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Abstract

Images captured in participating media such as murky
water, fog, or smoke are degraded by scattered light. Thus,
the use of traditional three-dimensional (3D) reconstruction
techniques in such environments is difficult. In this paper,
we propose a photometric stereo method for participating
media. The proposed method differs from previous studies
with respect to modeling shape-dependent forward scatter.
In the proposed model, forward scatter is described as an
analytical form using lookup tables and is represented by
spatially-variant kernels. We also propose an approxima-
tion of a large-scale dense matrix as a sparse matrix, which
enables the removal of forward scatter. Experiments with
real and synthesized data demonstrate that the proposed
method improves 3D reconstruction in participating media.

1. Introduction

Three-dimensional (3D) shape reconstruction from two-
dimensional (2D) images is an important task in computer
vision. Numerous 3D reconstruction such as structure from
motion, shape-from-X, and multi-view stereo have been
proposed. However, reconstructing the shape of an object in
a participating medium, e.g., murky water, fog, and smoke,
remains a challenging task. In participating media, light is
attenuated and scattered by suspended particles, which de-
grades the quality of the captured images (Figure 1). 3D re-
construction techniques designed for clear air environments
will not work in participating media.

Several methods to reconstruct a 3D shape in participat-
ing media using photometric stereo techniques have been
proposed [ 1, 22, 9]. Photometric stereo methods recon-
struct surface normals from images captured under differ-
ent lighting conditions [24]. Note that backscatter and for-
ward scatter occur in participating media, as shown in Fig-
ure 2; thus, the irradiance observed at a camera includes
a direct component reflected on the surface, as well as a
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Figure 1: Images captured in (a) pure water and (b) diluted
milk. In participating media, the quality of the captured
image is degraded by light scattering and attenuation.

backscatter and forward scatter components. Narasimhan et
al. [11] modeled single backscattering under a directional
light source in participating media and estimated surface
normals using a nonlinear optimization technique. Tsiotsios
et al. [22] assumed that backscatter saturates close to the
camera when illumination follows the inverse square law,
and subtracted the backscatter from the captured image.

These methods do not consider forward scatter. Forward
scatter depends on the object’s shape locally and globally,
and in highly turbid media such as port water, 3D recon-
struction accuracy is affected by forward scatter. Although
Murez et al. [9] proposed a photometric stereo technique
that considers forward scatter, they assumed that the scene
is approximated as a plane, which enables prior calibration.
Therefore, this assumption deteriorates the estimation of
normals because forward scatter is intrinsically dependent
on the object’s shape.

We propose a forward scatter model and implement the
model into a photometric stereo framework. Differing from
previous studies [ 15, 9], we compute forward scatter, which
depends on the object’s shape. To overcome the mutual de-
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Figure 2: In participating media, the observed irradiance at
a camera includes a direct component reflected on a surface,
and both backscatter and forward scatter components.

pendence between shape and forward scatter, we develop an
iterative algorithm that performs a forward scatter removal
and 3D shape reconstruction alternately.

In the proposed model, forward scatter is represented by
an analytical form of single scattering. In computer graph-
ics, Monte Carlo and finite element techniques have been
used to simulate light scattering in participating media. Al-
though such techniques provide accurate simulations, re-
altime rendering is difficult. Thus, analytical or closed-
form solutions have been proposed for efficient computa-
tion [19, 26, 17]. For example, Sun et al. [19] proposed
an analytical single scattering model of backscatter and for-
ward scatter between the source and the surface (source-
surface forward scatter) using 2D lookup tables. Similar
to their model, in this study, forward scatter between the
surface and the camera (surface-camera forward scatter) is
computed using a lookup table.

Note that surface-camera forward scatter causes image
blur. As mentioned previously, Murez et al. [9] assumed
that the object is approximated as a plane. Thus, they mod-
eled forward scatter as a spatially-invariant point spread
function under orthogonal projection. In our proposed
model, forward scatter is modeled as spatially-variant ker-
nels because it depends on the object’s shape. Thus, it is
impossible to remove forward scatter from the captured im-
age directly because the spatially-variant kernels result in a
shift-variant and large-scale dense matrix (Section 4.1). To
address this problem, we approximate the kernel matrix as
a sparse matrix. We leverage kernel convergence between
distant points on the surface for the approximation.

The primary contributions of this paper are summarized
as follows:

e To the best of our knowledge, this is the first study
to strictly model shape-dependent surface-camera for-
ward scatter and we derive its analytical solution.

e To remove surface-camera forward scatter, we propose

an approximation of the large-scale dense matrix to a
sparse matrix.

2. Related work
2.1. 3D reconstruction in participating media

In participating media, suspended particles cause light
scattering and attenuation that reduce the contrast in cap-
tured images. Nayar et al. [13] proposed direct and global
light separation such as interreflection or volumetric scatter-
ing using high-frequency patterns. Treibitz and Schechner
[21] utilized polarization to remove a backscatter compo-
nent and estimated a depth map from the extracted backscat-
ter. Kim et al. [8] mounted a lenslet array and a diffuser be-
tween a camera and a participating medium to estimate blur
caused by scattering.

Several attempts have been made to design traditional
3D reconstruction techniques for participating media (e.g.,
structured light [11, 4] and stereo [18, 14]). Narasimhan
et al. [11] proposed a structured light method in participat-
ing media, and Gu et al. [4] reconstructed the 3D shape of a
participating medium using structured light. Negahdaripour
and Sarafraz [14] improved stereo matching in participating
media by exploiting the relationship between backscatter
and a disparity map. Recently, Tiang et al. [20] proposed
a depth map estimation method using a light field. Some
methods have utilized scattering or attenuation directly for
3D reconstruction. For example, Hirufuji et al. [5] recon-
structed specular objects with occlusions using single scat-
tered light, and Inoshita et al. [7] reconstructed translucent
objects directly from volumeric scattering. Hullin et al. [6]
used fluorescence as a participating medium to reconstruct
transparent objects, and Asano et al. [2] utilized absorp-
tion of infrared light to estimate a depth map in underwater
scenes.

Several photometric stereo methods have been proposed
[15, 11,22, 9]. Photometric stereo has several advantages,
e.g., it does not require stereo correspondence and provides
pixel-wise detailed shape information even if the target ob-
ject has a textureless surface. However, the image formation
must be strictly modeled to preserve photometric informa-
tion. Narasimhan et al. [1 | ] modeled the single scattering of
backscatter under a directional light source in participating
media, and Tsiotsios et al. [22] demonstrated the saturation
of backscatter under the inverse square law, which enabled
backscatter removal by subtracting no object image from
an input image. Note that these methods did not consider
the effect of forward scatter, which deteriorates the accu-
racy of 3D reconstruction in highly turbid media. On the
other hand, some methods have considered forward scat-
ter [15, 9]. For exmaple, Murez et al. [9] approximated
the scene as a plane and pre-calibrated the forward scat-
ter component. Nevertheless, unlike the proposed model,



such method do not discuss the relationship between for-
ward scatter and the object’s shape. In this paper, we model
shape-dependent surface-camera forward scatter.

2.2. Analytical solution for single scattering

In computer graphics, analytical or closed-form solu-
tions for single scattering in participating media have been
proposed to overcome computational complexity issues.
Sun et al. [19] assumed single and isotropic scattering and
used 2D lookup tables to analytically describe backscatter
and source-surface forward scatter. Zhou et al. [26] ex-
tended this approach to inhomogeneous single scattering
media with respect to backscatter. Pegoraro et al. [17] de-
rived a closed-form solution for single backscattering under
a general phase function and light distribution. In this study,
owing to its simplicity, we use a lookup table similar to that
of Sun et al. [19], and we model surface-camera forward
scatter analytically.

3. Image formation model

In this section, we discuss an image formation model
in participating media, and provide an analytical form us-
ing lookup tables. We assume perspective projection, near
lighting, and Lambertian objects. As in many previous stud-
ies [11, 22, 9, 19], multiple scattering is considered to be
negligible.

Here, let L(p) be irradiance at a camera when the 3D
position p on an object surface is observed. In participat-
ing media, L(p) is decomposed into a reflected component
Ls(p) (Figure 4), a backscatter component L;(p) (Figure
3), and a forward scatter component L¢(p) (Figure 5) as
follows:

L(p) = Ls(p)e™ > + Ly(p) + L¢(p). (1)

Here, parameters c and d,,, denote an extinction coefficient
and the distance between the camera and position p, respec-
tively. In participating media, light is attenuated exponen-
tially relative to distance. The extinction coefficient c is the
sum of the absorption coefficient a and the scattering coef-
ficient b.

c=a-+b. 2)

3.1. Backscatter component

As shown in Figure 3, the backscatter component is the
sum of scattered light on the viewline without reaching the
surface. Thus, the irradiance of the backscatter component
is integral along the line, which is expressed as follows:

d
vp [
Ly(p) = / BOP(@)e = Vdz, 3)
0

where [y denotes the radiant intensity of the source and
P(«) is a phase function that describes the angular scat-
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Figure 3: Backscatter component is the sum of scattered
light on the viewline without reaching the surface

tering distribution. Although Equation (3) cannot be com-
puted in closed-form, an analytical solution can be acquired
using a lookup table. However, Equation (3) depends on
dyp, dsv, 77, and c; thus, the entry of the table is four-
dimensional. Sun et al. [19] assumed isotropic scattering
(i.e., P(a) = 1/4m) and derived an analytical solution us-
ing a 2D lookup table F'(u,v):

Liy(p) = IoHo(Tsv,7)

|:F(H1(Tsv;7>7H2(Tvp>Tsv7'7)) - F(H1(Tsv7’y>7 %)} ,
“4)

where T, = cds, and Ty, = cd,, are optical thickness.
In the following, T, denotes the product of ¢ and distance
dey. Ho(Tsv,7), Hi(Tsv,7), and Hao(Typ, Ty, y) are de-
fined as follows:

bee—Tsv cosy

H Tsv7 = A 5
ol 7) 21T, siny ©)

Ty sin -y, (6)
)

Hl (Tsva ’7) =
T'vp - Ts*v CcOs 'Y

T 1
— + — arctan

HQ(TuwTevv’Y) = 4 2

Tsp siny

F(u,v) = [ e™™n¢&d¢ is a 2D lookup table computed
numerically in advance.

As mentioned previously, to remove backscatter, Tsiot-
sios et al. [22] leveraged backscatter saturation without
computing it explicitly. We also use an image without the
target object to remove the backscatter component Ly (p)
from the input image.

3.2. Reflected component

As shown in Figure 4, the reflected component is de-
composed into L, 4(p) directly reaching the surface and the
source-surface forward scatter component L ¢(p):

Ls<p) = Ls,d(p) + Ls,f(p) (8)
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Figure 4: Reflected component is decomposed into L, 4(p)
directly reaching the surface from the source and the source-
surface forward scatter component L, ¢(p).

Considering diffuse reflection and attenuation in participat-
ing media, L, 4(p) is expressed as follows:

Lsa(p) = ¢ ppmy Lop, ©
sp

where p,, is a diffuse albedo at p, n,, is a normal vector, and
1, is the direction from p to the source. The source-surface
forward scatter component is the integral of scattered light
on a hemisphere centered on p:

Ls,f(P):/Q Ly(w)ppn, Lydw. (10)
27

We define L;(w) as the sum of scattered light from direction
w. As discussed in Section 3.1, Sun et al. [19] derived an
analytical solution using a 2D lookup table as follows:

belypp

.
oo, G(Typim, L), (11)

Ls (p) =

where G(Tp, n) 1y,) is a 2D lookup table given as

—Tspcosy’

e
G T ’ Tls =
( 4 np p) /(\227“ Sin')//
/

F(Hy(Typ, '), %) n1,dw.

12)

P (T). ) -

3.3. Surface-camera forward scatter component

When we observe surface point p in a participating
medium, the light reflected on point ¢ is scattered on the
viewline, and the scattered light is also observed as a for-
ward scatter component (Figure 5). In this paper, we de-
scribe this component analytically using a lookup table.

As shown in Figure 5, irradiance at the camera includes
reflected light from the small facet centered at q. If we
consider this small facet as a virtual light source, similar
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Figure 5: Surface-camera forward scatter component.

When we observe surface point p in participating media,
the light reflected on point g is scattered on the viewline,
and the scattered light is also observed.

to Equation (3), the irradiance can be expressed as follows:

Ay

/ ’ %lﬂ?(a)e”(”d)dm, (13)
0

where dA, is the area of the facet. At the camera, a discrete

point on the surface corresponding to the pixel is observed.

Thus, L (p) is the sum of these discrete points:

dopr [,
=%

q#p

Note that the domain of integration [0, d,,] differs from
that of Equation (3), i.e., [0, d,p]. We define p’ as the inter-
section point of the viewline and the tangent plane to q. If
dypr > dyp, i.€., p’ is inside the object, we set dypr = dyp. If
dyp < 0 which means that p’ is behind the camera, we set
dyp = 0. Similar to Equation (4), the isotropic scattering
assumption yields the following:

= Li(q)dAgHy(Tyq,7)
qFp

[F(Hl(Tvqa'Y)aH2(Tvp ;Tvqa )) -

Lol@)dAyyp)e=ctotd gy (1)

v
F(H(Tig.7). )|

5)

This is the analytical expression of the surface-camera for-
ward scatter. Note that we define the area of the small facet

as follows [12]:
dA, = dI (16)

T b
Vq N4

where dI is the area of the camera pixel and v is the direc-
tion from ¢ to the camera.

4. Photometric stereo considering forward
scatter

To reconstruct the surface normals using photometric
stereo, we must deal with both the surface-camera and
source-surface forward scatter. In this section, we first dis-
cuss how to remove the surface-camera forward scatter, and
then we explain a photometric stereo method that considers
the source-surface forward scatter.



4.1. Approximation of a large-scale dense matrix

As mentioned previously, we can remove the backscatter
using a previously proposed method [22]. Here, let L €
R¥ be a backscatter subtracted image where N is a number
of pixels. Then from Equation (1) and (15), reflected light
at the surface L, € RY is expressed as follows:

L' =KL, (17)

where K is an N x N dense matrix. K is a large-scale dense
matrix whose elements are given by

Kpq =
e~ Tor =q)
dA HO( vq, )[F(H ( 'L)q; )aHQ(TUp aTvqa’Y))
—F(Hi(Tog,7),3)] (0 # )

(18)

Our model is similar to that of Murez et al. [9]. However,
our model is different in that each row of K is spatially-
variant because we compute the forward scatter considering
the object’s shape. In the model presented by Murez et al.
[9], the plane approximation of the scene under orthogonal
projection yields a spatially-invariant point spread function.
Our spatially-variant kernel matrix makes it impossible to
solve Equation (17) directly.

To overcome this problem, we propose an approximation
of a large-scale dense matrix K as a sparse matrix. Figure
6 (a) shows a row of K reshaped in a 2D when we observe
a plane in a participating medium. This shows how the ob-
served irradiance of the center of the plane is affected by
other points. Figure 6 (b) shows the profile of the blue line
in Figure 6 (a). From these figures, we observe that the ef-
fect between two points converges to a very small value as
the distance of the points increases; however, it does not
converge to zero. Here, we assume that the value of K,
converges to € (0 < ¢ < 1) in the neighboring set S(p)
centered at p, and we obtain the following approximation:

L'(p) = KpgLs(q) (19)
q
~ Y KpLi@)+ Y €Ly(q) (20)
q€S(p) q¢.S(p)
~ Y KpLi(q) +C, 1)
q€S(p)

where €' = }_ €L,(q) and we use 3 o, €Ls(q) = 0
ffom Equation (20) to (21). Then, we define a sparse matrix
K as follows:

> _ | Kpq (q€5(p)
i ={ " 500 2
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Figure 6: (a) 2D visualization of a row of K when we ob-
serve a plane; (b) profile of the blue line in (a). These figures
show that the effect between two points converges to a very
small value as the distance of the points increases.

This yields the following linear system:

1

: L,
i {C’ ] (23)
€ -+ € —1

We solve this linear system using BiCG stabilization [23] to
remove surface-camera forward scatter. We define S(p) as
the set of 3D points captured in a r X 7 region centered at
the observed pixel p. Note that the size of the kernel support
r should be set manually. In our experiments, 7 = 61 to
r = 81 gave efficient results. To avoid computation of all
the elemetns of K, we approximated the convergence value
e as follows:

pa |l €SP} (24)

¢ = min { K,
P

4.2. Photometric stereo

After removing the backscatter and surface-camera for-
ward scatter, we can obtain the reflected components L;.
We reconstruct the surface normals by applying photomet-
ric stereo to L. From Equations (8), (9) and (11), Ls(p) is
given as follows:

Iy
dgp

bCIopp
21Ty,

L(p) = “Terp,(ny L) + G(Tsp,my 1yy).

(25

Note that this equation is not linear with respect to
the normal due to the source-surface forward scatter. We
want to apply photometric stereo directly to the equation;

therefore, we use the following approximation of table
G(T8p7n Lp):

G(Top,my L) = G(Top, 1) (n) 1p). (26)

In Figure 7, we plot G(Tsp, nTl p) and G(Tsp, )(n;grlsp)
when Ty, = 0.6 and Ty, = 2 In each figure, the blue
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Figure 7: G(Tsp, 0, 1y,) (blue line) and G(Tp, 1)(n) 1,)
(green line) when (a) Ty, = 0.6 and (b) T, = 2.
Although the error increases as arccos(n; l,,) increases,
these graphs validate the approximation G (T, n;lsp) ~
G(Tsp, 1)(n;lsp).

line represents G(T: Sp,n; l,,) and the green line repre-
sents G(Typ,1)(n,) 1,,). Although the error increases as

aurccos(n;,r 1,,) increases, these graphs validate this approx-
imation. Therefore, we can obtain the following:

e Tsp be
Ls(p) = pplo ( + ——G(T; ,1)) n'l,. (27)
P dgp 21Ty, P p°Sp

This is a linear equation about normal n,,; hence we apply
photometric stereo to this equation.

4.3. Implementation

In this section, we explain our overall algorithm. Note
that the kernel of equation 18 is only defined on the object’s
surface; thus, we input a mask image and perform the pro-
posed method on only the object region. Backscatter is re-
moved using a previously proposed method [22]; however,
the resulting image contains high-frequency noise due to
SNR degradation. Therefore, we apply a 3 x 3 median filter
after removing the backscatter to reduce this high-frequency
noise. We used Poisson solver [1] which is extended to
perspective projection [ | 6] for normal integration to recon-
struct the shape. The proposed algorithm is described as
follows:

1. Input images and a mask.
Initialize the shape and normals.

2. Remove backscatter [22] and apply a median filter to
the resulting images.

3. Remove forward scatter between the object and the
camera (Equation (23)).

4. Reconstruct the normals using Equation (27).

5. Integrate the normals and update them from the recon-
structed shape.

6. Repeat steps 3-5 until convergence.

5. Experiments
5.1. Experiments with synthesized data

We first describe experiments with synthesized data. We
generated 8 synthsized images with a 3D model of a sphere
using our scattering model in Section 3. The scattering
property was assumed to be isotoropic and the parameters
were set as b = ¢ = 5.0 x 1073, We show the examples
of the synthesized images in Figure 8§ (a), where an image
without a participating medium, a reflected component L,
and a backscatter subtracted image L’ from top to bottom.
In the experimetns, the kernel support was set as » = 81.
The shape was initialized as a plane.

The results are shown in Figure 8 (b) (c) and Table 1.
Figure 8 (b) shows the ground truth and (c) shows the output
of each iteration from left ro right. The top row shows the
normals map, the middle row shows the angular error of the
output, and the bottom row shows the reconstructed shapes.
Table 1 shows the mean angular error of each output. GT
in Table 1 denotes the error when we removed scattering
effects with the ground truth shape and reconstructed the 3D
shape inversely. As shown in Figure 8, the shape converged
while oscillating in height. This convergence was also seen
in the experiments with the real data (Figure 10).

5.2. Experimental environment

We also evaluated the proposed methods using real cap-
tured data. The experimental environment is shown in Fig-
ure 9 (a). We used a 60-cm cubic tank and placed a target
object in the tank. We used diluted milk as a participating
medium. The medium parameters were set with reference to
the literature [10]. A ViewPLUS Xviii 18-bit linear camera
was mounted in close contact with the tank, and eight LEDs
were mounted around the camera. The input images were
captured at an exposure of 33 ms. We captured 60 images
under the same condition, and these images were averaged
to make input images robust to noise caused by the imag-
ing system; thus, eight averaged images were input to the
proposed method.

The camera was calibrated using the method presented in
the literature [25]. To consider refraction on the wall of the
tank, calibration was performed when the tank was full of
water. The locations of the LEDs were measured manually,
and each radiant intensity I, was calibrated using a white
Lambertian sphere.

The target objects are shown in Figure 9 (b) (sphere,
tetrapod, and shell).

5.3. Comparison wtih the backscatter-only model-
ing

We compared the proposed method with a previously
proposed method [22] that models only backscatter. In each
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Figure 8: Results of the synthesized data. (a) examples of synthesized data. (b) ground truth. (c) output of the each iteration
from left to right. (top row) output normals, (middle row) error map of angles, (bottom row) reconstructed shape.

1 2 3 4 5| GT

[22] 1 2 3 4 5

Error (deg.) | 520 4.65 143 129 129 | 1.30

Error (deg.) | 19.48 | 596 438 3.62 3.66 3.66

Table 1: Mean angular error of the output of the each itera-
tion with synthesized data

(b)

Figure 9: (a) Experimental environment. (b) Target objects.

experiment, we initialized the target object as a plane for
the iteration, and the kernel support was set as r = 61.

First, we evaluated the proposed method quantitatively
using sphere. In this experiment, we placed 120 L of wa-
ter and 30 mL of milk in the tank. Figure 1 (b) shows one
of the input images. The results are given in Figure 10,
where (a) shows the ground truth, (b) shows the result of the
backscatter-only modeling [22], and (c) shows the result of
the proposed method. These experimental results demon-
strate that the proposed method can reconstruct the object’s
shape in highly turbid media, in which the method that does
not consider forward scatter fails. Table 2 shows the mean

Table 2: Mean angular error of sphere. The error of the
proposed method is lower than that of the backscatter-only
modeling [22], and a few iterations are sufficient to reach
convergence.

angular error of the results of the backscatter-only model-
ing [22] and the output of each iteration of the proposed
method. As can be seen, the error reaches convergence dur-
ing a few iterations.

Figure 11 and 12 show the results for fetrapod and shell.
In each figure, (a) shows the result obtained in clear wa-
ter and (b) shows the results of the existing [22] (second
and third rows) and proposed (fourth and fifth rows). The
top row shows one of the input images. We changed the
concentration of the participating medium during these ex-
periments (we mixed 10, 20, and 30 mL of milk with 120
L of water from left to right). As can be seen, the result of
the existing method [22] becomes flattened as the concen-
tration of the participating medium increases. In contrast,
the proposed method can reconstruct the detalied shape in
highly turbid media.

6. Conclusion

In this paper, we have proposed a photometric stereo
method in participating media that considers forward scat-
ter. The proposed analytical model differs from the previ-
ous works in that forward scatter depends on the object’s
shape. However, the shape dependency of the forward scat-
ter makes it impossible to remove. To address this prob-
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Figure 10: Results of sphere; (a) ground truth, (b) result of [22], and (c) proposed method; (top row) output normals, (middle

row) error map of angles, (bottom row) reconstructed shape;

Figure 11: Results of tetrapod; (a) reconstruction in clear
water and (b) results of [22] (second and third rows) and the
proposed method (fourth and fifth rows). The top row is one
of the input images. The concentration of the participating
medium increases from left to right.

lem, we have proposed an approximation of the large-scale
dense matrix that represents the forward scatter as a sparse
matrix. Our experimental results demonstrate that the pro-
posed method can reconstruct a shape in highly turbid me-
dia.

However, the ambiguity of the optimized support size of
the kernel remains. We set aside an adaptive estimation of
the support size for future work.

A limitation of the proposed method is that it requires

Figure 12: Results of shell; details are similar to those of
Figure 11. The proposed method can reconstruct the local
gradient in highly turbid media.

a mask image of the target object. However, in highly tur-
bid media, it may be difficult to obtain an effective mask
image. In addition, we must initialize the object’s shape,
which may be solved using a depth estimation method in
participating media [21, 2, 3].
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