can extenuate the variations between them.

illumination and style differences (from the MIT-Adobe
FiveK Dataset [3]). Figure 6 presents one example re-
sult (more are provided in supplementary). It can be seen
that single-view NLV produces inconsistent transformation
hence blending the two images produces in a blurred result,
whereas our multiview NLV yields corresponding idealized
images and hence the blended result in sharp.

Parameter tuning: In Figures 7, 8 we analyze the effect
of tuning the parameter αc, which controls the correspon-
dence term. In Figure 7 the frames of a video of can-can
dancers were idealized together. For small αc the corre-
spondence between the input frames is weak, which, in this
case, results in unnatural deformation of the dancers’ legs.
Conversely, for large αc the correlation between the frames
is enforced, and therefore, the deformations do not occur.
It is important to note, however, that applying single-image

Input1 Input2

Single-image NLV Multiview NLV

Figure 6: Different illuminations. Here the input images
were taken from the same viewpoint, but were manipulated
to have different illuminations. Blending images that were
idealized with single-image NLV yields a blurry image due
to the inconsistencies across views. On the contrary, our
multiview NLV idealizes both images correspondingly, re-
sulting in a sharp blended image with straightened flower
beds and, nicely organized flowers.

NLV to each frame produces much worse results, evident
from the corresponding flow-field. The flow-field should
capture the dancers’ motion, which is the case for both mul-
tiview results, and not for the single-image NLV result.

In Figure 8 we show images of a rocky cliff in Yel-
lowstone that presents wavy texture and irregular structure.
Applying an idealizing transformation straightens the wavy
patterns. When αc is small each image is manipulated
almost independently, and the corresponding disparity ex-



Input Large αc Small αc Single-image

Figure 7: The effect of parameter αc. Each column shows a pair of images, the flow field between them, and a zoom-in on
one of the dancers. Applying NLV to a pair of frames taken from a video of the Rocket Dancers aligns the dancer’s height
and pose. Enforcing correspondence between the frames through our multiview NLV approach with small αc results in some
artifacts, while large value of αc constrains the transformation, and hence the dancers are not distorted. In single-image NLV
the transformation each image undergoes is utterly different, hence, not only are there distortions within each frame, but also
the flow-field between the frames does not match the motion in the scene.
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Figure 8: The effect of parameter αc. When αc is small the constraint between the two views is loose, allowing the views
to deform differently from each other, which results in a less consistent 3D shape, in both correction and exaggeration.

hibits large depth variations. On the contrary, when αc is
large the images are manipulated in a synchronous man-
ner, and the corresponding disparity implies a smooth reg-
ular shape. Similarly, when exaggerating the variations, the
larger αc the larger are the depth variations.

6. Conclusions
We proposed an approach to revealing, correcting and

exaggerating Non-Local-Variations, in multiple views. Our
extensive experiments show the necessity of the multiview
approach for cases where the same scene is pictured more
than once. The multiview correspondence constraint re-

duces artifacts and modifies both color and shape variations
in a consistent manner. A future direction we intend to fol-
low is seeking variations in feature space, i.e., rather than
modifying image patches we intend to modify their deep
features. This could allow us to process images of similar
structure but different objects.
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