
Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion
Forecasting with a Single Convolutional Net

Wenjie Luo, Bin Yang and Raquel Urtasun
Uber Advanced Technologies Group

University of Toronto
{wenjie, byang10, urtasun}@uber.com

Abstract

In this paper we propose a novel deep neural network
that is able to jointly reason about 3D detection, track-
ing and motion forecasting given data captured by a 3D
sensor. By jointly reasoning about these tasks, our holis-
tic approach is more robust to occlusion as well as sparse
data at range. Our approach performs 3D convolutions
across space and time over a bird’s eye view representa-
tion of the 3D world, which is very efficient in terms of
both memory and computation. Our experiments on a new
very large scale dataset captured in several north american
cities, show that we can outperform the state-of-the-art by a
large margin. Importantly, by sharing computation we can
perform all tasks in as little as 30 ms.

1. Introduction

Modern approaches to self-driving divide the problem
into four steps: detection, object tracking, motion forecast-
ing and motion planning. A cascade approach is typically
used where the output of the detector is used as input to
the tracker, and its output is fed to a motion forecasting
algorithm that estimates where traffic participants are go-
ing to move in the next few seconds. This is in turn fed
to the motion planner that estimates the final trajectory of
the ego-car. These modules are usually learned indepen-
dently, and uncertainty is usually rarely propagated. This
can result in catastrophic failures as downstream processes
cannot recover from errors that appear at the beginning of
the pipeline.

In contrast, in this paper we propose an end-to-end
fully convolutional approach that performs simultaneous
3D detection, tracking and motion forecasting by exploiting
spatio-temporal information captured by a 3D sensor. We
argue that this is important as tracking and prediction can
help object detection. For example, leveraging tracking and
prediction information can reduce detection false negatives

Figure 1: Overview of our approach: Our FaF net-
work takes multiple frames as input and performs detection,
tracking and motion forecasting.

when dealing with occluded or far away objects. False pos-
itives can also be reduced by accumulating evidence over
time. Furthermore, our approach is very efficient as it shares
computations between all these tasks. This is extremely im-
portant for autonomous driving where latency can be fatal.

We take advantage of 3D sensors and design a network
that operates on a bird-eye-view (BEV) of the 3D world.
This representation respects the 3D nature of the sensor
data, making the learning process easier as the network can
exploit priors about the typical sizes of objects. Our ap-
proach is a one-stage detector that takes a 4D tensor created
from multiple consecutive temporal frames as input and per-
forms 3D convolutions over space and time to extract ac-
curate 3D bounding boxes. Our model produces bounding
boxes not only at the current frame but also multiple times-
tamps into the future. We decode the tracklets from these
predictions by a simple pooling operation that combine the
evidence from past and current predictions.

We demonstrate the effectiveness of our model on a very
large scale dataset captured from multiple vehicles driving
in North-america and show that our approach significantly

1

outperforms the state-of-the-art. Furthermore, all tasks take
as little as 30ms.

2. Related Work
2D Object Detection: Over the last few years many
methods that exploit convolutional neural networks to pro-
duce accurate 2D object detections, typically from a sin-
gle image, have been developed. These approaches typi-
cally fell into two categories depending on whether they ex-
ploit a first step dedicated to create object proposals. Mod-
ern two-stage detectors [24, 8, 4, 11], utilize region pro-
posal networks (RPN) to learn the region of interest (RoI)
where potential objects are located. In a second stage the fi-
nal bounding box locations are predicted from features that
are average-pooled over the proposal RoI. Mask-RCNN [8]
also took this approach, but used RoI aligned features ad-
dressing theboundary and quantization effect of RoI pool-
ing. Furthermore, they added an additional segmentation
branch to take advantage of dense pixel-wise supervision,
achieving state-of-the-art results on both 2D image detec-
tion and instance segmentation. On the other hand one-
stage detectors skip the proposal generation step, and in-
stead learn a network that directly produces object bound-
ing boxes. Notable examples are YOLO [23], SSD [17] and
RetinaNet [16]. One-stage detectors are computationally
very appealing and are typically real-time, especially with
the help of recently proposed architectures, e.g. MobineNet
[10], SqueezeNet [31]. One-stage detectors were outper-
formed significantly by two stage-approaches until Lin et
al. [16] shown state-of-the-art results by exploiting a focal
loss and dense predictions.

3D Object Detection: In robotics applications such as
autonomous driving we are interested in detecting objects
in 3D space. The ideas behind modern 2D image detec-
tors can be transferred to 3D object detection. Chen et al.
[2] used stereo images to perform 3D detection. Li [15]
used 3D point cloud data and proposed to use 3D convolu-
tions on a voxelized representation of point clouds. Chen
et al. [3] combined image and 3D point clouds with a fu-
sion network. They exploited 2D convolutions in BEV,
however, they used hand-crafted height features as input.
They achieved promising results on KITTI [6] but only ran
at 360ms per frame due to heavy feature computation on
both 3D point clouds and images. This is very slow, partic-
ularly if we are interested in extending these techniques to
handle temporal data.

Object Tracking: Over the past few decades many ap-
proaches have been develop for object tracking. In this sec-
tion we briefly review the use of deep learning in tracking.
Pretrained CNNs were used to extract features and perform

tracking with correlation [18] or regression [29, 9]. Wang
and Yeung [30] used an autoencoder to learn a good fea-
ture representation that helps tracking. Tao et al. [27] used
siamese matching networks to perform tracking. Nam and
Han [21] finetuned a CNN at inference time to track object
within the same video.

Motion Forecasting: This is the problem of predicting
where each object will be in the future given multiple past
frames. Lee et al. [14] proposed to use recurrent networks
for long term prediction. Alahi et al. [1] used LSTMs to
model the interaction between pedestrian and perform pre-
diction accordingly. Ma et al. [19] proposed to utilize con-
cepts from game theory to model the interaction between
pedestrian while predicting future trajectories. Some work
has also focussed on short term prediction of dynamic ob-
jects [7, 22]. [28] performed prediction for dense pixel-
wise short-term trajectories using variational autoencoders.
[26, 20] focused on predicting the next future frames given a
video, without explicitly reasoning about per pixel motion.

Multi-task Approaches: Feichtenhofer et al. [5] pro-
posed to do detection and tracking jointly from video. They
model the displacement of corresponding objects between
two input images during training and decode them into ob-
ject tubes during inference time.

Different from all the above work, in this paper we pro-
pose a single network that takes advantage of temporal in-
formation and tackles the problem of 3D detection, short
term motion forecasting and tracking in the scenario of au-
tonomous driving. While temporal information provides us
with important cues for motion forecasting, holistic reason-
ing allows us to better propagate the uncertainty through-
out the network, improving our estimates. Importantly, our
model is super efficient and runs real-time at 33 FPS.

3. Joint 3D Detection, Tracking and Motion
Forecasting

In this work, we focus on detecting objects by exploit-
ing a sensor which produces 3D point clouds. Towards this
goal, we develop a one-stage detector which takes as input
multiple frames and produces detections, tracking and short
term motion forecasting of the objects’ trajectories into the
future. Our input representation is a 4D tensor encoding an
occupancy grid of the 3D space over several time frames.
We exploit 3D convolutions over space and time to produce
fast and accurate predictions. As point cloud data is inher-
ently sparse in 3D space, our approach saves lots of compu-
tation as compared to doing 4D convolutions over 3D space
and time. We name our approach Fast and Furious (FaF), as
it is able to create very accurate estimates in as little as 30
ms.

Figure 2: Voxel Representation: using height directly as
input feature.

Figure 3: Overlay temporal & motion forecasting data.
Green: bbox w/ 3D point. Grey: bbox w/o 3D point

In the following, we first describe our data parameter-
ization in Sec. 3.1 including voxelization and how we in-
corporate temporal information. In Sec. 3.2, we present
our model’s architecture, follow by the objective we use for
training the network (Sec. 3.3).

3.1. Data Parameterization

In this section, we first describe our single frame repre-
sentation of the world. We then extend our representation
to exploit multiple frames.

Voxel Representation: In contrast to image detection
where the input is a dense RGB image, point cloud data is
inherently sparse and provides geometric information about
the 3D scene. In order to get a representation where con-
volutions can be easily applied, we quantize the 3D world
to form a 3D voxel grid. We then assign a binary indica-
tor for each voxel encoding whether the voxel is occupied.
We say a voxel is occupied if there exists at least one point
in the voxel’s 3D space. As the grid is a regular lattice,
convolutions can be directly used. We do not utilize 3D
convolutions on our single frame representation as this op-

eration will waste most computation since the grid is very
sparse, i.e., most of the voxels are not occupied. Instead, we
performed 2D convolutions and treat the height dimension
as the channel dimension. This allows the network to learn
to extract information in the height dimension. This con-
trast approaches such as MV3D [3], which perform quan-
tization on the x-y plane and generate a representation of
the z-dimension by computing hand-crafted height statis-
tics. Note that if our grid’s resolution is high, our approach
is equivalent to applying convolution on every single point
without loosing any information. We refer the reader to
Fig. 2 for an illustration of how we construct the 3D ten-
sor from 3D point cloud data.

Adding Temporal Information: In order to perform mo-
tion forecasting, it is crucial to consider temporal informa-
tion. Towards this goal, we take all the 3D points from the
past n frames and perform a change of coordinates to rep-
resent then in the current vehicle coordinate system. This
is important in order to undo the ego-motion of the vehicle
where the sensor is mounted. After performing this trans-
formation, we compute the voxel representation for each
frame. Now that each frame is represented as a 3D ten-
sor, we can append multiple frames’ along a new temporal
dimension to create a 4D tensor. This not only provides
more 3D points as a whole, but also gives cues about ve-
hicle’s heading and velocity enabling us to do motion fore-
casting. As shown in Fig. 3, where for visualization pur-
poses we overlay multiple frames, static objects are well
aligned while dynamic objects have ‘shadows’ which rep-
resents their motion.

3.2. Model Formulation

Our single-stage detector takes a 4D input tensor and re-
gresses directly to object bounding boxes at different times-
tamps without using region proposals. We investigate two
different ways to exploit the temporal dimension on our 4D
tensor: early fusion and late fusion. They represent a trade-
off between accuracy and efficiency, and they differ on at
which level the temporal dimension is aggregated.

Early Fusion: Our first approach aggregates temporal in-
formation at the very first layer. As a consequence it runs as
fast as using the single frame detector. However, it might
lack the ability to capture complex temporal features as
this is equivalent to producing a single point cloud from
all frames, but weighting the contribution of the different
timestamps differently. In particular, as shown in Fig. 4,
given a 4D input tensor, we first use a 1D convolution with
kernel size n on temporal dimension to reduce the temporal
dimension from n to 1. We share the weights among all fea-
ture maps, i.e., also known as group convolution. We then
perform convolution and max-pooling following VGG16

(a) Early fusion (b) Later fusion

Figure 4: Modeling temporal information

[25] with each layer number of feature maps reduced by
half. Note that we remove the last convolution group in
VGG16, resulting in only 10 convolution layers.

Late Fusion: In this case, we gradually merge the tempo-
ral information. This allows the model to capture high level
motion features. We use the same number of convolution
layers and feature maps as in the early fusion model, but
instead perform 3D convolution with kernel size 3 × 3 × 3
for 2 layers without padding on temporal dimension, which
reduces the temporal dimension from n to 1, and then per-
form 2D spatial convolution with kernel size 3× 3 for other
layers. We refer the reader to Fig. 4 for an illustration of our
architecture.

We then add two branches of convolution layers as
shown in Fig. 5. The first one performs binary classification
to predict the probability of being a vehicle. The second one
predicts the bounding box over the current frame as well as
n− 1 frames into the future. Motion forecasting is possible
as our approach exploits multiple frames as input, and thus
can learn to estimate useful features such as velocity and
acceleration.

Following SSD [17], we use multiple predefined boxes
for each feature map location. As we utilize a BEV rep-
resentation which is metric, our network can exploit priors
about physical sizes of objects. Here we use boxes corre-
sponding to 5 meters in the real world with aspect ratio of
1 : 1, 1 : 2, 2 : 1, 1 : 6, 6 : 1 and 8 meters with aspect ratio
of 1 : 1. In total there are 6 predefined boxes per feature
map location denoted as aki,j where i = 1, ..., I, j = 1, ..., J
is the location in the feature map and k = 1, ...,K ranges
over the predefined boxes (i.e., size and aspect ratio). Using
multiple predefined boxes allows us to reduce the variance
of regression target, thus makes the network easy to train.
Notice that we do not use predefined heading angles. Fur-
thermore we use both sin and cos values to avoid the 180
degrees ambiguity.

In particular, for each predefined box aki,j , our net-

Figure 5: Motion forecasting

work predicts the corresponding normalized location offset
l̂x, l̂y , log-normalized sizes ŝw, ŝh and heading parameters
âsin, âcos.

Decoding Tracklets: At each timestamp, our model out-
puts the detection bounding boxes for n timestamps. Re-
versely, each timestamp will have current detections as well
as n − 1 past predictions. Thus we can aggregate the in-
formation for the past to produce accurate tracklets without
solving any trajectory based optimization problem. Note
that if detection and motion forecasting are perfect, we can
decode perfect tracklets. In practice, we use average as ag-
gregation function. When there is overlap between detec-
tions from current and past’s future predictions, they are
considered to be the same object and their bounding boxes
will simply be averaged. Intuitively, the aggregation pro-
cess helps particularly when we have strong past predic-
tions but no current evidence, e.g., if the object is currently
occluded or a false negative from detection. This allow us
to track through occlusions over multiple frames. On the
other hand, when we have strong current evidence but not
prediction from the past, then there is evidence for a new
object.

3.3. Loss Function and Training

We train the network to minimize a combination of clas-
sification and regression loss. In the case of regression we
include both the current frame as well as our n frames fore-

casting into the future. That is

`(w) =
∑α · `cla(w) +

∑
i=t,t+1,...,t+n

`treg(w)

 (1)

where t is the current frame and w represents the model
parameters.

We employ as classification loss binary cross-entropy
computed over all locations and predefined boxes:

`cla(w) =
∑
i,j,k

qi,j,k log pi,j,k(w) (2)

Here i, j, k are the indices on feature map locations and pre-
defined box identity, qi,j,k is the class label (i.e. qi,j,k =1
for vehicle and 0 for background) and pi,j,k is the predicted
probability for vehicle.

In order to define the regression loss for our detections
and future predictions, we first need to find their associated
ground truth. We defined their correspondence by matching
each predefined box against all ground truth boxes. In par-
ticular, for each predicted box, we first find the ground truth
box with biggest overlap in terms of intersection over union
(IoU). If the IoU is bigger than a fixed threshold (0.4 in
practice), we assign this ground truth box as āki,j and assign
1 to its corresponding label qi,j,k. Following SSD [17], if
there exist a ground truth box not assigned to any predefined
box, we will assign it to its highest overlapping predefined
box ignoring the fixed threshold. Note that multiple prede-
fined boxes can be associated to the same ground truth, and
some predefined boxes might not have any correspondent
ground truth box, meaning their qi,j,k = 0.

Thus we define the regression targets as

lx =
x− xGT

wGT
ly =

y − yGT

hGT

sw = log
w

wGT
sh = log

h

hGT

asin = sin(θGT) acos = cos(θGT)

We use a weighted smooth L1 loss over all regression tar-
gets where smooth L1 is defined as:

smoothL1(x̂, x) =

{
1
2 (x̂− x)2 if |x̂− x| < 1

|x̂− x| − 1
2 otherwise

(3)

Hard Data Mining Due to the imbalance of positive and
negative samples, we use hard negative mining during train-
ing. We define positive samples as those predefined boxes
having corresponding ground truth box, i.e., qi,j,k = 1. For
negative samples, we rank all candidates by their predicted
score pi,j,k from the classification branch and take the top
negative samples with a ration of 3 in practice.

4. Experimental Evaluation
Unfortunately there is no publicly available dataset

which evaluates 3D detection, tracking and motion forecast-
ing. We thus collected a very large scale dataset in order to
benchmark our approach. It is 2 orders of magnitude bigger
than datasets such as KITTI [6].

Dataset: Our dataset is collected by a roof-mounted Li-
DAR on top of a vehicle driving around several North-
American cities. It consists of 546,658 frames collected
from 2762 different scenes. Each scene consists of a con-
tinuous sequence. Our validation set consists of 5,000 sam-
ples collected from 100 scenes, i.e., 50 continuous frames
are taken from each sequence. There is no overlap between
the geographic area where the training and validation are
collected, in order to showcase strong generalization. Our
labels might contain vehicles with no 3D point on them as
the labelers have access to the full sequence in order to pro-
vide accurate annotations. Our labels contain 3D rotated
bounding box as well as track id for each vehicle.

Training Setup: At training time, we use a spatial X-Y
region of size 144 × 80 meters, where each grid cell is
0.2 × 0.2 meters. On the height dimension, we take the
range from -2 to 3.5 meters with a 0.2 meter interval, lead-
ing to 29 bins. For temporal information, we take all the
3D points from the past 5 timestamps. Thus our input is a 4
dimensional tensor consisting of time, height, X and Y.

For both our early-fusion and late-fusion models, we
train from scratch using Adam optimizer [13] with a learn-
ing rate of 1e-4. The model is trained on a 4 Titan XP GPU
server with batch size of 12. We train the model for 100K
iteration with learning rate halved at 60K and 80K iterations
respectively.

Detection Results: We compare our model against state-
of-the-art real-time detectors including SSD [17], Mo-
bileNet [10] and SqueezeNet [12]. Note that these detectors
are all developed to work on 2D detection from images. To
make them competitive, we also build our predefined boxes
into their system, which further easy the task for those de-
tectors. The region of interest is 144 × 80M centered at
ego-car during inference time. We keeps the same voxeliza-
tion for all models and evaluate detections against ground
truth vehicle bounding boxes with at minimum of three 3D
points. Vehicles with less than three points are considered
don’t care regions. We consider a detection correct if it
has an IoU against any ground truth vehicle booundign box
larger than 0.7. Note that for a vehicle with typical size of
3.5×6 meters, 0.7 IoU means we can at most miss 0.35 me-
ters along width and 0.6 meters along length. Fig. 6 shows
the precision recall curve for all approaches, where clearly

IoU 0.5 0.6 0.7 0.8 0.9 Time [ms]
SqueezeNet v1.1 [12] 85.80 81.06 69.97 43.20 3.70 9

SSD [17] 90.23 86.76 77.92 52.39 5.87 23
MobileNet [10] 90.56 87.05 78.39 52.10 5.64 65

FaF 93.24 90.54 83.10 61.61 11.83 30

Table 1: Detection performance on 144× 80 meters region, with object having ≥ 3 number 3D points

Figure 6: P/R curve

our model is able to achieve higher recall, which is cru-
cial for autonomous driving. Furthermore, Tab. 1 shows
mAP using different IoU thresholds. We can see that our
method is able to outperform all other methods. Particu-
larly at IoU 0.7, we achieve 4.7% higher mAP than Mo-
bileNet [10] while being twice faster, and 5.2% better than
SSD [17] with similar running time.

We also report performance as a function of the mini-
mum number of 3D points, which is used to filter ground
truth bounding boxes during test time. Note that high level
of sparsity is due to occlusion or long distance vehicles. As
shown in Fig. 7, our method is able to outperform other
methods at all levels. We evaluate with a minimum of 0
point is, to show the importance of exploiting temporal in-
formation.

We are also interested in knowing how the model per-
form as a function of vehicle distance. Towards this goal,
we extend the predictions to be as far as 100 meters away.
Fig. 8 shows the mAP with IoU 0.7 on vehicles within dif-
ferent distance ranges. We can see that all methods are do-
ing well on nearby vehicles, while our method is signifi-
cantly better at long range. Note that all methods perform
poorly at 100 meters due to lack of 3D points at that dis-
tance.

Figure 7: mAP on different number of minimum 3D
points

Figure 8: mAP over distance

Ablation Study: We conducted ablation experiments
within our framework to show how important each of the
component is. We fixed the training setup for all exper-
iments. As shown in Tab. 2, using temporal information
with early fusion gives 3.7% improvement on mAP at IoU

Single 5 Frames Early Laster w/ F w/ T IoU 0.5 IoU 0.6 IoU 0.7 IoU 0.8 IoU 0.9 Time [ms]
X 89.81 86.27 77.20 52.28 6.33 9

X X 91.49 88.57 80.90 57.14 8.17 11
X X 92.01 89.37 82.33 58.77 8.93 29
X X X 92.02 89.34 81.55 58.61 9.62 30
X X X X 93.24 90.54 83.10 61.61 11.83 30

Table 2: Ablation study, on 144× 80 region with vehicles having ≥3 number 3D points

Figure 9: Motion forecasting performance

MOTA MOTP MT ML
FaF 80.9 85.3 75 10.6
Hungarian 73.1 85.4 55.4 20.8

Table 3: Tracking performance

0.7. While later fusion uses the same information as early
fusion, it is able to get 1.4% extra improvement as it can
model more complex temporal features. In addition, adding
prediction loss gives similar detection results on current
frame alone, however it enables us to decode tracklets and
provides evidence to output smoother detections, thus giv-
ing the best performance, i.e. 6% points better on mAP at
IoU 0.7 than single frame detector.

Tracking: Our model is able to output detections with
track ids directly. We evaluate the raw tracking output with-
out adding any sophisticated tracking pipeline on top. Tab. 3
shows the comparison between our model’s output and a
Hungarian method on top of our detection results. We fol-
low the KITTI protocol [6] and compute MOTA, MOTP,
Mostly-Tracked (MT) and Mostly-Lost (ML) across all 100
validation sequences. The evaluation script uses IoU 0.5

for association and 0.9 score for thresholding both methods.
We can see that our final output achieves 80.9% in MOTA,
7.8% better than Hungarian, as well as 20% better on MT,
10% lower on ML, while still having similar MOTP.

Motion Forecasting: We evaluate the forecasting ability
of the model by computing the average L1 and L2 distances
of the vehicles’ center location. As shown in Fig. 9, we are
able to predict 10 frames into the future with L2 distance
only less than 0.33 meter. Note that due to the nature of the
problem, we can only evaluate on true positives, which in
our case has a corresponding recall of 92.5%.

Qualitative Results: Fig. 10 shows our results on a 144×
80 meters region. We provide 4 sequences, where the top 3
rows show that our model is able to perform well at com-
plex scenes, giving accurate rotated bounding boxes on both
small vehicles as well big trucks. Note that our model also
gives accurate motion forecasting for both fast moving ve-
hicles and static vehicles (where all future center locations
overlay at the current location). The last row shows one
failure case, where our detector fails on the center right blue
vehicle. This is due to the sparsity of the 3D points.

5. Conclusion
We have proposed a holistic model that reasons jointly

about detection, prediction and tracking in the scenario of
autonomous driving. We show that it runs real-time and
achieves very good accuracy on all tasks. In the future, we
plan to incorporate RoI align in order to have better feature
representations. We also plan to test other categories such
as pedestrians and produce longer term predictions.

References
[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social lstm: Human trajectory prediction in
crowded spaces. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 961–971,
2016. 2

[2] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun.
3d object proposals using stereo imagery for accurate object
class detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017. 2

Figure 10: Qualitative results on 144x80M region [best view in color]. Same color represents same vehicle across different
timeframe. Each vehicle has ‘dot’ presents the center locations of current and future time frames

[3] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view
3d object detection network for autonomous driving. arXiv
preprint arXiv:1611.07759, 2016. 2, 3

[4] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances
in neural information processing systems, pages 379–387,
2016. 2

[5] C. Feichtenhofer, A. Pinz, and A. Zisserman. Detect to track
and track to detect. arXiv preprint arXiv:1710.03958, 2017.
2

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012. 2, 5, 7

[7] H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-hypothesis
motion planning for visual object tracking. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages
619–626. IEEE, 2011. 2

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. arXiv preprint arXiv:1703.06870, 2017. 2

[9] D. Held, S. Thrun, and S. Savarese. Learning to track at 100
fps with deep regression networks. In European Conference
on Computer Vision, pages 749–765. Springer, 2016. 2

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017. 2, 5, 6

[11] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.
Speed/accuracy trade-offs for modern convolutional object
detectors. arXiv preprint arXiv:1611.10012, 2016. 2

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016. 5, 6

[13] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 5

[14] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr,
and M. Chandraker. Desire: Distant future prediction in
dynamic scenes with interacting agents. arXiv preprint
arXiv:1704.04394, 2017. 2

[15] B. Li. 3d fully convolutional network for vehicle detection
in point cloud. arXiv preprint arXiv:1611.08069, 2016. 2

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár.
Focal loss for dense object detection. arXiv preprint
arXiv:1708.02002, 2017. 2

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. SSD: Single shot multibox detector. In
ECCV, 2016. 2, 4, 5, 6

[18] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical
convolutional features for visual tracking. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3074–3082, 2015. 2

[19] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani. Forecast-
ing interactive dynamics of pedestrians with fictitious play.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 774–782, 2017. 2

[20] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale
video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440, 2015. 2

[21] H. Nam and B. Han. Learning multi-domain convolutional
neural networks for visual tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4293–4302, 2016. 2

[22] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll
never walk alone: Modeling social behavior for multi-target
tracking. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 261–268. IEEE, 2009. 2

[23] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.
arXiv preprint arXiv:1612.08242, 2016. 2

[24] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In Neural Information Processing Systems (NIPS),
2015. 2

[25] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 4

[26] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsuper-
vised learning of video representations using lstms. In Inter-
national Conference on Machine Learning, pages 843–852,
2015. 2

[27] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance
search for tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1420–
1429, 2016. 2

[28] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncer-
tain future: Forecasting from static images using variational
autoencoders. In European Conference on Computer Vision,
pages 835–851. Springer, 2016. 2

[29] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual track-
ing with fully convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages
3119–3127, 2015. 2

[30] N. Wang and D.-Y. Yeung. Learning a deep compact im-
age representation for visual tracking. In Advances in neural
information processing systems, pages 809–817, 2013. 2

[31] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:
Unified, small, low power fully convolutional neural net-
works for real-time object detection for autonomous driving.
arXiv preprint arXiv:1612.01051, 2016. 2

