Single-Image Depth Estimation Based on Fourier Domain Analysis

Jae-Han Lee, Minhyeok Heo, Kyung-Rae Kim, and Chang-Su Kim
Korea University
{jaehanlee, mhheo, krkim}@mcl.korea.ac.kr, changsukim@korea.ac.kr

Abstract

We propose a deep learning algorithm for single-image depth estimation based on the Fourier frequency domain analysis. First, we develop a convolutional neural network structure and propose a new loss function, called depth-balanced Euclidean loss, to train the network reliably for a wide range of depths. Then, we generate multiple depth map candidates by cropping input images with various cropping ratios. In general, a cropped image with a small ratio yields depth details more faithfully, while that with a large ratio provides the overall depth distribution more reliably. To take advantage of these complementary properties, we combine the multiple candidates in the frequency domain. Experimental results demonstrate that proposed algorithm provides the state-of-art performance. Furthermore, through the frequency domain analysis, we validate the efficacy of the proposed algorithm in most frequency bands.

1. Introduction

Depth estimation is the process of predicting the depth map of a scene using one or more images. The depth information serves as an important cue for understanding geometric relationship in the scene. For instance, an RGBD image, which has color and depth channels, can be applied in a variety of tasks, such as 3D model reconstruction [13, 30, 33], scene recognition [27, 32, 33], human pose estimation [37]. Depths can be estimated from stereo images [31] or motion sequences [2, 7, 17, 31, 40], which provide relatively rich information for understanding 3D structures. In contrast, it is more challenging and ambiguous to estimate depths from a single image [1, 3, 5, 6, 15, 19–22, 24, 28, 38, 42, 43], which does not allow the correspondence matching between stereo images or temporal frames.

Various geometric or image composition assumptions have been made to overcome the ambiguities in single-image depth estimation [9, 10, 13, 23, 36, 41]. For example, 3D reconstruction can be performed, assuming that a scene is composed of flat planes [13], that an image is composed in certain perspective [9], or that a scene has the floor-walls geometry [4]. Also, focal blurs were exploited in [41], and haze strengths inferred from the dark channel prior were used in [9]. These techniques, however, can reconstruct depths in specific cases only when the corresponding assumptions are valid.

Recently, several methods have been proposed to employ graph-based models [21, 23, 29, 30], such as Markov random field (MRF) and conditional random field (CRF). Moreover, with the fast development of deep learning technology [11, 12, 16], various attempts have been made to use convolutional neural networks (CNNs) for single-image depth estimation [3, 5, 6, 19, 38].

In this work, we propose a CNN-based algorithm for single-image depth estimation, which makes multiple predictions and combines the results in the Fourier frequency domain. First, we develop a CNN based on the ResNet [11] architecture. It includes additional paths for extracting intermediate features. Also, in order to train the network reliably for a wide range of depths, we propose the depth-balanced Euclidean (DBE) loss function. Then, we generate multiple depth map candidates by cropping an input image with various cropping ratios. In general, a cropped image with a small cropping ratio reconstructs local depth details more faithfully, while that with a large ratio recovers the overall depth distribution more reliably. To take advantages of these complementary properties, we combine the multiple candidates in the Fourier frequency domain.

Extensive experimental results on the NYUv2 depth dataset [33] demonstrate that the proposed algorithm yields the state-of-the-art performance, outperforming the conventional algorithms significantly. Moreover, by analyzing estimated depth maps in the frequency domain, we validate the efficacy of the components of the proposed algorithm in a wide range of frequencies.

This paper has three main contributions:

- We design a ResNet-based depth estimation network.
- We propose the DBE loss to enable more reliable training of the network.
- To the best of our knowledge, this is the first work to
perform the Fourier analysis of the single-image depth estimation problem. We also propose an accurate and reliable scheme to combine multiple depths in the frequency domain.

2. Related Work

Various attempts have been made for single-image depth estimation. For instance, Saxena et al. [29] adopted a multi-scale MRF to take into account the global context of an image, as well as its local features, for depth estimation. In [30], they divided an image into homogeneous patches, used an MRF to obtain 3D parameters at each patch, and reconstructed a 3D structure. Kersh et al. [14] proposed transferring the depth map of a reference RGBD image in a dataset to an input color image. Similarly, Liu et al. [24] exploited the depth information in a reference RGBD image. They used it to formulate a unary potential in a CRF model for depth estimation. Also, Ladicky et al. [18] formulated depth estimation as the problem of predicting the likelihood that each pixel is at a canonical depth, and attempted to solve depth estimation and semantic segmentation jointly.

Recently, deep-learning-based techniques have been developed [5, 6, 19, 28]. Eigen et al. [6] proposed combining two deep networks: a coarse network to predict a global depth distribution and a fine network to refine the depth map locally. Eigen and Fergus [5] extended this work to a three-level network structure, and performed surface normal estimation and semantic label estimation, as well as depth estimation. Roy and Todorovic [28] integrated relatively shallow CNNs into a regression forest. Laina et al. [19] designed a depth estimation network based the ResNet architecture [11]. They proposed an up-projection structure to improve the resolution of a depth map. Also, for network training, they proposed the Huber loss, which is a combination of the Euclidean function and the L1 function.

Depth estimation techniques, combining CNNs with CRF models, also have been proposed [20, 23, 38]. Wang et al. [38] trained a CNN for joint depth estimation and semantic segmentation and adopted a CRF model to improve CNN prediction results. Liu et al. [23] proposed a scheme to learn the unary and pairwise potentials of a continuous CRF in a unified CNN framework. Li et al. [20] performed the pixel-wise refinement of superpixel-based CNN prediction results through CRF optimization. Chakrabarti et al. [3] predicted depth derivatives of different orders probabilistically and then estimated a depth map through a globalization process. Xu et al. [39] used multiple continuous CRFs to integrate side output maps of a CNN. This method is similar to the proposed algorithm in that it extracts features from various layers of a network and combines them to estimate a depth map. However, we exploit the intermediate information within the network only without using CRFs.

3. Proposed Algorithm

3.1. Depth Estimation Network

The CNN structure of the proposed algorithm is shown in Figures 1 and 2, which is based on ResNet-152 [11]. Note that ResNet-152 is a very deep network, including 151 convolution layers and 1 fully-connected layer. It is divided into smaller blocks, each of which has three convolution layers, followed by batch normalization and ReLU layers, with a shortcut connection. In Figure 1, B_C denotes this block, where C is the number of channels in the output feature map. The structure of B_C is enclosed by the blue dotted line in Figure 2. The original ResNet-152 contains 50 such blocks. Among these, we modify the last 19 blocks, depicted by green blocks in Figure 1, while maintaining the original structures of the first 31 blocks.

Figure 2 shows the structure of a modified block, which has an additional path for intermediate feature extraction. Let $B_{C,C'}$ denote a modified block, where C' is the number of channels in the feature map, extracted through the additional path. Note that we extract the intermediate feature map from the last ReLU layer of B_C. To this end, we use two convolution layers with 1×3 and 3×1 kernels...
3.2. Depth-Balanced Euclidean Loss

In regression problems, the Euclidean loss is often used, which is given by

\[L_E = \frac{1}{2N} \sum_x (\hat{d}_x - d_x)^2 \]

where \(x \) denotes the coordinate of a pixel in a depth map, \(\hat{d}_x \) is the estimated depth, \(d_x \) is the ground-truth depth, and \(N \) is the size of the depth map. Let \(\omega \) denote a network parameter. In case of the Euclidean loss, the update of \(\omega \) is proportional to the partial derivative

\[\frac{\partial L_E}{\partial \omega} = \sum_x \frac{\partial L_E}{\partial \hat{d}_x} \cdot \frac{\partial \hat{d}_x}{\partial \omega} = \frac{1}{N} \sum_x (\hat{d}_x - d_x) \frac{\partial \hat{d}_x}{\partial \omega}. \]

In practice, the absolute estimation error \(|\hat{d}_x - d_x| \) tends to be larger, as the ground-truth depth \(d_x \) is bigger. For example, 3% depth error of a far object is bigger than the same 3% error of a near object. Thus, the partial derivative in (2) is affected more strongly by the depth estimation errors of distantly located objects than by those of near objects. Therefore, when the Euclidean loss is employed, the network is trained to estimate the depths of distant objects more reliably than those of near ones in general.

To overcome this problem, we propose a new loss, called depth-balanced Euclidean (DBE) loss, given by

\[L_{\text{DBE}} = \frac{1}{2N} \sum_x \left(g(\hat{d}_x) - g(d_x) \right)^2 \]

where \(g \) is a quadratic function for the balancing

\[g(d) = a_1 d + \frac{a_2}{2} d^2. \]

Then, we have

\[\frac{\partial L_{\text{DBE}}}{\partial \omega} = \sum_x \frac{\partial L_{\text{DBE}}}{\partial \hat{d}_x} \cdot \frac{\partial \hat{d}_x}{\partial \omega} = \frac{1}{N} \sum_x (g(\hat{d}_x) - g(d_x)) (a_1 + a_2 \hat{d}_x) \frac{\partial \hat{d}_x}{\partial \omega}. \]

We set \(a_1 \) to be a relatively large number and \(a_2 \) to be a negative number. Then, in general, for a deeper depth \(\hat{d}_x \), the effect of a bigger error \((g(\hat{d}_x) - g(d_x)) \) can be reduced by a smaller factor \((a_1 + a_2 \hat{d}_x)\). Thus, the network can be trained to reliably estimate shallow depths, as well as deep depths. Experimental results in Section 4 will also confirm that the proposed DBE loss is more effective for depth estimation than the original Euclidean loss.

3.3. Depth Map Candidate Generation

Using the proposed CNN trained with the DBE loss, we generate multiple depth map candidates for an input image. Figure 3(a) illustrates how to generate a depth map candidate. First, we crop the input image at the four corners, respectively, with a cropping ratio \(r \). The cropping ratio is defined as the size ratio of the cropped image to the entire image. Second, we process each cropped image through the CNN to yield the corresponding depth map. Finally, we merge these four partially estimated depth maps into a single depth map candidate. In the merging process, note that all depth values should be scaled by a factor of \(1/r \) to compensate for the zooming effect that objects in a cropped image look closer. After the scaling, the partial depth maps are translated to their positions and then superimposed. For the superposition in overlapping regions, the averaging is
performed. Let \mathbf{D}^* denote the resultant depth map candidate. When $r = 1$, \mathbf{D}^* is simply obtained by processing the entire input image through the CNN.

Since the CNN parameters are not symmetric, a flipped image does not yield the flipped depth map. Therefore, we horizontally flip an input image, obtain a depth map candidate with a cropping ratio r, and flip back the depth map candidate. This is denoted as \mathbf{D}^flip. Figure 3(b)~(e) shows examples of depth map candidates.

3.4. Candidate Combination in Fourier Domain

As illustrated in Figure 3, in general, a depth map candidate \mathbf{D}^r with a larger cropping ratio r reconstructs the overall depth distribution more reliably, whereas that with a smaller r estimates local details more accurately. To exploit these complementary properties, we combine depth map candidates in the Fourier frequency domain. Notice that the overall distribution and the local details correspond to low and high frequency coefficients, respectively.

The discrete Fourier transform (DFT) [26] of an input signal $I(x, y)$ of size $M \times N$ is given by

$$F(u, v) = \sum_{y=0}^{M-1} \sum_{x=0}^{N-1} I(x, y) \exp \left(-2\pi i \frac{xu}{N} + \frac{yu}{M} \right) \tag{6}$$

where u and v are horizontal and vertical frequencies.

We transform each depth map candidate and rearrange the 2D-DFT coefficients into a column vector. During the rearrangement, we remove two kinds of redundancy. First, DFT is periodic, i.e., $F(u, v) = F(u + \text{N}k, v + \text{M}l)$ for all $k, l \in \mathbb{Z}$. Second, since a depth map is real, its DFT is conjugate symmetric, i.e., $F(u, v) = F^*(-u, -v)$. Let \hat{f}^m denote the rearranged DFT vector of the m-th depth map candidate. Also, let \hat{f} be the DFT vector of the combined depth map of all candidates, and \hat{f} be that of the ground-truth depth map. Also, \hat{f}^m_k, \hat{f}_k, and f_k denote the k-th coefficients in \hat{f}^m, \hat{f}, and f, respectively. We obtain \hat{f}_k as follows.

$$\hat{f}_k = \sum_{m=1}^{M} w_k^m (\hat{f}^m_k - b_k^m) \tag{7}$$

where w_k^m is a weighting parameter, b_k^m is a bias, and M is the number of depth map candidates.

First, the bias b_k^m should compensate for the average deviation of \hat{f}^m_k from the ground-truth f_k. Hence, we determine this bias, using the training dataset, by

$$b_k^m = \frac{1}{T} \sum_{t=1}^{T} (\hat{f}^m_{kt} - f_{kt}) \tag{8}$$

where t is the index of a training image, and T is the total number of images in the training dataset. Also, \hat{f}^m_{kt} and f_{kt} denote \hat{f}^m_k and f_k for the tth image, respectively.

Second, we determine the weighting parameters w_k^m in (7) to minimize the mean squared error (MSE) between f_k and \hat{f}_k. To this end, we define a matrix T_k, in which the (t, m)th element equals to $\hat{f}^m_{kt} - b_k^m$. We also define the ground-truth vector $t_k = [f_{kt}, \ldots, f_{kT}]'$. Then, the MSE minimization problem is to find the optimal weight vector $w_k = [w_k^1, \ldots, w_k^M]'$, given by

$$w_k = \arg \min_w \|T_k w - t_k\|^2. \tag{9}$$

This can be solved using the pseudo-inverse of T_k.

$$w_k = T_k^+ t_k. \tag{10}$$

We repeat this process for all k to determine all weight and bias parameters.

In testing, we combine the DFT vectors of multiple depth map candidates \hat{f}^m into that of the final estimate \hat{f} via (7). Then, we perform the inverse Fourier transform to generate the final estimated depth map \hat{D}. It is worth pointing out that, because of the Parseval’s relation [26], minimizing the MSE in the frequency domain is equivalent to the minimizing the MSE in the spatial domain. In other words, no other combination of \hat{f}^m can lead to a smaller MSE, $\|\hat{D} - D\|$, between the estimated and ground-truth depth maps.

4. Experimental Results

4.1. Implementation Details

We use the NYUv2 depth dataset [33], which contains about 280,000 training images. To train the proposed CNN, we perform the data augmentation with the scale, rotation, color, and horizontal flip transformations [6]. The NYUv2 dataset also provides 654 separate test images. For the testing, we extract only the central area of size 427×561 from each image, as done in [3, 28].

In the training, we use the NAG solver [25, 35]. For the DBE loss in (3) and (4), we set $\alpha_1 = 1.5$ and $\alpha_2 = -0.1$. As mentioned in 3.1, we adopt the two-phase training method. In the first phase, we initialize the parameters with those of the pre-trained ResNet-152 [11]. Then, we perform the iterative training 500,000 times with a batch size of 4 and a learning rate of 0.00016. In the second phase, we reduce the learning rate by a factor of 10^{-3} for the existing parts. For the additional feature extraction parts, we adopt the Xavier initialization [8] and set the learning rate to 0.00016. The batch size of 4 is also maintained in the second phase.

For each image, we generate 9 depth map candidates with cropping ratios $r \in \{0.60, 0.65, \ldots, 1.00\}$. We also use a flipped candidate for each r. Therefore, we obtain 18 candidates in total.

4.2. Performance Comparison

We use the five performance metrics in [3, 6], given by
Table 1. Performance comparison of the proposed algorithm and the conventional algorithms. The best results are boldfaced, and the second best ones are underlined.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>RMSE (lin)</th>
<th>RMSE (log)</th>
<th>Abs Rel</th>
<th>Sqr Rel</th>
<th>δ < 1.25</th>
<th>δ < 1.25<sup>2</sup></th>
<th>δ < 1.25<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoran et al. [43]</td>
<td>1.220</td>
<td>0.430</td>
<td>0.410</td>
<td>0.570</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Li et al. [20]</td>
<td>0.821</td>
<td>-</td>
<td>0.232</td>
<td>-</td>
<td>62.1%</td>
<td>88.6%</td>
<td>96.8%</td>
</tr>
<tr>
<td>Liu et al. [21]</td>
<td>0.824</td>
<td>-</td>
<td>0.230</td>
<td>-</td>
<td>61.4%</td>
<td>88.3%</td>
<td>97.1%</td>
</tr>
<tr>
<td>Baig et al. [1]</td>
<td>0.802</td>
<td>0.283</td>
<td>0.241</td>
<td>-</td>
<td>61.0%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eigen et al. [6]</td>
<td>0.877</td>
<td>0.283</td>
<td>0.214</td>
<td>0.204</td>
<td>61.4%</td>
<td>88.8%</td>
<td>97.2%</td>
</tr>
<tr>
<td>Wang et al. [38]</td>
<td>0.745</td>
<td>0.262</td>
<td>0.220</td>
<td>0.210</td>
<td>60.5%</td>
<td>89.0%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Roy et al. [28]</td>
<td>0.744</td>
<td>-</td>
<td>0.187</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eigen and Fergus [5]</td>
<td>0.641</td>
<td>0.214</td>
<td>0.158</td>
<td>0.121</td>
<td>76.9%</td>
<td>95.0%</td>
<td>98.8%</td>
</tr>
<tr>
<td>Chakrabarti et al. [3]</td>
<td>0.620</td>
<td>0.205</td>
<td>0.149</td>
<td>0.118</td>
<td>80.6%</td>
<td>95.8%</td>
<td>98.7%</td>
</tr>
<tr>
<td>Laina et al. [19]</td>
<td>0.597</td>
<td>0.204</td>
<td>0.140</td>
<td>0.106</td>
<td>81.1%</td>
<td>95.3%</td>
<td>98.8%</td>
</tr>
<tr>
<td>Proposed</td>
<td>0.572</td>
<td>0.193</td>
<td>0.139</td>
<td>0.096</td>
<td>81.5%</td>
<td>96.3%</td>
<td>99.1%</td>
</tr>
</tbody>
</table>

RMSE (lin) : \[\left(\frac{1}{N} \Sigma_x (\hat{d}_x - d_x)^2 \right)^{\frac{1}{2}} \]

RMSE (log) : \[\left(\frac{1}{N} \Sigma_x (\log \hat{d}_x - \log d_x)^2 \right)^{\frac{1}{2}} \]

Abs Rel : \[\frac{1}{N} \Sigma_x |\hat{d}_x - d_x| / d_x \]

Sqr Rel : \[\frac{1}{N} \Sigma_x (\hat{d}_x - d_x)^2 / d_x^2 \]

\(\delta < t \) : Percentage of \(d_x \) such that \(\max \left(\frac{\hat{d}_x}{d_x}, \frac{d_x}{\hat{d}_x} \right) < t \)

where \(t = 1.25, 1.25^2 \) or \(1.25^3 \)

Here, \(d_x \) and \(\hat{d}_x \) denote ground-truth and estimated depths, respectively. Also \(N \) is the total number of pixels in all images in the test dataset.

In Table 1, we compare the proposed algorithm with the recent conventional algorithms [1, 3, 5, 6, 19–21, 28, 38, 43]. In [19], their performance was computed with the single precision. The single precision is not sufficient in case of the RMSE and Rel metrics, since a huge number of depth differences should be summed up. Therefore, we measure their performance again in the double precision using their source codes. We see that, in terms of all metrics, the proposed algorithm provides the best results, outperforming the second best results considerably.

Figure 4 compares depth maps qualitatively. For easier comparison, we also visualize the errors in the depth maps. Bigger errors are represented by bright yellow colors, while smaller errors are by dark red colors. It is observed that the proposed algorithm estimates the depth information accurately and reliably and also reduces blur artifacts in comparison with the conventional algorithms.

4.3. Ablation Study

We develop the depth estimation network (DEN) in Figures 1 and 2, based on the ResNet-152 [11] structure. Table 1 compares the depth estimation performances of DEN with those of ResNet-152, which is fine-tuned using the NYUv2 dataset. We see that the modification of the structure leads to the performance improvement, e.g. in case of ‘RMSE (lin)’ from 0.597 to 0.586.

In addition to the DEN structure, this work has two contributions. First, we use the DBE loss to estimate shallow depth more reliably. Second, we perform the Fourier domain combination (FDC) of multiple depth map candidates. Note that each of these two components improves the performances meaningfully. As a result, the complete proposed algorithm ‘DEN+DBE+FDC(18)’ provides the state-of-the-art performances. Figure 5 also shows that each component of the proposed algorithm contributes to the reconstruction of a high quality depth map.

In the complete proposed algorithm, for each image, 18 depth map candidates are generated by varying the cropping ratio from 0.60 to 1.00 in 0.05 increments. We can reduce the number \(k \) of candidates to 10, 6, or 2, respectively, by raising the lower bound of \(r \) to 0.8, 0.9 or 1.0. In Table 2, FDC(\(k \)) means the combination of \(k \) candidates. In general,
Figure 4. Comparison of estimated depth maps. Upper images show depth maps, and lower images are the corresponding error maps.
(a) Input images, (b) ground-truth depth maps and color coding schemes, (c) Eigen et al. [6], (d) Wang et al. [38], (e) Eigen and Fergus [5], (f) Chakrabarti et al. [3], (g) Laina et al. [19], and (h) the proposed algorithm.
Table 3. The two components DBE and FDC of the proposed algorithm improve the depth estimation performance of three popular networks: AlexNet, VGG19, and ResNet-50.

<table>
<thead>
<tr>
<th>Network</th>
<th>RMSE</th>
<th>Rel</th>
<th>δ < 1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>0.836</td>
<td>0.244</td>
<td>60.4%</td>
</tr>
<tr>
<td>AlexNet+DBE</td>
<td>0.870</td>
<td>0.243</td>
<td>60.3%</td>
</tr>
<tr>
<td>AlexNet+DBE+FDC(18)</td>
<td>0.826</td>
<td>0.247</td>
<td>61.5%</td>
</tr>
<tr>
<td>VGG19</td>
<td>0.616</td>
<td>0.163</td>
<td>76.6%</td>
</tr>
<tr>
<td>VGG19+DBE</td>
<td>0.619</td>
<td>0.158</td>
<td>76.9%</td>
</tr>
<tr>
<td>VGG19+DBE+FDC(18)</td>
<td>0.617</td>
<td>0.157</td>
<td>77.0%</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>0.591</td>
<td>0.151</td>
<td>79.4%</td>
</tr>
<tr>
<td>ResNet-50+DBE</td>
<td>0.603</td>
<td>0.147</td>
<td>79.6%</td>
</tr>
<tr>
<td>ResNet-50+DBE+FDC(18)</td>
<td>0.597</td>
<td>0.145</td>
<td>79.3%</td>
</tr>
</tbody>
</table>

Table 4. Detail reconstruction performance of FDC using SSIM and NCC scores on the NYUv2 dataset.

<table>
<thead>
<tr>
<th>Network</th>
<th>SSIM</th>
<th>NCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN+DBE</td>
<td>0.960</td>
<td>0.890</td>
</tr>
<tr>
<td>DEN+DBE+FDC(18)</td>
<td>0.961</td>
<td>0.897</td>
</tr>
<tr>
<td>AlexNet+DBE</td>
<td>0.938</td>
<td>0.758</td>
</tr>
<tr>
<td>AlexNet+DBE+FDC(18)</td>
<td>0.939</td>
<td>0.781</td>
</tr>
<tr>
<td>VGG19+DBE</td>
<td>0.957</td>
<td>0.875</td>
</tr>
<tr>
<td>VGG19+DBE+FDC(18)</td>
<td>0.958</td>
<td>0.882</td>
</tr>
<tr>
<td>ResNet-50+DBE</td>
<td>0.958</td>
<td>0.881</td>
</tr>
<tr>
<td>ResNet-50+DBE+FDC(18)</td>
<td>0.959</td>
<td>0.888</td>
</tr>
</tbody>
</table>

Next, we replace the DEN with three popular networks with fewer layers: AlexNet [16], VGG19 [34] and ResNet-52 [11]. All these networks are pre-trained for the image classification task. In the same way as we develop DEN, we modify each of these three networks. Specifically, we modify the last fully-connected layer to yield 800 output responses, which correspond to a 25×32 depth map. Then, we fine-tune the modified network using training images and their ground-truth depth maps. Then, as in the proposed algorithm, we incorporate the two components DBE and FDC sequentially into the network. Table 3 shows that each component also contributes to performance improvement in the networks with fewer parameters. Also in Table 4, we measure SSIM and NCC scores to see how well the FDC reconstructs the depth map details. We confirm that FDC faithfully restores the structure of depth maps of all the networks.

4.4. Performance Analysis in Fourier Domain

Let us analyze estimated depth maps in the frequency domain. To this end, we classify 2D frequencies into groups according to their magnitudes: a frequency group contains 2D frequencies, the magnitudes of which range from 2^n-1 to 2^{n+1} Hz. Figure 6 shows the ‘RMSE (lin)’ and ‘Abs Rel’ errors of reconstructed depths, when all frequency coefficients in each group are set to zero. An exception is the DC coefficient case, whose impacts are much bigger than the other AC coefficients. To plot their impacts in the same graph, we replace the DC coefficient with the overall mean depth of the test images, instead of zero. It is observable from Figure 6 that a lower frequency group has greater impacts on the reconstruction performance of depth maps in general. However, relatively high frequency groups ($k < 2^6$) also contribute to depth maps, since they represent local details and depth discontinuities. If the frequency magnitudes are higher than 2^6, their impacts are negligible.

In Figure 7, we analyze the MSE between the frequency coefficients of an estimated depth map and its ground-truth. Since there are large variations in error scales across different frequency groups, we plot relative errors by setting the errors of ResNet-152 as the reference points.

Figure 7(a) shows the contribution of each component of the proposed algorithm. The DEN structure reduces errors in low frequency groups. The DBE loss makes the estimation of DC components more accurate, while increasing errors about 5%, in comparison with the conventional algorithms. The FDC of multiple depths improves the estimation performance in most frequency groups. In particular, the improvements around $2^1 \sim 2^4$ Hz are remarkable.

Figure 7(b) compares the proposed algorithm with the state-of-the-art conventional algorithms [3, 5, 19]. The proposed algorithm yields the best performances in most frequency groups. Especially, from 2^1 to 2^4 Hz, corresponding to fine-grain details of depth maps, the proposed algorithm reduces errors about 5%, in comparison with the conventional algorithms.

Figure 7(c) shows the results when the proposed FDC technique is combined with the Laina et al.’s algorithm [19]. FDC also improves the Laina et al.’s algorithm [19] in range of $2^1 \sim 2^3$ Hz. This indicates that FDC is independent of the network structure and thus can be combined with various CNN-based depth estimators to improve the fine-grain details of depth maps.

Finally, Figure 7(d) shows the results when changing the number k of candidates to 2, 6, 10 or 18 of the FDC. The increase of k leads to a performance improvement in all frequency groups. In particular, improvement in the high frequency group is remarkable.

5. Conclusions

We proposed a CNN-based single-image depth estimator, which generates multiple depth map candidates and combines these candidates in the Fourier frequency domain. Specifically, we developed the CNN structure based
Figure 5. Examples of depth maps, obtained by the proposed algorithm in various settings: (a) input image, (b) ResNet-152, (c) DEN, (d) DEN+DBE, (e) DEN+DBE+FDC(18), and (f) ground-truth.

Figure 6. Reconstruction errors of depth maps when all frequencies in each frequency group are set to zero.

Figure 7. Frequency domain analysis of relative depth errors: (a) component analysis of the proposed algorithm, (b) comparison with the conventional algorithms, (c) combination of the proposed FDC technique with the Laina et al.’s algorithm [19], and (d) component analysis according to the candidate number in FDC.

Acknowledgments

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1A2A1A10055037, NRF-2018R1A2B3003896), and in part by the Agency for Defense Development (ADD) and Defense Acquisition Program Administration (DAPA) of Korea (UC160016FD).
References

