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Abstract

Interpretability of a deep neural network aims to explain
the rationale behind its decisions and enable the users to
understand the intelligent agents, which has become an
important issue due to its importance in practical appli-
cations. To address this issue, we develop a Distillation
Guided Routing method, which is a flexible framework to
interpret a deep neural network by identifying critical data
routing paths and analyzing the functional processing be-
havior of the corresponding layers. Specifically, we propose
to discover the critical nodes on the data routing paths dur-
ing network inferring prediction for individual input sam-
ples by learning associated control gates for each layer’s
output channel. The routing paths can, therefore, be repre-
sented based on the responses of concatenated control gates
from all the layers, which reflect the network’s semantic se-
lectivity regarding to the input patterns and more detailed
functional process across different layer levels. Based on
the discoveries, we propose an adversarial sample detection
algorithm by learning a classifier to discriminate whether
the critical data routing paths are from real or adversar-
ial samples. Experiments demonstrate that our algorithm
can effectively achieve high defense rate with minor train-
ing overhead.

1. Introduction
With the availability of large-scale databases and recent

improvements in deep learning methodologies, deep neu-
ral network has become an indispensable tool or even ex-
ceeded the human level on an increasing number of com-
plex tasks [12, 25, 31]. In general, most of these algorithms
lack the capability to make themselves understandable to
users. A machine learning model tends to create nonlin-
ear, non-monotonic and non-polynomial functions that ap-
proximate the relationship between variables in a dataset,
which makes it highly non-transparent. The opaqueness of
their inner working mechanism is recognized as one major
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Figure 1: Overview of our proposed method. Left: we
develop a Distillation Guided Routing method to identify
the critical data routing paths for each input sample. Each
layer’s output channel is associated with a scalar control
gate to decide whether the channel is critical for the deci-
sion. The activated channels are termed as critical nodes
on the routing paths. Right: the learned control gates from
all layers are sequentially concatenated to form an encoding
feature of routing paths, which can be used to analyze the
functional process and dissect the working mechanism of a
DNN.

drawback in the task-critical applications where the reliance
of the model must be guaranteed, such as medical diagno-
sis [32] or self-driving cars [16].

An interpretable machine learning algorithm has the ca-
pability to explain or to present in understandable terms to
a human [7]. It has attracted an increasing attention to de-
velop methods for visualizing, explaining and interpreting
deep learning models [3, 14, 17]. However, there is gen-
erally an inherent tension between the performance and in-
terpretability. It may sacrifice accuracy to pursue the in-
terpretability, which is undesirable in settings with critical
consequences [10]. In this paper, we focus on the post-hoc
interpretability, i.e., given a trained model, our goal is to
understand what and how the model achieves this decision
by analyzing its working process, which does not damage
the performance of a model itself. Some other efforts are
also made to provide explanations for each individual pre-

∗ indicates corresponding author



diction. Representative works include influence functions
to trace a model’s prediction back to its training data [17],
SHAP to determine the most influential features [20] and
network dissection to quantify the interpretability of latent
representations [3]. These approaches are still far from in-
terpreting the overall functional process of a model.

A lot of efforts have been made to understand the internal
representations of deep neural networks through visualiza-
tion [26, 34, 27], in which the behavior of a DNN can be vi-
sualized by sampling image patches or attributing saliency
through gradient ascent. Nevertheless, the visualization-
based methods generally fail to quantitatively analyze the
influence of each component to the decision. Besides, it
is non-trivial to understand the internal representations of
DNNs due to the sizes involved, which motivates us to com-
press the redundancy of a DNN, and select the essential
components that contribute significantly to the decision.

The black-box property of DNNs also brings out several
other defects for the secure application of an algorithm. Re-
cent research has demonstrated that a deep architecture is
highly vulnerable to adversarial examples, which are gener-
ated by adding small but purposeful modifications [9]. The
adversarial samples lead to incorrect outputs while imper-
ceptible to human eyes, which pose security concerns on
machine learning systems [23]. It would be a promising
direction to defend the adversarial attacking if the decision
process is interpretable to human users.

1.1. Our proposal

To resolve the above issues, we introduce a new per-
spective on interpreting neural network behavior by iden-
tifying the critical data routing paths of each given input
and tracing the functional processing behavior of the inter-
mediate layers. Specifically, we denote the critical nodes on
the routing paths as the important channels of intermediate
layer’s output that if they were suppressed to zeros, the final
test performance would deteriorate severely.

To efficiently discover the Critical Data Routing Paths
(CDRPs), we develop a Distillation Guided Routing (DGR)
method, which can be applied on all the classical deep neu-
ral networks without the need to retrain the whole model
from scratch. Specifically, we associate a scalar control gate
to each layer’s output channel to learn the optimal routing
paths for each individual sample. Inspired by the idea of
knowledge distillation [15], we optimize the control gates
by leveraging the criterion that the subnetwork outlined by
the CDRPs preserves the knowledge of the original model.
We conduct the technique to interpret the deep neural net-
works on ImageNet dataset with 1,000 categories, includ-
ing the present popular models of AlexNet [18], VGG [26]
and ResNet [12]. Our method largely outperforms other
baseline methods while achieving highly sparse and inter-
pretable routing paths.

We further propose a straightforward encoding scheme
to represent the critical data routing paths. Specifically, we
sequentially concatenate the learned control gates from all
layers (see Figure 1). By applying hierarchical clustering
and embedding visualization on these routing paths repre-
sentations, we discover that 1) the intra-layer routing nodes
display increasing categorical discriminative ability with as-
cending layer level, and 2) the whole CDRPs reflect consis-
tent input patterns in intra-class samples , which can help
identify complex examples in the dataset. Human eval-
uations further validate CDRPs are more efficient to cap-
ture consistent intra-class similarity than the Feedback Net-
work [5], which uses control gates to model top-down feed-
back selectivity.

An interpretable technique of deep learning network pro-
vides powerful tools to verify and improve the models. In
this paper, we ground our proposed algorithms on a ma-
jor application in robust representation learning and detec-
tion of adversarial samples. We discover that the CDRPs
of adversarial images diverge from those of real images at
intermediate layers and follow the typical routing paths of
adversarial target class samples at high-level layers. Based
on the above observation, we propose an adversarial sample
detection algorithm by learning the binary classifier to dis-
criminate whether the CDRPs are from real or adversarial
samples. Experiments demonstrate that our algorithm can
effectively detect adversarial images solely based on incon-
sistency of CDRPs with a few training samples.

In summary, our paper makes the following contribu-
tions:

• We propose a novel and flexible frame to interpret
neural networks by analyzing the CDRPs identified
by the proposed distillation guided routing method.
Our method largely outperforms other baseline routing
methods while achieving highly sparse routing paths
and preserving the performance of the original full
model.

• We further propose a straightforward encoding scheme
to represent CDRPs, which can be regarded as a new
form of activations displaying more detailed func-
tion process during network inferring prediction. Our
analysis on the new representations reveals the preva-
lence of consistent and interpretable semantic concepts
across nodes on the routing paths.

• We further apply the CDRPs representation on adver-
sarial sample detection problem. Our proposed repre-
sentation not only effectively detects adversarial im-
ages with minor training cost, but also reveals that the
model failure is mainly caused by the divergence of
CDRPs between adversarial and real images.



2. Methodology
In this section, we introduce our proposed method,

which is mainly inspired by model pruning [19, 13, 2].
However in our method, we do not change the original
weights of pretrained neural network, and only identify im-
portant layer’s output channels on the routing paths, by as-
sociating a scalar control gate with each layer’s output chan-
nel. The control gates are learned to find the optimal routing
decision in the network, while the final prediction remains
unchanged. The critical data routing paths are consequen-
tially identified by analyzing the response of each control
gate, yielding a network-based representation for each sam-
ple.

2.1. Channel-wise Control Gates

In this section, we identify the nodes on the CDRPs by
distilling the subnetwork outlined by routing paths with-
out which the performance degenerates severely. To this
end, we introduce the control gate of scalar value, λ, asso-
ciated with each layer’s output channel. During inference
forward pass, a group of control gates λk will be multi-
plied to the k-th layer’s output channel-wise, resulting in
the actual routing nodes. Each layer’s routing nodes are
connected to form the routing paths. The problem of iden-
tifying the critical data routing paths reduces to optimize
Λ = {λ1,λ2, · · · ,λK}, which are all the control gates for
the K layers in the network. Figure 2 shows the above con-
cepts.

For valid and reasonable critical data routing paths, we
consider λ’s should satisfy these two conditions: (1) λ’s
should be non-negative. From the functional definition of
control gate, λ should only suppress or amplify the output
channel activations. The negative value of λ would negate
the original output activations in the network, which drasti-
cally changes the activations distribution and introduces un-
expected influence during interpretation of original model,
and (2) λ’s should be sparse and most of them are close
to zeros. This accords with common claims that sparse
models [29, 30] with disentangled attributes are more in-
terpretable than dense models.

2.2. Distillation Guided Routing

To efficiently find the control gates in a pretrained net-
work fθ(·) for an input image x, we develop Distillation
Guided Routing(DGR) method, which is inspired by knowl-
edge distillation technique [15] to transfer the original full
model’s knowledge to the new subnetwork outlined by the
routing paths. Specifically, the optimization objective for
all the control gates Λ is

min
Λ

L(fθ(x), fθ(x;Λ)) + γ
∑
k

|λk|1

s.t. λk � 0, k = 1, 2, · · · ,K, (1)
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Figure 2: The control gates are multiplied to the layer’s
output channel-wise, resulting in the actual routing nodes.
In this demonstration, we identify those nodes whose re-
sponses of the control gates are larger than 0. The layer-
wise routing nodes are linked together to compose the rout-
ing paths.

where L is the cross entropy loss between the orig-
inal full model’s prediction probability fθ(x) =
[p1, p2, · · · , pm] and the new prediction probability
fθ(x;Λ) = [q1, q2, · · · , qm], which is L =

∑m
i −pi log qi,

where m is the category number, and γ is the balanced
parameter.

Note that here we do not need the ground-truth label for
the x during optimization. The learned control gates try to
make the prediction consistent with that of the full model,
even if the original prediction is incorrect.

To encourage λ to be sparse, we use `1 norm as the spar-
sity penalty function. The subgradient descent method can
be adopted to optimize the objective, and all the training
procedure is similar to the usual stochastic gradient descent
(SGD) method.

2.3. Routing Paths Representation

Denote Λ∗ = {λ∗
1,λ

∗
2, · · · ,λ

∗
K} as the optimized con-

trol gates, and the corresponding identified CDRPs can be
represented by

v = concatenate([λ∗
1,λ

∗
2, · · · ,λ

∗
K ]). (2)

To obtain the actual critical routing paths selection from the
representation, the routing nodes can be selected based on a
binary mask, generated by thresholding v with some given
value. However, the CDRPs representation contains more
abundant information than the binary mask, since the for-
mer weighs routing nodes with different importance coeffi-
cients, reflecting the network’s semantic selectivity for the
input patterns. Moreover, the CDRPs representation can
be regarded as a new form of activations, compared to the
usual high-level feature extractor’s responses. The new rep-
resentation displays more detailed functional process dur-
ing network inferring prediction than the mere final result.
Compared to other methods which probe the network’s in-
termediate responses [33, 34, 1], our method results in a
succinct and effective representation. More results are pre-
sented in Section 4 demonstrating the close relationships



of CRDP representation with input semantic patterns and
model’s functional process.

2.4. Implementation Details

Before optimizing the objective in Equation (1), all con-
trol gates in Λ are initialized with 1, which activates all the
nodes. After calculating the original full model’s prediction
probability for the given input data. the gradients for control
gates are computed by

∂Loss

∂Λ
=
∂L
∂Λ

+ γ ∗ sign(Λ), (3)

which are used for performing stochastic gradient descent
on control gates.

As for the implementation, we perform SGD on the same
input x for T = 30 iterations, with learning rate of 0.1, mo-
mentum of 0.9 and no weight decay. After finishing the iter-
ations, the optimized CDRPs representation v is formed by
concatenating Λ, which can result in the lowest loss value
while retaining the exact same top-1 prediction with the
original model. If no routing paths can satisfy the condition,
we denote the CDRPs as the original model’s all plausible
routing paths, which means all control gates in λ are reset
to 1.

For the regularization term, we set γ = 0.05, which
reaches a balance between performance and sparsity in our
experiments. Though there is no upper limit for λ, for nu-
merical stability consideration, we constrain λ’s to be in
[0, 10] after each iteration, which is a quite loose bound. We
allow λ larger than 1 to compensate the distribution varia-
tion of output channels after multiplied by control gates.
The overall procedure is summarized in Algorithm 1.

Algorithm 1 Distillation Guided Routing

Require: Input x, pretrained network fθ(·), control gates
Λ initialized with 1, balanced parameter γ. Max itera-
tions T , SGD optimizer

Ensure: identified CDRPs representation v

1: original prediction class i← argmax fθ(x)
2: for t← 1 to T do
3: compute loss cur loss by Equation (1)
4: compute control gates gradients Λ by Equation (3)
5: update Λ by SGD optimizer and clip Λ to be non-

negative
6: new prediction class j ← argmax fθ(x;Λ)
7: if i = j then . keep the prediction same
8: if cur loss is minimum then
9: v ← concatenate(Λ)

10: end if
11: end if
12: end for

3. Adversarial Samples Detection
Adversarial samples [28, 9], which are generated by

adding indistinguishable noise to human eyes onto the real
images, but are misclassified by the deep architecture be-
come an intriguing property and pose concerns on the ro-
bustness of neural network. In this section, we utilize the
identified CDRPs representation to analyze the adversary
phenomenon.

For a given real image x and corresponding adversarial
image x̂, the CDRPs for each image can be identified as v
and v̂. Since the difference between x and x̂ is small, it is
expected that the CDRPs v and v̂ on the low-level layers are
similar. However, the drastic change in the final prediction
should be attributed to the increasing divergence between
v and v̂ at high-level layers. Based on the above reason-
ing, adversarial sample can be detected by recognizing the
CDRPs difference through a binary classifier f , which op-
timizes the following objective as

min
f

∑
i

L(f(vi), yi) + L(f(v̂i), ŷi), (4)

where L is loss function, yi = 1 for real images and ŷi = 0
for adversarial images. yulongThe loss function in Equa-
tion (4) can be any scoring rules to encourage the binary
classifier to distinguish real and adversarial samples. For
adaboost classifier, the loss function is Huber loss. For gra-
dient boosting classifier, the loss function is squared error
loss. This framework is very general and flexible. Com-
pared to feature-inconsistency detection method [6], our
method requires much more succinct feature representation
and less computation overhead. In Section 4.3, we vali-
date the above reasoning by comparing the correlation co-
efficients of CDRPs between real image and its correspond-
ing adversarial image layer-wise. Experiments also demon-
strate that our CDRPs-based adversarial sample detection
algorithm is effective with a few training samples.

4. Experiments
In this section, we first implement the quantitative anal-

ysis on the performance of the critical data routing paths,
and then elaborate on the semantic concepts emergence of
the nodes in the paths; finally, we demonstrate that our pro-
posed method is effective in detecting the adversarial sam-
ples. Since our method focus on post-hoc prediction in-
terpretation for each single input, we use ImageNet valida-
tion dataset with 50,000 images and VGG-16 network [26]
for all the experiments. More results for ResNet [12] and
AlexNet [18] are provided in the supplementary material.

4.1. Quantitative Analysis

In this section, we report classification accuracy results
of the subnetwork outlined by identified critical data routing



paths. To demonstrate our method’s effectiveness, we com-
pare our method with other two baseline methods, which are
1) Weight Routing, which decides the control gates solely
based on weights norm, and 2) Activation Routing, which
decides the control gates based on layer’s output activa-
tions magnitude. Instead of directly selecting routing nodes
by thresholding on weights norm or activations norm, we
adopt a greedy strategy to iteratively prune the weights or
output channels, which result in Adaptive Weight Routing
(AWR) and Adaptive Activation Routing (AAR) policies. In
each iteration, the remaining weights or output channels are
ranked in `1-norm order and 2% of them with least norms
are pruned (not based on threshold but on ranking order).
The pruning iteration is halted as long as the top-1 predic-
tion is altered. The final CDRPs selection criterion is ex-
actly the same with the description in 2.4

Table 1 summarizes the performance of our method in
terms of top-1 and top-5 accuracy and sparsity. All the
three methods achieve the same top-1 accuracy due to the
selection criterion. However, our method achieves the high-
est top-5 accuracy compared to other two baseline meth-
ods, and only suffers about 1.4% top-5 accuracy degrada-
tion compared to the full model. We also compare the re-
sulting routing paths sparsity of each method. We define
the sparsity as the ratio of selected critical routing nodes in
the total nodes. More sparse routing paths indicate that less
redundant and irrelevant nodes are included. Our method
achieves far more sparse routing paths compared to the
baseline methods. We attribute this to the distillation pro-
cedure to keep performance comparable, and `1 norm regu-
larization to encourage sparsity.

Table 1: Adaptive routing methods comparison with same
top-1 prediction requirement. For sparsity, lower is better

Methods Top-1 Top-5 Sparsity
VGG-16 Full Model (%) 70.79 89.99 100.00
AWR (%) 70.79 85.42 89.23 ± 2.52
AAR (%) 70.79 84.85 88.77 ± 0.68
DGR (Ours) (%) 70.79 88.54 13.51 ± 4.19

Ablation Study We also further validate the CDRPs
through ablation study. The procedure is to partially de-
activate the critical nodes on the identified CDRPs in the
original full model, while keeping other non-critical nodes
unchanged. The critical nodes’ corresponding control gate
values weigh their importance in the CDRPs. We exper-
iment with two schemes to deactivate the critical nodes,
which are (1) Top Mode that deactivates the critical nodes
with larger control gates values first, and (2) Bottom Mode
that deactivates the critical nodes with smaller control gates
values first. Figure 3a and Figure 3b show the model ac-
curacy degradation with different fractions of critical nodes

being deactivated. In Top Mode, when only 1% most crit-
ical nodes are deactivated in the original full model, the
top-1 and top-5 accuracy drop 33.84% and 26.92%. Note
that the number of these most critical nodes only accounts
for 0.13% of the total nodes amount. When the nodes
on CDRPs are completely pruned out in the network, the
model performance deteriorates severely, reaching nearly
zero. Through our ablation study, we validate the CDRPs
identified by our method are effective.
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Figure 3: The accuracy degradation when critical nodes are
deactivated in the original full model, with (a) Top Mode
and (b) Bottom Mode. Only small fractions of critical nodes
being deactivated will lead severe performance degradation,
which validates the effectiveness of the identified CDRPs
obtained by our method.

4.2. Semantic Concepts Emerge in CDRPs

Functional process of intra-layer routing nodes. In this
section, we want to explore the intermediate layer’s func-
tional process through the lens of intra-layer routing nodes.
We regard all the individual critical nodes in a certain layer
composing the intra-layer routing nodes. The encoding rep-
resentation is simply the optimized control gates λ∗

k for the
k-th layer. We use t-SNE [21] method to display features
in 2D embedding. Figure 4 shows 5 typical convolutional
layers in VGG-16 network. Each point on the embedding
stands for a single image. Each class consists of 50 val-
idations images, which are painted in the same color ac-
cording to their ground-truth label. From the figure, we
can discover the degree of embedding discriminative abil-
ity increases in ascending layers. For high-level layers, like
‘Conv4 3’ layer has already reached a level of classification
ability from the perspective of learned control gates. This
implies that the intermediate layers have reached a certain
level of classification ability.

To further validate the routing paths’ discriminative abil-
ity, we apply K-means and agglomerative clustering on each
layer’s optimized control gates, and measure whether clus-
tering separations of the data are similar to ground truth set
of classes in homogeneity score, completeness score, and V-
measure score [24]. The value close to 1.0 indicates better
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Figure 4: t-SNE 2D embedding of 50,000 ImageNet validation images’ intra-layer routing nodes representations on 5 typical
convolutional layers in VGG-16 network. Each point stands for a single image. Points with same ground-truth labels are
painted in the same color for visual effect. From the figure, we can discover the degree of embedding discriminative ability
is increasing with ascending the layer level.
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Figure 5: Different clustering consistency evaluation score
for K-means clustering and agglomerative clustering results
on the intra-layer routing nodes of different layers. The
layer indexes correspond to 13 convolution layers. All
the metrics show a common increasing trend, which indi-
cates intra-layer routing nodes of higher level layers have
stronger correspondence to category semantic concepts.

match. Figure 5a and 5b display the clustering consistency
scores for different convolutional layers. As the layer in-
dex ascending, different clustering evaluation scores show a
common increasing trend, which indicates the learned con-
trol gates of higher level layers have a stronger relationship
with corresponding category semantics.

Intra-class sample clustering The critical data routing
paths not only reflect the functional process of intermediate
layers in the network, but also reflect the input data layout
patterns. Figure 6 and 7 show the agglomerative clustering
results on the intra-class samples using the whole CDRPs
representation. We can discover that the clustering result
corresponds to input layout patterns strongly. For example
in Figure 6, for the class ‘Tinca’, we find three typical clus-
ters, which first consists of the lateral view of tinca in the
horizontal direction, and second consists of anglers holding
the tech in the squat position. The third cluster mainly con-
sists of samples hard to classify, in which techs are not in

class id = 0 
tech, Tinca tinca

Figure 6: Intra-class sample clustering based on the whole
CDRP: The first cluster shows the lateral view of tinca in the
horizontal direction, and the second cluster shows anglers
holding the tech in the squat position. Red bounding box
indicates samples hard to classify, which even include an
image rotated to horizontal direction.

the regular position or size. Particularly, there is a rotated
image in the third cluster, which results in a drastic change
in the CDRPs. Figure 7 also shows similar pattern. These
results show that the identified CDRPs reflect input patterns,
and help to find out hard examples or complex samples in
the dataset.

Human evaluation & comparison to the Feedback net-
work The Feedback network [5] is similar to our method,
in which top-down feedback is learned by control gates on
every neurons across spatial and channel-wise dimensions.
However, this leads to much larger dimensional represen-
tation of Feedback network (about 13M for VGG16) com-



class id = 22 
bald eagle, 

American eagle

Figure 7: Intra-class sample clustering based on the whole
CDRP: The first cluster includes a single hard sample,
which two bald eagles perch on the distant tree. The sec-
ond cluster mainly focuses on bald eagle head, and the third
cluster consists of a single eagle perching with clear back-
ground contrast.

pared to CDRPs representation (about 4K for VGG16). Fur-
thermore we conduct quantitative comparison to validate
that CDRPs capture intra-class variation more consistent
and interpretable than naive network activations (pool5
activation in VGG16) and the Feedback network control
gates (the spatial mean of each channel), which meets the
Explanation Continuity [22] requirement for a good expla-
nation method. Specifically, we randomly select 100 classes
from ImageNet, and use corresponding features to perform
agglomerative clustering. We then ask workers on Ama-
zon Mechanical Turk (AMT) to identify which kind of im-
age partitions showing more intra-cluster appearance con-
sistency. In every round, we show images of the top 3 clus-
ters. Each class partition comparison is evaluated by 4 dif-
ferent workers (400 workers in total).

Table 2 summarizes the results. First, the intra-class sim-
ilarity captured by CDRPs is more significant than that of
network activations. Second, CDRPs capture intra-class
sample similarity slightly better than the Feedback net-
work control gates representation. However, considering
the large dimension and explicitly learned spatial selectiv-
ity of Feedback representation, CDRPs are more efficient in
capturing interpretable concepts.

4.3. Adversarial Sample Detection

CDRPs divergence between real and adversarial image
In this section, we analyze the DNN’s adversarial phe-

Table 2: Human evaluation on the intra-class sample simi-
larity captured by CDRPs and network activations. Higher
percentage indicates the partition is more favorable and in-
terpretable by the subjects.

Whether the partition
is more consistent CDRPs

pool5
Activations

No
Difference

percentage 52% 22% 26%

Whether the partition
is more consistent CDRPs

Feedback
Weights

No
difference

percentage 38% 35% 27%

nomenon by utilizing the whole CDRPs representation. The
proposed approach is to compare the correlation coefficients
of CDRPs between real image and its adversarial image
layer-wise.

To generate target adversarial image for a given input x
and the target class y∗, we use iterative Fast Gradient Sign
Method (FGSM) [9] to generate adversarial image as

xt = clip(xt−1 − ε·sign(∇xt−1
L(fθ(xt−1), y

∗))), (5)

where x0 is initialized with the original image x; L is the
cross entropy loss, fθ(xt−1) is the network prediction with
current input xt−1, clip(·) constrains new perturbed input
to be in the range of pixel values. We also use the similar
technique to generate non-target adversarial image by

xt = clip(xt−1 + ε · sign(∇xt−1
L(fθ(xt−1), y))), (6)

where y is the ground-truth label of original input image
x. In our experiment, we set ε = 0.01 and achieve final
adversarial image after 10 iterations.

Figure 8 summarizes the results. In Figure 8a, we show
that with ascending layer level, the CDRPs of adversarial
image diverge from the original image’s routing paths and
follow similar routing paths with those of target class im-
ages. The similar trend is found in Figure 8b, which shows
the situation of non-target adversarial attacking. However,
when the adversarial target class is much semantically-
closer to the original image class (‘tiger cat’ v.s. ‘tabby
cat’ compared to ’car wheel’ v.s. ’tabby cat’), the resulting
divergence between routing paths is not obvious and even
indistinguishable because of the overlap of CDRPs between
original class and target class. This phenomenon validates
the aforementioned conclusion that adversarial images fol-
low the typical routing paths of target class at high-level
layers, leading to adversary consequences.

Adversarial sample detection Based on the above obser-
vation, we propose an adversarial sample detection scheme
by learning the binary classifier to discriminate whether
the CDRPs are from real or adversarial samples. Since
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(a) Target adversarial attacking with target class:
‘car wheel’
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(b) Non-target adversarial attacking resulting in
implicit target class: ‘borzoi’
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(c) Target adversarial attacking with semantic-
closer target class: ‘tiger cat’

Figure 8: Layerwise correlation coefficients of CDRPs between adversarial images and original class/target class image. In
the upper part of each sub-figure, the correlation coefficients between adversarial image’s routing paths and original image’s
routing paths are plotted in orange color. The violinplot summarizes the correlation coefficients of CDRPs between each of
50 target class images and adversarial image. (a) and (b) show that with ascending the layer level, the CDRPs of adversarial
image diverge from the original image’s routing paths and follow similar routing paths with those of target class images.
However, when target class is semantic-closer to original class, the divergence between routing paths is not obvious

Table 3: The Area-Under-Curve (AUC) score for different
binary classifier on adversarial detection by discriminating
CDRPs of real and adversarial image. Higher is better.

Num. of training samples 1 5 10
random forest 0.879 0.894 0.904
adaboost 0.887 0.905 0.910
gradient boosting 0.905 0.919 0.915

most non-target adversarial samples result in semantic-
closer class with original class, and from the observation we
conclude that the CDRPs of semantic-close samples are dif-
ficult to discriminate, we focus on target adversarial sample
detection problem. In our experiment, we randomly select
1, 5 or 10 images from each class in the ImageNet training
dataset to organize three different scales training datasets.
The test dataset remains the same, which is collected by
selecting 1 image from each class in the ImageNet valida-
tion dataset. Each sample is used to generate an adversarial
sample by Equation (5). The adversarial target classes are
from a random permutation of original classes. We experi-
ment with three classifiers, random forest [4], adaboost [11]
and gradient boosting [8]. Each experiment is run five times
independently.

Table 3 summarizes the results. Each method outper-
forms the feature-inconsistency method [6] by a large mar-
gin, which reports 0.847 AUC score. Moreover, due to
the succinct representation of CDRPs, these methods re-
quire less computation overhead. Our results demonstrate
that without complicated algorithm, the adversarial attack-

ing can be defended based on the discriminative CDRPs
representation.

5. Conclusion

In this paper, we investigate the topic of neural network
interpretability from a new perspective by identifying the
critical data routing paths during network inferring predic-
tion. We propose a Distillation Guided Routing method,
which is a flexible and general framework to efficiently
learn the control gates associated with each output chan-
nel. By thorough analysis, we find semantic concepts con-
tained in the CDRPs. First, the discriminative ability of
intra-layer routing nodes is increasing with ascending layer
level. Second, the whole CDRPs reflect intra-class samples
layout patterns, which can help identify hard examples in
the dataset. To improve the robustness of neural network
against adversarial attacking, we propose a novel adversar-
ial sample detection method based on the discrimination on
CDRPs of real and adversarial images. Results show that
our method can reach quite high defense success rate due to
the property that CDRPs of adversarial image diverge at in-
termediate level layers with those of real image and follow
the typical routing paths of adversarial target class samples
at high-level layers. Future work should explore the under-
lying principle of critical data routing paths emergence.
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