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Abstract

Designing a logo for a new brand is a lengthy and te-
dious back-and-forth process between a designer and a
client. In this paper we explore to what extent machine
learning can solve the creative task of the designer. For this,
we build a dataset – LLD – of 600k+ logos crawled from
the world wide web. Training Generative Adversarial Net-
works (GANs) for logo synthesis on such multi-modal data
is not straightforward and results in mode collapse for some
state-of-the-art methods. We propose the use of synthetic
labels obtained through clustering to disentangle and sta-
bilize GAN training, and validate this approach on CIFAR-
10 and ImageNet-small to demonstrate its generality. We
are able to generate a high diversity of plausible logos and
demonstrate latent space exploration techniques to ease the
logo design task in an interactive manner. GANs can cope
with multi-modal data by means of synthetic labels achieved
through clustering, and our results show the creative poten-
tial of such techniques for logo synthesis and manipulation.
Our dataset and models are publicly available at https:
//data.vision.ee.ethz.ch/sagea/lld/.

1. Introduction and related work
Logo design Designing a logo for a new brand usually is
a lengthy and tedious process, both for the client and the
designer. A lot of ultimately unused drafts are produced,
from which the client selects his favorites, followed by mul-
tiple cycles refining the logo to match the clients needs and
wishes. Especially for those clients without a specific idea
of the end product, this results in a procedure that is not only
time, but also cost intensive.

The goal of this work is to provide a framework towards
a system with the ability to generate (virtually) infinitely

Figure 1: Original and generated images from four selected
clusters from our LLD-icon-sharp dataset. The top three
rows consist of original logos, followed by logos generated
using our iWGAN-LC trained on 128 RC clusters.

many variations of logos (some examples are shown in Fig-
ure 1) to facilitate and expedite such a process. To this end,
the prospective client should be able to modify a prototype
logo according to specific parameters like shape and color,
or shift it a certain amount towards the characteristics of
another prototype. Such a system could help both designer
and client to get an idea of a potential logo, which the de-
signer could then build upon, even if the system itself was
not (yet) able to output production-quality designs.

Logo image data Existing research literature focused
mostly on retrieval, detection, and recognition of a re-
duced number of logos [14, 17, 31, 33, 35, 43] and, con-
sequently, a number of datasets were introduced. The most
representative large public logo datasets are shown in Ta-
ble 1. Due to the low diversity of the contained logos, these
datasets are not suitable for learning and validating auto-
matic logo generators. At the same time a number of web
pages allow (paid) access to a large number of icons, such
as iconsdb.com (4135+ icons), icons8.com (59900+), icon-
finder.com (7473+), iconarchive.com (450k+) and thenoun-
project.com (1m+). However, the diversity of these icons is
limited by the number of sources, namely designers/artists,
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themes (categories) and design patterns (many are black and
white icons). Therefore, we crawl a highly diverse dataset –
the Large Logo Dataset (LLD) – of real logos ‘in the wild’
from the Internet. As shown in Table 1 our LLD proposes
thousands of times more distinct logos than the largest pub-
lic logo dataset to date, WebLogo-2M [35].

In contrast to popularly used natural image datasets such
as ImageNet [32], CIFAR-10 [21] and LSUN [42], face
datasets like CelebA [23] and the relatively easily modeled
handwritten digits of MNIST [22], logos are: (1) Artificial,
yet strongly multimodal and thus challenging for generative
models; (2) Applied, as there is an obvious real-world de-
mand for synthetically generated, unique logos since they
are expensive to produce; (3) Hard to label, as there are
very few categorical properties which manifest themselves
in a logo’s visual appearance. While the logos are easily
obtainable in large quantities, they are specifically designed
to be unique, which ensures the diversity of a large logo
dataset. We argue that all these characteristics make logos
a very attractive domain for machine learning research in
general, and generative modeling in particular.

Generative models Recent advances in generative mod-
eling have provided viable frameworks for making such a
system possible. The current state-of-the-art is made up
mainly of two types of generative models, namely Varia-
tional Autoencoders (VAEs) [16, 19, 20] and Generative
Adversarial Networks (GANs) [2, 10, 11]. Both of these
models generate their images from a high-dimensional la-
tent space that can act as a sort of “design space” in which a
user is able to modify the output in a structured way. VAEs
have the advantage of directly providing embeddings of any
given image in the latent space, allowing targeted modifi-
cations to its reconstruction, but tend to suffer from blurry
output owed to the nature of the pixel-wise L2 loss used
during training. GANs on the other hand, which consist of
a separate generator and discriminator network trained si-
multaneously on opposing objectives in a competitive man-
ner, are known to provide realistic looking, crisp images but
are notoriously unstable to train. To address this difficulty,
a number of improvements in the architecture and training
methods of GANs have been suggested [34], such as using
deep convolutional layers [29] or modified loss functions
e.g. based on least-squares [24] or the Wasserstein distance
between probability distributions [3, 4, 12].

Conditional models The first extension of GANs with
class-conditional information [25] followed shortly after its
inception, generating MNIST digits conditioned on class la-
bels provided to both generator and discriminator during
training. It has since been shown for supervised datasets,
that class-conditional variants of generative networks very
often produce superior results compared to their uncondi-
tional counterparts [12, 15, 26]. By adding an encoder to

Dataset Logos Images
FlickLogos-27 [18] 27 1080
FlickLogos-32 [31] 32 8240
BelgaLogos [17] 37 10000
LOGO-Net [14] 160 73414
WebLogo-2M [35] 194 1867177
LLD-icon (ours) 486377 486377
LLD-logo (ours) 122920 122920
LLD (ours) 486377+ 609297

Table 1: Logo datasets. Our LLD provides orders of mag-
nitude more logos than the existing public datasets.

map a real image into the latent space, it was proven to be
feasible to generate a modified version of the original im-
age by changing class attributes on faces [6, 28] and other
natural images [37]. Other notable applications include the
generation of images from a high-level description such as
various visual attributes [40] or text descriptions [30].

Our contributions In this work we train GANs on our
own highly multi-modal logo data as a first step towards
user-manipulated artificial logo synthesis. Our main contri-
butions are:

• LLD - a novel dataset of 600k+ logo images.

• Methods to successfully train GAN models on multi-
modal data.

• An exploration of GAN latent space for logo synthesis.

• A demonstration how our presented methods can be
combined to a feasible interface for an application aid-
ing logo design.

The remainder of this paper is structured as follows. We
introduce a novel Large Logo Dataset (LLD) in Section 2.
We describe the proposed clustered GAN training, the clus-
tering methods, as well as the GAN architectures used and
perform quantitative experiments in Section 3. Then we
demonstrate logo synthesis by latent space exploration op-
erations in Section 4. Finally, we draw the conclusions in
Section 5.

2. LLD: Large Logo Dataset
In the following we introduce a novel dataset based

on website logos, called the Large Logo Dataset (LLD).
It is the largest logo dataset to date (see Table 1). The
LLD dataset consists of two parts, a low resolution (32×32
pixel) favicon subset (LLD-icon) and the higher-resolution
(400×400 pixel) twitter subset (LLD-logo). In the follow-
ing we will briefly describe the acquisition, properties and
possible use-cases for each.

2.1. LLD-icon: Favicons

For generative models like GANs, the difficulty of keep-
ing the network stable during training increases with image



resolution. Thus, when starting to work with a new type of
data, it makes sense to start off with a variant which is inher-
ently low-resolution. Luckily, in the domain of logo images
there is a category of such inherently low-resolution, low-
complexity images: Favicons, the small icons representing
a website e.g. in browser tabs or favorite lists. We decided
to crawl the web for such favicons using the largest resource
of high quality website URLs we could find: Alexa’s top 1-
million website list1. To this end we use the Python package
Scrapy2 in conjunction with our own download script which
directly converts all icons found to a standardized 32 × 32
pixel resolution and RGB color space, discarding all non-
square images.

After acquiring the raw data from the web, we remove
all exact duplicates (of which there are a surprisingly high
number of almost 20 %). Visual inspection of the raw data
reveals a non-negligible number of images that do not com-
ply to our initial dataset criteria and often are not even re-
motely logo-like, such as faces and other natural images. In
an attempt to get rid of this unwanted data, we (i) sort all
images by PNG-compressed file size – an image complex-
ity indicator; (ii) manually inspect and partition the result-
ing sorted list into three sections: clean and mostly clean
data which are kept, and mostly unwanted data which is
discarded; (iii) discard the mostly clean images containing
the least amount of white pixels.

The result of this process is a clean set of 486,377 images
of uniform 32×32 pixel size, making it very easy to use.
The disadvantage of this standardized size is that 54 % of
images appear blurry because they where scaled up from a
lower resolution. For this reason we will also be providing
(the indices for) a subset of the data containing only sharp
images, which we will refer to as icons-sharp.

2.2. LLD-logo: Twitter

For training generative networks at an increased resolu-
tion, additional high-resolution data is needed, which favi-
cons cannot provide. One possible option would be to crawl
the respective websites directly to look for the website or
company logo. However, (a) it might not always be straight-
forward to find the logo and distinguish it from other images
on the website and (b) the aspect ratio and resolution of lo-
gos obtained in this way will be very varied, which would
necessitate extensive cropping and resizing, potentially de-
grading the quality of a large portion of logos.

By crawling twitter instead of websites, we are able to
acquire standardized square 400×400 pixel profile images
which can easily be downloaded through the twitter API
without the need for web scraping. We use the Python
wrapper tweepy to search for the (sub-) domain names con-

1now officially retired, formerly available at https://www.
alexa.com

2https://scrapy.org/

tained in the alexa list and match the original URL with
the website provided in the twitter profile to make sure that
we have found the right twitter user. The images are then
run through a face detector to reject any personal twitter ac-
counts and the remaining images are saved together with
the twitter meta data such as user name, number of follow-
ers and description. For this part of the dataset, all original
resolutions are kept as-is, where 80% are at 400×400 pix-
els and the rest at some lower resolution (details given in
supplementary material).

The acquired images are analyzed and sorted with a com-
bination of automatic and manual processing in order to get
rid of unwanted and possibly sensitive images, resulting in
122,920 usable high-resolution logos of consistent quality
with rich meta data from the respective twitter accounts.
These logo images form the LLD-logo dataset.

3. Clustered GAN Training
We propose a method for stabilizing GAN training and

gaining additional control over the generator output by
means of clustering (a) in the latent space of an autoencoder
trained on the same data or (b) in the CNN feature space of
a ResNet classifier trained on ImageNet. With both meth-
ods we are able to produce semantically meaningful clusters
that improve GAN training.

In this Section we review the GAN architectures used in
our study, describe the clustering methods based on Autoen-
coder latent space and ResNet features and discuss some
quantitative experimental results.

3.1. GAN architectures

Our generative models are based on Deep Convolu-
tional Generative Adversarial Networks (DCGAN) of Rad-
ford et al. [29] and improved Wasserstein GAN with gradi-
ent penalty (iWGAN) as proposed by Gulrajani et al. [12].

DCGAN For our DCGAN experiments, we use Taehoon
Kim’s TensorFlow implementation 3. We train DCGAN ex-
clusively on the low-resolution LLD-icon subset, for which
it proved to be inherently unstable without using our clus-
tering approach. We use the input blurring explained in the
next section in all our DCGAN experiments. For details on
hyper-parameters used, we refer the interested reader to the
supplementary material.

iWGAN All our iWGAN experiments are based on the
official TensorFlow repository by Gulrajani et al. [12]4. We
kept the default settings as provided by the authors. We
exclusively use the 32- and 64-pixel ResNet architectures

3https://github.com/carpedm20/DCGAN-tensorflow
4https://github.com/igul222/improved_wgan_
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provided in the repository with the only major modifications
being our conditioning method as described below. We also
use linear learning rate decay (from the initial value to zero
over all training iterations) in all our experiments.

3.2. Clustering

We found DCGAN to be unstable with our icon dataset
(LLD-icon) for resolutions higher than 10×10, and where
able to stabilize it by introducing synthetic labels as de-
scribed in this section. In addition to stabilizing GAN train-
ing, in Section 3.4 we are able to achieve a significant im-
provement on Inception scores (as proposed by Salimans et
al. [34]) using iWGAN with our synthetic labels produced
by RC clustering as described below, on both CIFAR-10 and
ImageNet-Small [27]. Furthermore, the cluster labels sub-
sequently provide additional control over the generated lo-
gos by generating samples from individual clusters or trans-
forming a particular logo to inherit the specific attributes of
another cluster as demonstrated in Section 4.

We propose two distinct methods for producing synthetic
data labels on our training data:

• AutoEncoder Clustering (AE): After training an Au-
toencoder, with a similar architecture as our GAN net-
work, on our training data, we cluster the images in
the latent space z of that Autoencoder. Since this la-
tent space relates directly to the learned high-level AE
features, the resulting clusters are both semantically
meaningful and easy to pick up on by the GAN (due
to the similar network architecture). Details on this
method are given in Figure 2.

• ResNet Classifier Clustering (RC): For this cluster-
ing method we take advantage of the learned features
from an ImageNet classifier, namely ResNet-50 by
He et al. [13]. As in the AE clustering, we use PCA
to reduce the dimensionality of the feature vector from
the final pooling layer of the ResNet network before
clustering the features with (minibatch) k-means.

We found our RC method to give considerably superior re-
sults on CIFAR-10 (which is not surprising given its similar-
ity to ImageNet) while still working very well for very dif-
ferent image data like our LLD dataset. To account for the
fact that we use a classifier that was trained in a supervised
fashion while not requiring any annotations on the data used
to train the GAN itself, we will refer to this method as semi-
supervised.

3.3. Conditional GAN Training Methods

In this section we describe the conditional GAN mod-
els used to leverage our synthetic data labels and the input
blurring applied to DCGAN.

E Gz

L = ‖x− o‖2

k-means

x o

PCA

Figure 2: Autoencoder used for AE clustering. The gen-
erator G is equivalent to the one used in the GAN, while
the encoder E consists of the GAN discriminator D with a
higher number of outputs to match the dimensionality of the
latent space z. It is trained using a simple L2 loss function.
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Figure 3: Generator network as used for our layer condi-
tional DCGAN (DCGAN-LC). 100 labels y are appended
as a one-hot vector to the latent vector. It is also projected
onto a set of feature maps consisting of all zeros except for
the map corresponding to the class number, where all ele-
ments have value one. These additional feature maps are
then appended to the input of each convolutional layer.

3x3

3x3

+

1x1

Input

Labels

Residual Block

Figure 4: Layer Conditional Residual block as used in our
iWGAN-LC. The label information is appended to the con-
volutional layer input in the same way as described in Fig-
ure 3. The skip connections remain unconditional.

LC: Layer Conditional GAN Feeding the cluster label
for each training sample is fed to all convolutional and lin-
ear layers of both generator and discriminator is a method
employed in previous works to create conditional GAN net-
works. We will refer to such models as layer-conditional



models. For linear layers, the label is simply appended to
the input as a one-hot vector. For convolutional layers the
labels are projected onto “one-hot feature maps” with as
many channels as there are clusters, where the one corre-
sponding to the cluster number is filled with ones, while the
rest are zero. These additional feature maps are appended
to the input of every convolutional layer, such that every
layer can directly access the label information. This is illus-
trated in Figure 3 for DCGAN and Figure 4 for ResNet as
used in our iWGAN model. Even though the labels are pro-
vided to every layer, there is no explicit mechanism forcing
the network to use this information. In case the labels are
random or meaningless, they can simply be ignored by the
network. However, as soon as the discriminator starts ad-
justing its criteria for each cluster, it forces the generator to
produce images that comply with the different requirements
for each class. Our experiments confirm that visually mean-
ingful clusters are always picked up by the model, while the
network simply falls back to the unconditional state for ran-
dom labels.

AC: Auxiliary Classifier GAN With iWGAN we also
use the Auxiliary Classifier proposed by Odena et al. [26]
as implemented by Glurajani et al. [12]. While this method
does not easily allow us to interpolate between clusters and
is thus slightly more limited from an application perspec-
tive, it does avoid adding parameters to the convolutional
layers, which in general results in a network with fewer
parameters. iWGAN-AC was our method of choice for
CIFAR-10, as it delivers the highest Inception scores.

D

Gz

real

fake

data

Figure 5: Generative Adversarial Net with blurred Discrim-
inator input. Both original and generated images are blurred
using a Gaussian filter of fixed strength.

Gaussian Blur During our experiments we noticed how
blurring the input image helps the network remain stable
during training, which in the end lead us to apply a Gaussian
blur on all images presented to the discriminator (training
data as well as samples from the Generator), like it has been
previously implemented by Susmelj et al. [36]. The method
is schematically illustrated in Figure 5.

3.4. Quantitative evaluation and state-of-the-art

In order to quantitatively assess the performance of our
solutions on the commonly used CIFAR-10 dataset we re-

port Inception scores [34] and diversity scores based on
MS-SSIM [38] as suggested in [26] over a set of 50,000 ran-
domly generated images. In Table 2 we summarize results
for different configurations in supervised (using CIFAR la-
bels) and unsupervised settings in LC and AC conditional
modes, including reported scores from the literature.

Method Clusters Inception Diversity
score (MS-SSIM)

un
su

pe
rv

is
ed

Infusion training[5] 4.62±0.06
ALI [9](from[39]) 5.34±0.05
Impr.GAN(-L+HA)[34] 6.86±0.06
EGAN-Ent-VI [7] 7.07±0.10
DFM [39] 7.72±0.13
iWGAN [12] 7.86±0.07
iWGAN 7.853±0.072 0.0504±0.0017
iWGAN-LC with AE clustering 32 7.300±0.072 0.0507±0.0016
iWGAN-AC with AE clustering 32 7.885±0.083 0.0504±0.0014

se
m

i-
su

pe
rv

. iWGAN-LC with RC clustering 32 7.831±0.072 0.0491±0.0015
iWGAN-LC with RC clustering 128 7.799±0.030 0.0491±0.0015
iWGAN-AC with RC clustering 10 8.433±0.068 0.0505±0.0016
iWGAN-AC with RC clustering 32 8.673±0.075 0.0500±0.0016
iWGAN-AC with RC clustering 128 8.625±0.109 0.0465±0.0015

su
pe

rv
is

ed

iWGAN-LC 7.710±0.084 0.0510±0.0013
Impr.GAN [34] 8.09±0.07
iWGAN-AC [12] 8 .42±0.10
AC-GAN [26] 8.25±0.07
SGAN [15] 8.59±0.12

CIFAR-10 (original data) 11.237±0.116 0.0485±0.0016

Table 2: Comparison of Inception and diversity scores
on CIFAR-10. The unsupervised methods do not use the
CIFAR-10 class labels. Note that our unsupervised meth-
ods achieve state-of-the-art performance comparable to the
best supervised approaches.

Method Inception score

iWGAN unconditional 10.11±0.20
iWGAN-AC 128 RC clusters 14.42±0.21

ImageNet-small (original data) 75.29±1.40

Table 3: Inceptions scores on ImageNet-small.

Performance and state-of-the-art On CIFAR-10, our
best Inception score of 8.67 achieved with iWGAN-AC and
32 RC clusters is significantly higher than 8.09 by Sali-
mans et al. [34] with their Improved GAN method, the best
score reported in the literature for unsupervised methods.
Surprisingly, our best result, achieved with purely synthetic
labels provided by RC clustering, is comparable to 8.59
of the Stacked GANs approach by Huang et al. [15], the
best score reported for supervised methods. For ImageNet-
small, there is also a very significant improvement when
using our synthetic labels versus no labels. While these re-
sults could point to a general improvement of output im-
age quality when using data clustering, we believe that the
higher score is owed to fact that AC-GAN enforces the gen-
eration of images which can easily be classified to the pro-
vided clusters, which in turn could raise the classifier-based



Figure 6: The first four (random) clusters of LLD-icon as attained with our AE-Clustering method using 100 cluster centers.
The top half of each example contains a random selection of original images, while the bottom half consists of samples
generated by DCGAN-LC for the corresponding cluster. The very strong visual correspondence demonstrates the network’s
ability to capture the data distributions inherent the classes produced by our clustering method.

Inception score. Subjectively, there does not seem to be any
obvious improvement in the produced output, further sup-
porting this hypothesis.

Image quality Complementary to the Inception and di-
versity scores we also measured the image quality using
CORNIA, a robust no-reference image quality assessment
method proposed by Ye and Doermann [41]. On both
CIFAR-10 and LLD-icon our generative models obtained
CORNIA scores equivalent to those of the original images
from each dataset. This result is in-line with the findings
in [36], where the studied GANs also converge in terms
of CORNIA scores towards the data image quality at GAN
convergence.

LC vs. AC for conditional GANs Our AC-GAN variants
are better than their LC counterparts in terms of Inception
scores, but comparable in terms of diversity for CIFAR-10.
Even though the numbers indicate a qualitative advantage
of AC- over LC-GAN, we prefer the latter for our logo ap-
plication as it natively allows smooth interpolations even
in-between different clusters. This is not the case for the
reference implementation of AC-GAN where the cluster la-
bels consist of discrete integer values and thus constrain all
latent space operations to a specific data cluster, which does
not match our intended use.

4. Logo synthesis by latent space exploration
As mentioned in the previous section, layer condition-

ing allows for smooth transitions in the latent space from
one class to another, which is critical for logo synthesis and
manipulation by exploration of the latent space. Therefore,
we work with two configurations for these experiments:
iWGAN-LC with 128 RC clusters and DCGAN-LC with
100 AE clusters. Their Inception, diversity and CORNIA
scores are comparable on the LLD-icon dataset.

4.1. Sampling

In generative models like GANs [11] and VAEs [20],
images are generated from a high-dimensional latent vec-

tor (with usually somewhere between 50 and 1000 dimen-
sions), also commonly referred to as z-vector. During train-
ing, each component of this vector is randomly sampled
from a Uniform or Gaussian distribution, so that the gen-
erator is trained to produce a reasonable output for any ran-
dom vector sampled from the same distribution. The space
spanned by these latent vectors, called the latent space, is
often highly structured, such that latent vectors can be de-
liberately manipulated in order to achieve certain properties
in the output [6, 8, 29].

Using DCGAN-LC with 100 AE clusters on the same
data, Figure 6 contains samples from a specific cluster next
to a sample of the respective original data. This shows how
the layer conditional DCGAN is able to pick up on the data
distribution and produce samples which are very easy to at-
tribute to the corresponding cluster and are often hard to dis-
tinguish from the originals at first glance. For comparison
we also show results for iWGAN-LC with 128 RC clusters
trained on the LLD-icon-sharp dataset in Figure 1.

Figure 7: Interpolation between 4 selected logos of distinct
classes using DCGAN-LC with 100 AE clusters on LLD-
icon, showcasing smooth transitions and interesting inter-
mediate samples in-between all of them.



Figure 8: Continuous interpolation between 4 logos within
one cluster (top) and 3 logos from different clusters (bot-
tom) in latent space using iWGAN-LC with 64 RC clusters
on LLD-logo at 64 pixel resolution. We observe reasonably
smooth transitions (given the large steps size) and logo-like
samples in all of the sampled subspace.

4.2. Interpolations

To show that a generator does not simply learn to repro-
duce samples from the training set, but is in fact able to
produce smooth variations of its output images, it is com-
mon practice [10] to perform interpolations between two
points in the latent space and to show that the outcome is a
smooth transition between the two corresponding generated
images, with all intermediate images exhibiting the same
distribution and quality. Interpolation also provides an ef-
fective tool for a logo generator application, as the output
image can be manipulated in a controlled manner towards a
certain (semantically meaningful) direction in latent space.

For all our interpolation experiments we use the distri-
bution matching methods from [1] in order to preserve the
prior distribution the sampled model was trained on. An ex-
ample with 64 interpolation steps to showcase the smooth-
ness of such an interpolation is given in Figure 7 where we
interpolate between 4 sample points, producing believable
logos at every step. As it is the case in this example, the
interpolation works very well even between logos of differ-
ent clusters, even though the generator was never trained for
mixed cluster attributes.

Some more interpolations between different logos both
within a single cluster and between logos of different clus-
ters are shown in Figure 8, this time between 2 endpoints
and with only 4 interpolation steps.

4.3. Class transfer

As the one-hot class vector representing the logo cluster
is separate from our latent vector, it is also possible to keep
the latent space representation constant and only change the
cluster of a generated logo. Figure 9 contains 11 logos (top

Figure 9: Logo class transfer using DCGAN-LC on LLD-
icon with 100 AE clusters. The logos of the 1st row get
transferred to the class (cluster) of the logos in the 1st col-
umn (to the left). Hereby the latent vector is kept con-
stant within each column and the class label is kept constant
within each row (except for the 1st ones, resp.). The original
samples have been hand-picked for illustrative purposes.

row) that are being transformed to a particular cluster class
in each subsequent row. This shows how the general ap-
pearance such as color and contents are encoded in the z-
vector while the cluster label transforms these attributes into
a form that conforms with the contents of the respective
cluster. Here, again, interpolation could be used to create
intermediate versions as desired.

4.4. Vicinity sampling

Figure 10: Vicinity Sampling using iWGAN-LC on LLD-
icon-sharp with 128 RC clusters.

Another powerful tool to explore the latent space is
vicinity sampling, where we perturb a given sample in ran-
dom directions of the latent space. This could be useful
to present the user of a logo generator application with a
choice of possible variants, allowing him to modify his logo
step by step into directions of his choice. In Figure 10 we
present an example of a 2-step vicinity sampling process,



where we interpolate one-third towards random samples to
produce a succession of logo variants.

4.5. Vector arithmetic 1: Sharpening

For models trained on our LLD-icon data, some of the
generated icons are blurry since roughly half of the logos
in this dataset are upscaled from a lower resolution. How-
ever, by averaging over the z-vector of a number of blurry
samples and subtracting from this the average of a number
of sharp samples, it is possible to construct a “sharpening”
vector which can be added to blurry logos to transform them
into sharp ones. This works very well even if the direc-
tional vector is calculated exclusively from samples in one
cluster and then applied samples of another, showing that
the blurriness is in fact nothing more than a feature embed-
ded in latent space. The result of such a transformation is
shown in Figure 11, where such a sharpening vector was
calculated from 40 sharp and 42 blurry samples manually
selected from two random batches of the same cluster. The
resulting vector is then applied equally to all blurry samples.
The quality of the result, while already visually convincing,
could be further optimized by adding individually adjusted
fractions of this sharpening vector to each logo.

(a) Original samples (b) Sharpened samples

Figure 11: Sharpening of logos in the latent space by adding
an offset calculated from the latent vectors of sharp and
blurry samples. We used DCGAN-LC and 100 AE clusters.

4.6. Vector arithmetic 2: Shapes

As a further example of performing vector arithmetic
in latent space with a direct application for our logo gen-
erator, we demonstrate a transformation in shape towards
round logos. This experiment was performed analogous
to the sharpening, but this time using the high-res logos
from LLD-logo and picking round vs square logos instead
of blurry vs sharp ones. The result on 9 random samples
is shown in Figure 12, more examples can be found in the
supplementary material.

4.7. Supplementary material

Due to page length limit we invite the reader to check the
supplementary material (available at https://arxiv.
org/abs/1712.04407) for more visual results of our
approaches as well as an example for a user interface for
a logo generator application which implements latent space
operations for an easy manipulation of logo attributes.

(a) Original samples (b) Transformed samples

Figure 12: Transformation towards round logos through a
constructed directional vector in latent space using WGAN-
LC trained on LLD-logo with 64 RC clusters.

5. Conclusions
In this paper we tackled the problem of logo design by

synthesis and manipulation with generative models:

(i) We introduced a Large Logo Dataset (LLD) crawled
from the Internet with orders of magnitude more logos
than the existing datasets.

(ii) In order to cope with the high multi-modality and
to stabilize GAN training on such data we proposed
clustered GANs, that is GANs conditioned with syn-
thetic labels obtained through clustering. We per-
formed clustering in the latent space of an Autoen-
coder or in the CNN features space of a ResNet clas-
sifier and conditioned DCGAN and improved WGAN
utilizing either an Auxiliary Classifier or Layer Condi-
tional model.

(iii) We quantitatively validated our clustered GAN ap-
proaches on a CIFAR-10 and ImageNet, showcasing
the benefits of meaningful synthetic labels obtained
through clustering in the CNN feature space of a
ResNet classifier.

(iv) We showed that the latent space of the networks trained
on our logo data is smooth and highly structured, thus
having interesting properties exploitable by perform-
ing vector arithmetic in that space.

(v) We showed that the synthesis and manipulation of (vir-
tually) infinitely many variations of logos is possi-
ble through latent space exploration equipped with a
number of operations such as interpolations, sampling,
class transfer or vector arithmetic in latent space like
our sharpening example.

Our solutions ease the logo design task in an interactive
manner and are significant steps towards a fully automatic
logo design system.
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