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Abstract

We motivate and present Ring loss, a simple and elegant
feature normalization approach for deep networks designed
to augment standard loss functions such as Softmax. We
argue that deep feature normalization is an important as-
pect of supervised classification problems where we require
the model to represent each class in a multi-class problem
equally well. The direct approach to feature normaliza-
tion through the hard normalization operation results in a
non-convex formulation. Instead, Ring loss applies soft nor-
malization, where it gradually learns to constrain the norm
to the scaled unit circle while preserving convexity leading
to more robust features. We apply Ring loss to large-scale
face recognition problems and present results on LFW, the
challenging protocols of IJB-A Janus, Janus CS3 (a super-
set of IJB-A Janus), Celebrity Frontal-Profile (CFP) and
MegaFace with 1 million distractors. Ring loss outperforms
strong baselines, matches state-of-the-art performance on
IJB-A Janus and outperforms all other results on the chal-
lenging Janus CS3 thereby achieving state-of-the-art. We
also outperform strong baselines in handling extremely low
resolution face matching.

1. Introduction
Deep learning has demonstrated impressive performance

on a variety of tasks. Arguably the most important task, that
of supervised classification, has led to many advancements.
Notably, the use of deeper structures [21, 23, 7] and more
powerful loss functions [6, 19, 26, 24, 15] have resulted
in far more robust feature representations. There has also
been more attention on obtaining better-behaved gradients
through normalization of batches or weights [9, 1, 18].

One of the most important practical applications of deep
networks with supervised classification is face recognition.
Robust face recognition poses a huge challenge in the form of
very large number of classes with relatively few samples per
class for training with significant nuisance transformations.
A good understanding of the challenges in this task results
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(a) Features trained using Softmax

R

(b) Features trained using Ring loss

Figure 1: Sample MNIST features trained using (a) Softmax and (b) Ring
loss on top of Softmax. Ring loss uses a convex norm constraint to gradually
enforce normalization of features to a learned norm value R. This results in
features of equal length while mitigating classification margin imbalance
between classes. Softmax achieves 98.97 % accuracy on MNIST, whereas
Ring loss achieves 99.34 % demonstrating the superior performance of the
network learned normalized features.

in a better understanding of the core problems in supervised
classification, and in general representation learning. How-
ever, despite the impressive attention on face recognition
tasks over the past few years, there are still many gaps to-
wards such an understanding. Notably, the need and practice
of feature normalization. Normalization of features has re-
cently been discovered to provide significant improvement in
performance which implicitly results in a cosine embedding
[17, 25]. However, direct normalization in deep networks
explored in these works results in a non-convex formulation
resulting in local minima generated by the loss function it-
self. It is important to preserve convexity in loss functions
for more effective minimization of the loss given that the
network optimization itself is non-convex. In a separate
thrust of work, cosine similarity has also been very recently
explored for supervised classification [16, 4]. Nonetheless, a
concrete justification and principled motivation for the need
for normalizing the features itself is also lacking.

Contributions. In this work, we propose Ring loss, a
simple and elegant approach to normalize all sample fea-
tures through a convex augmentation of the primary loss
function (such as Softmax). The value of the target norm is
also learnt during training. Thus, the only hyperparameter
in Ring loss is the loss weight w.r.t to the primary loss func-
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Figure 2: (a) A simple case of binary classification. The shaded regions (yellow, green) denote the classification margin (for class 1 and 2). (b) Angular
classification margin for ✓1 for different � = cos ✓2.

tion. We provide an analytical justification illustrating the
benefits of feature normalization and thereby cosine feature
embeddings. Feature matching during testing in face recog-
nition is typically done through cosine distance creating a
gap between testing and training protocols which do not
utilize normalization. The incorporation of Ring loss dur-
ing training eliminates this gap. Ring loss is differentiable
that allows for seamless and simple integration into deep
architectures trained using gradient based methods. We find
that Ring loss provides consistent improvements over a large
range of its hyperparameter when compared to other base-
lines in normalization and indeed other losses proposed for
face recognition in general. Interestingly, we also find that
Ring loss helps in being robust to lower resolutions through
the norm constraint.

2. Ring loss: Convex Feature Normalization
2.1. Intuition and Motivation.

There have been recent studies on the use of norm con-
straints right before the Softmax loss [25, 17]. However,
the formulations investigated are non-convex in the feature
representations leading to difficulties in optimization. Fur-
ther, there is a need for better understanding of the benefits
of normalization itself. Wang et.al. [25] argue that the
‘radial’ nature of the Softmax features is not a useful prop-
erty, thereby cosine similarity should be preferred leading
to normalized features. A concrete reason was, however,
not provided. Ranjan et.al. [17] show that the Softmax
loss encodes the quality of the data (images) into the norm
thereby deviating from the ultimate objective of learning a
good representation purely for classification.1 Therefore for
better classification, normalization forces the network to be
invariant to such details. This is certainly not the entire story
and in fact overlooks some key properties of feature normal-
ization. We now motivate Ring loss with three arguments. 1)

1We in fact, find in our pilot study that the Softmax features also encode
the ‘difficulty’ of the class.

We show that the norm constraint is beneficial to maintain a
balance between the angular classification margins of multi-
ple classes. 2) It removes the disconnect between training
and testing metrics. 3) It minimizes test errors due to angular
variation due to low norm features.

The Angular Classification Margin Imbalance. Con-
sider a binary classification task with two feature vectors
x1 and x2 from class 1 and 2 respectively, extracted using
some model (possibly a deep network). Let the classifica-
tion weight vector for class 1 and 2 be w1, w2 respectively
(potentially Softmax). An example arrangement is shown in
Fig. 2(a). Then in general, in order for the class 1 vector w1

to pick x1 and not x2 for correct classification, we require
wT

1 x1 > wT
1 x2 ) kx1k2 cos ✓1 > kx2k2 cos ✓22. Here, ✓1

and ✓2 are the angles between the weight vector w1 (class 1
vector only) and x1, x2 respectively3. We call the feasible set
(range for ✓1) for this inequality to hold as the angular classi-
fication margin. Note that it is also a function of ✓2. Setting
kx2k2

kx1k2
= r, we observe r > 0 and that for correct classifica-

tion, we need cos ✓1 > r cos ✓2 ) ✓1 < cos�1(r cos ✓2)
since cos ✓ is a decreasing function between [�1, 1] for
✓ 2 [0,⇡]. This inequality needs to hold true for any ✓2.
Fixing cos ✓2 = �, we have ✓1 < cos�1(r�). From the
domain constraints of cos�1, we have �1  r�  1 )
�1
�  r  1

� . Combining this inequality with r > 0, we
have 0 < r  1

|�| ) kx2k2  1
� kx1k2 8� 2 (0 1]. For our

purposes it suffices to only look at the case � > 0 since the
� < 0 doesn’t change the inequality �1  r�  1 and is
more interesting.

Discussion on the angular classification margin. We
plot the upper bound on ✓1 (i.e. cos�1(r cos ✓2)) for a range
of � ([0.1, 1]) and the corresponding range of r. Fig. 2(b)
showcases the plot. Consider � = 0.1 which implies that

2Although, it is more common to in turn investigate competition between
two weight vectors to classify a single sample, we find that this alternate
perspective provide some novel and interesting insights.

3Note that this reasoning is applicable to any loss function trying to
enforce this inequality in some form.
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Figure 3: Ring loss Visualizations: (a), (b) and (c) show the final convergence of the samples (for varying �). The blue-green dots are the samples before
the gradient update and the red dots are the same samples after the update. The dotted blue vector is the target class direction. � = 0 fails to converge and
does not constrain the norm whereas � = 10 takes very small steps towards Softmax gradients. A good balance is achieved at � = 1. In our large scale
experiments, a large range of � achieves this balance.

the sample x2 has a large angular distance from w1 (about
85�). This case is favorable in general since one would ex-
pect a lower probability of x2 being classified to class 1.
However, we see that as r increases (difference in norm of
x1, x2), the classification margin for x1 decreases from 90�

to eventually 0�. In other terms, as the norm of x2 increases
w.r.t x1, the angular margin for x1 to be classified correctly
while rejecting x2 by w1, decreases. The difference in norm
(r > 1) therefore will have an adverse effect during training
by effectively enforcing smaller angular classification mar-
gins for classes with smaller norm samples. This also leads
to lop-sided classification margins for multiple classes due
to the difference in class norms as can be seen in Fig. 1(a).
This effect is only magnified as � increases (or the sample x2

comes closer to w1). Fig. 2(b) shows that the angular classi-
fication margin decreases much more rapidly as � increases.
However, r < 1 leads to a larger margin and seems to be
beneficial for classifying class 1 (as compared to r > 1).
One might argue that this suggests that the r < 1 should
be enforced for better performance. However, note that the
same reasoning applies correspondingly to class 2, where
we want to classify x2 to w2 while rejecting x1. This creates
a trade off between performance on class 1 versus class 2
based on r which also directly scales to multi-class problems.
In typical recognition applications such as face recognition,
this is not desirable. Ideally, we would want to represent all
classes equally well. Setting r = 1 or constraining the norms
of the samples from both classes to be the same ensures this.

Effects of Softmax on the norm of MNIST features.
We qualitatively observe the effects of vanilla Softmax on
the norm of the features (and thereby classification margin)
on MNIST in Fig. 1(a). We see that digits 3, 6 and 8 have
large norm features which are typically the classes that are
harder to distinguish between. Therefore, we observe r < 1
for these three ‘difficult’ classes (w.r.t to the other ‘easier’
classes) thereby providing a larger angular classification
margin to the three classes. On the other hand, digits 1,
9 and 7 have lower norm corresponding to r > 1 w.r.t to
the other classes, since the model can afford to decrease
the margin for these ‘easy’ classes as a trade off. We also
observe that arguably most easily distinguishable class, digit

1, has the lowest norm thereby the highest r. On the other
hand, Fig. 1(b) showcases the features learned using Softmax
augmented with our proposed Ring loss, which forces the
network to learn feature normalization through a convex
formulation thereby mitigating this imbalance in angular
classification margins.

Regularizing Softmax loss with the norm constraint.
The ideal training scenario for a system testing under the
cosine metric would be where all features pointing in the
same direction have the same loss. However, this is not true
for the most commonly used loss function, Softmax and
its variants (FC layer combined with the softmax function
and the cross-entropy loss). Assuming that the weights are
normalized, i.e. kwkk = 1, the Softmax loss for feature
vector F(xi) can be expressed as (for the correct class yi):

LSM = � log
expwkF(xi)PK

k0=1 expwk0F(xi)
F (1)

= � log
exp kF(xi)k cos ✓kiPK

k0=1 exp kF(xi)k cos ✓k0i

(2)

Clearly, despite having the same direction, two features
with different norms have different losses. From this perspec-
tive, the straightforward solution to regularize the loss and
remove the influence of the norm is to normalize the features
before Softmax as explored in l2-constrained Softmax [17].
However, this approach is effectively a projection method,
i.e. it calculates the loss as if the features are normalized to
the same scale, while the actual network does not learn to
normalize features.

The need for features normalization in feature space.
As an illustration, consider the training and testing set fea-
tures trained by vanilla Softmax, of the digit 8 from MNIST
in Fig. 4. Fig. 4(a) shows that at the end of training, the
features are well behaved with a large variation in the norm
of the features with a few samples with low norm. However,
Fig. 4(b) shows that that the features for the test samples
are much more erratic. There is a similar variation in norm
but now most of the low norm features have huge variation
in angle. Indeed, variation in samples for lower norm fea-
tures translates to a larger variation in angle than the same
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Figure 4: MNIST features for digit 8 trained using vanilla Softmax loss.
for higher norm samples features. This translates to higher
errors in classification under the cosine metric (as is com-
mon in face recognition). This is yet another motivation to
normalize features during training. Forcing the network to
learn to normalize the features helps to mitigate this prob-
lem during test wherein the network learns to work in the
normalized feature space. A related motivation to feature
normalization was proposed by Ranjan et.al. [17] wherein
it was argued that low resolution of an image results in a
low norm feature leading to test errors. Their solution to
project (not implicitly learn) the feature to the scaled unit
hypersphere was also aimed at handling low resolution. We
find in our large scale experiment with low resolution im-
ages (see Exp. 6 Fig. 8) that soft normalization by Ring loss
achieves better results. In fact hard projection method by
l2-constrained Softmax [17] performs worse than Softmax
for a downsampling factor of 64.

Incorporating the norm constraint as a convex prob-
lem. Identifying the need to normalize the sample features
from the network, we now formulate the problem. We define
LS as the primary loss function (for instance Softmax loss).
Assuming that F provides deep features for a sample x as
F(x), we would like to minimize the loss subject to the
normalization constraint as follows,

minLS(F(x)) s.t. kF(x)k2 = R (3)

Here, R is the scale constant that we would like the features
to be normalized to. This is the exact formulation recently
studied and implemented by [17, 25]. Note that this problem
is non-convex in F(x) since the set of feasible solutions
is itself non-convex due to the norm equality constraint.
Approaches which use standard SGD while ignoring this
critical point would not be providing feasible solutions to this
problem thereby, the network F would not learn to output
normalized features. Indeed, the features obtained using this
straightforward approach are not normalized as was found
in Fig. 3b in [17] compared to our approach (Fig. 1(b)). One
naive approach to get around this problem would be to relax
the norm equality constraint to an inequality. This objective
will now be convex, however it does not necessarily enforce
equal norm features. In order to incorporate the formulation
as a convex constraint, the following form is directly useful
as we find below.
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Figure 5: Ring loss improves MNIST testing accuracy across all classes
by reducing inter-class norm variance. Norm Ratio is the ratio between
average class norm and average norm of all features.
2.2. Ring loss

Ring loss Definition. Ring loss LR is defined as

LR =
�

2m

mX

i=1

(kF(xi)k2 �R)2 (4)

where F(xi) is the deep network feature for the sample xi.
Here, R is the target norm value which is also learned and �
is the loss weight enforcing a trade-off between the primary
loss function. m is the batch-size. The square on the norm
difference helps the network to take larger steps when the
norm of a sample is too far off from R leading to faster
convergence. The corresponding gradients are as follows.

@LR

@R
= � �

m

mX

i=1

(kF(xi)k2 �R) (5)

@LR

@F(xi)
=

�

m

✓
1� R

kF(xi)k2

◆
F(xi) (6)

Ring loss (LR) can be used along with any other loss
function such as Softmax or large-margin Softmax [14]. The
loss encourages norm of samples being value R (a learned
parameter) rather than explicit enforcing through a hard
normalization operation. This approach provides informed
gradients towards a better minimum which helps the network
to satisfy the normalization constraint. The network there-
fore, learns to normalize the features using model weights
themselves (rather than needing an explicit non-convex nor-
malization operation as in [17], or batch normalization [9]).
In contrast and in connection, batch normalization [9] en-
forces the scaled normal distribution for each element in the
feature independently. This does not constrain the overall
norm of the feature to be equal across all samples and neither
addresses the class imbalance problem. As shown in Fig. 5,
Ring loss stabilizes the feature norm across all classes, and,
in turn, rectifies the classification imbalance for Softmax to
perform better overall.

Ring loss Convergence Visualizations. To illustrate the
effect of the Softmax loss augmented with the enforced
soft-normalization, we conduct some analytical simulations.
We generate a 2D mesh of points from (�1.5, 1.5) in
x,y-axis. We then compute the gradients of Ring loss
(R = 1) assuming the dottef blue vertical line (see Fig. 3)
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Figure 6: ROC curves on the CFP Frontal vs. Profile verification protocol.
For all Figures and Tables, SM denotes Softmax, SF denotes SphereFace
[14],l2-Cons SM denotes [17], + CL denotes Center Loss augmentation
[26] and finally + R denotes Ring loss augmentation. Numbers in bracket
denote value of hyperparameter (loss weight), i.e. ↵ for [17], � for Center
loss and Ring loss.

as the target class and update each point with a fixed step
size for 20 steps. We run the simulation for � = {0, 1, 10}.
Note that � = 0 represents pure Softmax. Fig. 3 depicts the
results of these simulations. Sub-figures (a), (b) and (c) in
Fig. 3 show the initial points on the mesh grid (light green)
and the final updated points (red). For pure Softmax (� = 0),
we see that the updates increases norm of the samples and
moreover they do not converge. For a reasonable loss weight
of � = 1, Ring loss gradients can help the updated points
converge much faster in the same number of iterations. For
heavily weighted Ring loss with � = 10, we see that the
gradients force the samples to a unit norm since R was set
to 1 while overpowering Softmax gradients. These figures
suggest that there exists a trade off enforced by � between
the Softmax loss LS and the normalization loss. We observe
similar trade-offs in our experiments.

3. Experimental Validation
We benchmark Ring loss on large scale face recognition

tasks while augmenting two loss functions. The first one is
the ubiquitous Softmax, and the second being a successful
variant of Large-margin Softmax [15] called SphereFace
[14]. We present results on five large-scale benchmarks
of LFW [8], IARPA Janus Benchmark IJB-A [11], Janus
Challenge Set 3 (CS3) dataset (which is a super set of the
IJB-A Janus dataset), Celebrities Frontal-Profile (CFP) [20]
and finally the MegaFace dataset [10]. We also present
results of Ring loss augmented Softmax features on low
resolution images from Janus CS3 to showcase resolution
robust face matching.

Implementation Details. For all the experiments in this
paper, we usethe ResNet 64 (Res64) layer architecture from

Liu et. al. [14]. For Center loss, we utilized the code repos-
itory online and used the best hyperparameter setting re-
ported4. The l2-constrained Softmax loss was implemented
follwing [17] by integrating a normalization and scaling
layer5 before the last fully-connected layer. For experiments
with L-softmax [15] and SphereFace [14], we used the pub-
licly available Caffe implementation. The Resnet 64 layer
(Res64) architecture results in a feature dimension of 512 (at
the fc5 layer), which is used for matching using the cosine
distance. Ring loss and Center loss are both applied on this
feature i.e. to the output of the fc5 layer. All models were
trained on the MS-Celeb 1M dataset [5]. The dataset was
cleaned to remove potential outliers within each class and
also noisy classes before training. To clean the dataset we
used a pretrained model to extract features from the MS-
Celeb 1M dataset. Then, classes that had variance in the
MSE, between the sample features and the mean feature of
that class, above a certain threshold were discarded. Fol-
lowing this, from the filtered classes, images that have their
MSE error between their feature vector and the class mean
feature vector higher than a threshold are discarded. After
this procedure, we are left with about 31,000 identities and
about 3.5 million images. The learning rate was initialized
to 0.1 and then decreased by a factor of 10 at 80K and 150K
iterations for a total of 165K iterations. All models evaluated
were the 165K iteration model6.

Preprocessing. All faces were detected and aligned using
[27] which provided landmarks for the two eye centers, nose
and mouth corners (5 points). Since MS-Celeb1M, IJB-A
Janus and Janus CS3 have harder faces we use a robust
detector i.e. CMS-RCNN [29] to detect faces and a fast
landmarker that is robust to pose [2]. The faces were then
aligned using a similarity transformation and were cropped
to 112⇥ 96 in the RGB format. The pixel level activations
were normalized by subtracting 127.5 and then dividing by
128. For failed detections, the training set images are ignored.
In the case of testing, ground truth landmarks were used from
the corresponding dataset.

Exp 1. Testing Benchmark: LFW. The LFW [8]
database contains about 13,000 images for about 1680 sub-
jects with a total of 6,000 defined matches. The primary
nuisance transformations are illumination, pose, color jit-
tering and age. As the field has progressed, LFW has been
considered to be saturated and prone to spurious minor vari-
ances in performance (in the last % of accuracy) owing to
the small size of the protocol. Small differences in accuracy
on this protocol do not accurately reflect the generalizing

4see https://github.com/ydwen/caffe-face.git
5see https://github.com/craftGBD/caffe-GBD. In our ex-

periments, for ↵ = 50 the gradients exploded due the relatively deep Res64
architecture and learning ↵ initialized at 30 did not converge.

6For all Tables, results reported after double horizontal lines are from
models trained during our study. The results above the lines reported directly
from the paper as cited.
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Figure 7: ROC curves on the (a) IJB-A Janus 1:1 verification protocol and the (b) Janus CS3 1:1 verification protocol. For all Figures and Tables, SM denotes
Softmax, SF denotes SphereFace [14],l2-Cons SM denotes [17], + CL denotes Center Loss augmentation [26] and finally + R denotes Ring loss augmentation.
Numbers in bracket denote value of hyperparameter (loss weight), i.e. ↵ for [17], � for Center loss and Ring loss.

capabilities of a high performing model. Nonetheless, as a
benchmark, we report performance on this dataset.

Results: LFW. Table 1 showcases the results on the LFW
protocol. We find that for Softmax (SM + R), Ring loss nor-
malization seems to significantly improve performance (up
from 98.47% to 99.52% using Ring loss with � = 0.01). We
find similar trends while using Ring loss with SphereFace.
The LFW accuracy of SphereFace improves from 99.47%
to 99.50%. We note that since even our baselines are high
performing, there is a lot of variance in the results owing to
the small size of the LFW protocol (just 6000 matches com-
pared to about 8 million matches in the Janus CS3 protocol
which shows clearer trends). Indeed we find clearer trends
with MegaFace, IJB-A and CS3 all of which are orders of
magnitude larger protocols.

Exp 2. Testing Benchmark: IJB-A Janus. IJB-A [11]
is a challenging dataset which consists of 500 subjects with
extreme pose, expression and illumination with a total of
25,813 images. Each subject is described by a template
instead of a single image. This allows for score fusion
techniques to be developed. The setting is suited for ap-
plications which have multiple sources of images/video
frames. We report results on the 1:1 template matching
protocol containing 10 splits with about 12,000 pair-wise
template matches each resulting in a total of 117,420 tem-
plate matches. The template matching score for two tem-
plates Ti, Tj is determined by using the following formula,

S(Ti, Tj) =
PK

�=1

P
ta2Ti,tb2Tj

s(ta,tb) exp �s(ta,tb)
P

ta2Ti,tb2Tj
exp �s(ta,tb)

where

s(ta.tb) is the cosine similarity score between images ta, tb
and K = 8.

Results: IJB-A Janus. Table. 3 and Fig. 7(a) present
these results. We see that Softmax + Ring loss (0.001) out-
performs Softmax by a large margin, particularly 60.52% ver-
ification rate compared to 78.41% verification at 10�5 FAR.

Further, it outperforms Center loss [26] (46.01%) and l2-
constrained Softmax (73.29%) [17]. Although SphereFace
performs better than Softmax + Ring loss, an augmentation
by Ring loss boosts SphereFace’s performance from 78.52%
to 82.41% verification rate for � = 0.01. This matches
the state-of-the-art reported in [17] which uses a 101-layer
ResNext architecture despite our system using a much shal-
lower 64-layer ResNet architecture. The effect of high �
akin to the effects simulated in Fig. 3 show in this setting
for � = 0.03 for SphereFace augmentation. We observe this
trade-off in Janus CS3, CFP and MegaFace results as well.
Nonetheless, we notice that Ring loss augmentation provides
consistent improvements over a large range of � for both
Softmax and Sphereface. This is in sharp contrast with l2-
constrained Softmax whose performance varies significantly
with ↵ rendering it difficult to optimize. In fact for ↵ = 10,
it performs worse than Softmax.

Exp 3. Testing Benchmark: Janus CS3. The Janus
CS3 dataset is a super set of the IARPA IJB-A dataset. It
contains about 11,876 still images and 55,372 video frames
from 7,094 videos. For the CS3 1:1 template verification
protocol there are a total of 1,871 subjects and 12,590 tem-
plates. The CS3 template verification protocol has over 8
million template matches which amounts to an extremely
large number of template verifications. There are about
1,870 templates in the gallery and about 10,700 templates in
the probe. The CS3 protocol being a super set of IJB-A, has
a large number of extremely challenging images and faces.
The challenging conditions range from extreme illumination,
extreme pose to significant occlusion. For sample images,
please refer to Fig. 4 and Fig. 10 in [12], Fig. 1 and Fig. 6
in [3]. Since the protocol is template matching, we utilize
the same template score fusion technique we utilize in the
IJB-A results with K = 2.

Results: Janus CS3. Table. 4 and Fig. 7(b) showcases
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Figure 8: ROC curves for the downsampling experiment on Janus CS3. Ring loss (SM + R � = 0.01) learns the most robust features, whereas l2-constrained
Softmax (l2-Cons SM ↵ = 30) [17] performs poorly (worse than the baseline Softmax) at very high downsampling factor of 64x.

our results on the CS3 dataset. We report verification rates
(VR) at 10�3 through 10�6 FAR. We find that our Ring loss
augmented Softmax model outperforms the previous best
reported results on the CS3 dataset. Recall that the Softmax
+ Ring loss model (SM + R) was trained only on a subset of
the MS-Celeb dataset and achieves a VR of 74.56% at 10�4

FAR. This is in contrast to Lin et. al. who train on MS-Celeb
plus CASIA-WebFace (an additional 0.5 million images)
and achieve 72.52 %. Further, we find that even though our
baseline Sphereface Res64 model outperforms the previous
state-of-the-art, our Ring loss augmented Sphereface model
outperforms all other models to achieve high a VR of 82.74
% at 10�4 FAR. At very low FAR of 10�6 our SF + R model
achieves VR 35.18 % which to the best of our knowledge is
the state-of-the-art on the challenging Janus CS3. In accor-
dance with the results on IJB-A Janus, Ring loss provides
consistent improvements over large ranges of � whereas l2-
constrained Softmax exhibits significant variation w.r.t. to
its hyperparameter.

Exp 4. Testing Benchmark: MegaFace. The recently
released MegaFace benchmark is extremely challenging
which defines matching with a gallery of about 1 million
distractors [10]. The aspect of face recognition that this
database test is discrimination in the presence of very large
number of distractors. The testing database contains two
sets of face images. The distractor set contains 1 million
distractor subjects (images). The target set contain 100K
images from 530 celebrities.

Result: MegaFace. Table. 2 showcases our results. Even
at this extremely large scale evaluation (evaluating Face-
Scrub against 1 million), the addition of Ring loss provides
significant improvement to the baseline approaches. The
identification rate (%) for Softmax upon the addition of
Ring loss (� = 0.001) improves from 56.36% to a high
71.67% and for SphereFace it improves from 74.95% to
75.22% for a single patch model. This is higher than the
single patch model reported in the orginal Sphereface paper
(72.72% [14]). We outperform Center loss [26] augmenting
both Softmax (67.24%) and Sphereface (71.15%). We find
that though for MegaFace, l2-constrained Softmax [17] for
↵ = 30 achieves 72.22%, there is yet again significant varia-

Table 1: Accuracy (%) on LFW.

Method Training Data Accuracy (%)
FaceNet [19] 200M private 99.65
Deep-ID2+ [22] CelebFace+ 99.15
Range loss [28] WebFace 99.52

+Celeb1M(1.5M)
Baidu [13] 1.3M 99.77
Norm Face [25] WebFace 99.19
SM MS-Celeb 98.47
l2-Cons SM (30) [17] MS-Celeb 99.55
l2-Cons SM (20) [17] MS-Celeb 99.47
l2-Cons SM (10) [17] MS-Celeb 99.45
SM + CL [26] MS-Celeb 99.17
SF [14] MS-Celeb 99.47
SF + CL [26, 14] MS-Celeb 99.52
SM + R (0.01) MS-Celeb 99.52
SM + R (0.001) MS-Celeb 99.50
SM + R (0.0001) MS-Celeb 99.28
SF + R (0.03) MS-Celeb 99.48
SF + R (0.01) MS-Celeb 99.43
SF + R (0.001) MS-Celeb 99.42
SF + R (0.0001) MS-Celeb 99.50

tion in performance that occurs due to a change in the hyper
parameter ↵ (66.20% for ↵ = 10 to 72.22% for ↵ = 30).
Ring loss hyper parameter (�), as we find again, is more
easily tunable and manageable. This results in a smaller
variance in performance for both Softmax and SphereFace
augmentations.

Exp 5. Testing Benchmark: CFP Frontal vs. Profile.
Recently the CFP (Celebrities Frontal-Profile) dataset was
released to evaluate algorithms exclusively on frontal versus
profile matches [20]. This small dataset has about 7,000
pairs of matches defined with 3,500 same pairs and 3,500
not-same pairs for about 500 different subjects. For sample
images please refer to Fig. 1 of [20]. The dataset presents
a challenge since each of the probe images is almost en-
tirely profile thereby presenting extreme pose along with
illumination and expression challenges.

Result: CFP Frontal vs. Profile. Fig. 6 showcases the
ROC curves for this experiment whereas Table. 2 shows the



Method Acc % (MegaFace) 10�3 (CFP)
SM 56.36 55.86
l2-Cons SM (30) [17] 72.22 82.14
l2-Cons SM (20) [17] 70.29 83.69
l2-Cons SM (10) [17] 66.20 76.77
SM + CL [26] 67.24 78.94
SF [14] 74.95 89.94
SF + CL [26, 14] 71.15 82.97
SM + R (0.01) 71.10 87.43
SM + R (0.001) 71.67 81.29
SM + R (0.0001) 69.41 76.30
SF + R (0.03) 73.05 86.23
SF + R (0.01) 74.93 90.94
SF + R (0.001) 75.22 87.69
SF + R (0.0001) 74.45 88.17

Table 2: Identification rates on MegaFace with 1 million distractors (Accu-
racy %) and Verification rates at 10�3 FAR for the CFP Frontal vs. Profile
protocol.

Method 10�5 10�4 10�3

l2-Cons SM* (101) [17] - 87.9 93.7
l2-Cons SM* (101x) [17] - 88.3 93.8
SM 60.52 69.69 83.10
l2-Cons SM (30) [17] 73.29 80.65 90.72
l2-Cons SM (20) [17] 67.63 76.88 89.89
l2-Cons SM (10) [17] 53.74 68.58 83.42
SM + CL [26] 46.01 74.10 88.32
SF [14] 78.52 88.0 93.24
SF + CL [26, 14] 72.35 81.11 89.26
SM + R (0.01) 72.53 79.1 90.8
SM + R (0.001) 78.41 85.0 91.5
SM + R (0.0001) 69.23 82.30 89.20
SF + R (0.03) 79.54 85.37 91.64
SF + R (0.01) 82.41 88.5 93.22
SF + R (0.001) 79.74 87.71 92.62
SF + R (0.0001) 80.13 86.34 92.57

Table 3: Verification % on the IJB-A Janus 1:1 verification protocol. l2-
Cons SM* indicates the result reported in [17] which uses a 101 layer
ResNet/ResNext architecture.

verification rates at 10�3 FAR. Ring loss (87.43%) provides
consistent and significant boost in performance over Soft-
max (55.86%). We find however, SphereFace required more
careful tuning of � with � = 0.01 (90.94%) outperforming
the baseline. Further, Softmax and Ring loss with � = 0.01
significantly outperforms all runs for l2-constrained Softmax
[17] (83.69). Thus, Ring loss helps in providing higher veri-
fication rates while dealing with frontal to highly off-angle
matches thereby explicitly demonstrating robustness to pose
variation.

Exp 6. Low Resolution Experiments on Janus CS3.

Method 10�6 10�5 10�4 10�3

Bodla et. al. Final1 [3] - - 69.81 82.89
Bodla et. al. Final2 [3] - - 68.45 82.97
Lin et. al. [12] - - 72.52 83.55
SM 6.16 42.03 64.52 80.86
l2-Cons SM (30) [17] 24.47 52.32 73.36 87.46
l2-Cons SM (20) [17] 21.14 48.82 68.84 85.34
l2-Cons SM (10) [17] 13.28 36.08 57.80 78.36
SM + CL [26] 2.88 20.87 65.71 84.55
SF [14] 28.51 63.92 82.29 90.58
SF + CL [26, 14] 28.99 53.36 72.91 86.14
SM + R (0.01) 25.17 52.60 73.56 87.50
SM + R (0.001) 26.62 54.13 74.56 87.93
SM + R (0.0001) 17.35 50.65 71.06 85.48
SF + R (0.03) 27.27 56.84 76.97 88.75
SF + R (0.01) 35.18 65.02 82.74 90.99
SF + R (0.001) 32.19 63.13 81.62 90.17
SF + R (0.0001) 32.01 63.12 81.57 90.24

Table 4: Verification % on the Janus CS3 1:1 verification protocol.

One of the main motivations for l2-constrained Softmax was
to handle images with varying resolution. Low resolution
images were found to result in low norm features and vice
versa. Ranjan et.al. [17] argued normalization (through l2-
constrained Softmax) would help deal with this issue. In
order to test the efficacy of our alternate convex normaliza-
tion formulation towards handling low resolution faces, we
synthetically downsample Janus CS3 from an original size
of (112 ⇥ 96) by a factor of 4x, 16x, 25x, 36x and 64x re-
spectively (images were downsampled and resized back up
using bicubic interpolation in order to fit the model). We run
the Janus CS3 protocol and plot the ROC curves in Fig. 8.
We find that the Ring loss helps Softmax features be more ro-
bust to resolution. Though l2-constrained Softmax provides
improvement over Softmax, it’s performance is lower than
Ring loss. Further, at extremely high downsampling of 64x,
l2-constrained Softmax in fact performs worse than Softmax,
whereas Ring loss provides a clear improvement. Center
loss fails early on at 16x. We therefore find that our simple
convex soft normalization approach is more effective at ar-
resting performance drop due to resolution in accordance
with the motivation for as normalization presented in [17].

Conclusion. We motivate feature normalization in a prin-
cipled manner and develop an elegant, simple and straight
forward to implement convex approach towards that goal.
We find that Ring loss consistently provides significant im-
provements over a large range of the hyperparameter �. Fur-
ther, it helps the network itself to learn normalization thereby
being robust to a large range of degradations.
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