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Abstract

Finding views with good photo composition is a chal-
lenging task for machine learning methods. A key difficulty
is the lack of well annotated large scale datasets. Most
existing datasets only provide a limited number of annota-
tions for good views, while ignoring the comparative nature
of view selection. In this work, we present the first large
scale Comparative Photo Composition dataset, which con-
tains over one million comparative view pairs annotated us-
ing a cost-effective crowdsourcing workflow. We show that
these comparative view annotations are essential for train-
ing a robust neural network model for composition. In ad-
dition, we propose a novel knowledge transfer framework to
train a fast view proposal network, which runs at 75+ FPS
and achieves state-of-the-art performance in image crop-
ping and thumbnail generation tasks on three benchmark
datasets. The superiority of our method is also demon-
strated in a user study on a challenging experiment, where
our method significantly outperforms the baseline methods
in producing diversified well-composed views.

1. Introduction
Photo composition is one of the essential ingredients in

the craft of photography. In this work, we aim to train mod-
els to find views with good composition (Fig. 1). Solving
this problem can benefit many applications such as image
cropping [44, 10], image thumbnailing [18], view recom-
mendation [7, 38], and autonomous photo taking [4].

Finding good views in a scene is challenging for both
machines [15, 10] and humans [20]. Recently, with the
emergence of deep learning, many works attempt to train
photo composition models directly from data [42, 18, 10,
31, 16]. However, the scarcity of large scale datasets limits
further progress in this direction.

In this paper, we present the first large scale Comparative
Photo Composition (CPC) dataset, from which we could
harvest over 1 million comparative view pairs. Each view
pair contains two views generated from the same image and
their relative ranking crowdsourced under a cost-effective

Figure 1: Given an input image shown on the left, our
View Proposal Network (VPN) can generate a set of diver-
sified well-composed views (the top three view shown on
the right) in less than 15 ms. The generated views can be
used in a wide range of applications such as image crop-
ping, image thumbnailing, image re-targeting and real-time
view recommendation.

workflow. This type of comparative annotation is almost
completely missing in existing datasets (see Table 1). Com-
position models trained on these view pairs perform signif-
icantly better than those trained on existing datasets.

Another major contribution of this work is a novel
knowledge transfer framework to train a real-time anchor-
box-based view proposal model [17, 35]. Unlike object pro-
posal networks, the label assignment for our view proposal
model is quite challenging. First, assigning an anchor box to
a ground truth view, based on an overlap metric (e.g. IOU),
is fragile for training composition models; a slight adjust-
ment of the view can often make a big difference in compo-
sition quality. Moreover, the annotation is not exhaustive:
most of the anchor boxes will not be annotated. In contrast
to the object detection scenario, we cannot assume that they
are negative samples (see Fig. 2).

Our knowledge transfer framework obviates the above
issues. In our teacher-student [21] framework, we first train
a view evaluation model on the view pairs using a Siamese
architecture [12]. Then we deploy this model as a teacher
to score the candidate anchor boxes on a large variety of
images. These teacher scores train the view proposal net
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Dataset Images Views/Image View Pairs
AVA [32] 250K N/A N/A
FastAT [18] 28064 ≤ 3 N/A
FLMS [19] 500 ≤ 10 N/A
ICDB [44] 1000 3 N/A
FCDB [9] 3359 10 33590
CPC (Ours) 10800 24 > 1,000,000

Table 1: Comparison with the current image crop-
ping/aesthetics datasets. Our CPC dataset contains much
more annotated views for each image and provides over one
million comparative view pairs.

as a student model to output the same anchor box score
rankings. To train the student, we propose a Mean Pair-
wise Squared Error (MPSE) loss. We show that the pro-
posed framework trains significantly better view proposal
networks than the standard object proposal training proto-
col. An example result of our view proposal network is
shown in Fig. 1.

Our view proposal model runs at over 75 FPS and
achieves state-of-the-art performance on three benchmark
datasets for image cropping and thumbnailing. To further
test the robustness of our method, we designed a user study
for a challenging experiment where each compared method
must produce a diverse set of views for each test image. Ex-
perimental results show that our method outperforms other
baseline methods.

In summary, our main contributions are:

• We present the Comparative Photo Composition
dataset (CPC), the first large scale dataset with over
1M comparative view pairs.
• We propose a novel knowledge transfer framework for

training a fast View Proposal Net, which obviates the
label assignment issue by using a teacher network for
dense view scoring.
• We evaluate extensively our View Proposal Net and

demonstrate that it outperforms the state-of-the-art
models in both accuracy and speed1.

2. Related Work
Photo Composition Datasets. Comparative composi-

tion annotations are essential for training composition mod-
els [10]. However, most existing datasets for image crop-
ping [18, 44] do not provide such comparative view anno-
tations. A recent dataset [8] attempted to address this issue;
annotators were asked to compare randomly sampled views
from the same image, thus constructing a moderate-sized
dataset. However, the data collection protocol is not every

1Our models and datasets collected in this work and supplementary ma-
terial can be found at http://www.cs.stonybrook.edu/˜cvl/
projects/wei2018goods/VPN_CVPR2018s.html

efficient, hence it’s only possible to collect about 30K view
pairs (see Tab. 1).

There are also a number of datasets for image aesthet-
ics [32, 23, 14, 30], some of which provide image-level
scores or attributes for photo composition [23, 32, 6]. How-
ever, models trained on such datasets may not perform well
in distinguishing the composition quality of views from the
same scene [10, 9].

Photo Composition Models. Many methods have been
developed to find well composed views for various appli-
cations, such as image cropping [48, 19, 8, 44, 10], im-
age thumbnail generation [18], view recommendation [7,
11, 38] and automatic triage that groups similar photos and
decides which ones to keep [6]. Many of these methods rely
on predefined rules or manually crafted features to evaluate
the composition of an image crop [33, 19, 11, 44]. With the
advent of deep learning, end-to-end models [22, 23, 27, 28]
can be trained without explicitly modeling composition.
Although they achieve state-of-the-art performance, these
deep learning models must be executed in an inefficient
sliding window fashion. Two more recent works [18, 42]
address the speed issue by adopting fast object detection
frameworks [13, 35] for image thumbnailing and image
cropping. Compared with [18, 42], our work is more fo-
cused on the general composition ranking rather than a spe-
cific application. Thus, our method can be useful in a wider
range of applications such as view recommendation and au-
tonomous photo taking, where the content preservation con-
straint used in image cropping and thumbnailing does not
apply.

Knowledge Transfer. Our framework for training a
real-time view proposal network is inspired by the suc-
cess of knowledge distillation that transfers the knowledge
learned through an ensemble of models into a smaller sin-
gle model [21]. Different from recent work [36, 2] that is
geared towards model compression or domain transfer [41],
we use a knowledge distillation framework to tackle the dif-
ficulty of label assignment (Fig. 2) when training an anchor-
box-based view proposal network.

3. The CPC Dataset
We present the Comparative Photo Composition (CPC)

dataset. Unlike the common data collection protocols for
image cropping and thumbnailing, where only a few posi-
tive (good) views are drawn in each image, we aim to collect
both positive and hard negative view annotations by relative
ranking. We believe that such annotations are important in
training a discriminative composition model.

To this end, we propose a cost-effective crowdsourcing
workflow for data collection. With a budget of $3,000, we
have collected 10,800 images. For each image we generated
24 views, where are ranked by 6 Amazon Mechanical Turk
(AMT) workers. These rankings correspond to more than

http://www.cs.stonybrook.edu/~cvl/projects/wei2018goods/VPN_CVPR2018s.html
http://www.cs.stonybrook.edu/~cvl/projects/wei2018goods/VPN_CVPR2018s.html


1 Million effective comparisons2 between different views
from the same image.

3.1. Image Sources

To cover a wide range of scene categories, we ran-
domly selected candidate images from multiple datasets:
AVA [32], MS-COCO [25], AADB [23] and the Places
dataset [49]. The collected images include not only pro-
fessional photos but also everyday photos with varied im-
age quality. To further ensure image diversity, we run the
salient object subitizing model [46] on our collected images
and sampled approximately equal number of images with 0,
1, 2 or 3+ dominant objects. Therefore, a substantial por-
tion of images in our dataset contain two or more salient ob-
jects, in contrast to the previous datasets where most images
contain only one dominant object [44, 29]. We then manu-
ally removed image collages and drawings. Duplicates and
overlaps with test datasets that we used [9, 18, 19] were
also removed using image hashing [45].

3.2. View Sampling

Directly asking AMT workers to draw crop windows can
be a very inefficient way of collecting view samples. On the
other hand, randomly sampled views are easy to generate
but the view samples may be dominated by obviously poor
compositions. Therefore, we used existing composition al-
gorithms to generate a pool of candidate views that is more
likely to include good ones.

Specifically, we pooled candidate views from multiple
image re-composition and cropping algorithms [10, 23, 19]
over a set of aspect ratios (1:1, 3:4, 4:3 and 16:9) and scales
(0.5, 0.6, · · · , 1.0). For each of our predefined aspect ratios,
we randomly selected 4 views uniformly from the candidate
pool. We also randomly sampled two additional views dif-
ferent from the selected ones to address the potential risk of
view bias caused by the existing view-generating methods.
In the end, we have (4 + 2) × 4 = 24 candidate views for
each image.

3.3. Two-Stage Annotation

Pairwise labeling the candidate views will lead to a
quadratic number of annotations with respect to the can-
didate views. Thus, we designed a two-stage annotation
protocol that greatly reduces the cost and simplifies the task
for the AMT workers.

Stage One: Aspect-ratio-wise View Selection. The six
views in each aspect ratio group are presented to an anno-
tator at the same time with the request to select 2-5 good

2For an image with n = 24 annotated views, there will be n × (n −
1)/2 = 276 view comparisons, leading to about 276 × 10800 ≈ 3M
view pairs. After pruning ambiguous view pairs, we have more than 1M
view comparisons.

views. At the end of this stage, the annotators will select a
total of 8-20 views from the four aspect ratio groups.

Stage Two: Overall Top View Selection. We show all
the views selected in stage one and ask the annotator to se-
lect the best three views from them. We also randomly mix
some unselected views as a test for quality control. Anno-
tations that contradict the stage one selections are rejected.

Compared to the alternative annotation protocol that asks
an annotator to directly rank 24 views in a single stage, our
proposed two-stage work flow reduces the cognitive load by
splitting a large task into simpler and smaller ones. More-
over, the quality control test in stage two can help reduce the
noise of the dataset. We assign each image to 6 annotators.

The two-stage annotation protocol is general: it can also
be applied to rank crops generated by professional photog-
raphers.

3.4. Ranking Pair Generation

After the annotation collection, the comparative view
pairs are generated in two ways. We first generate ranking
pairs of the same aspect ratio based on the averaged votes
collected in Stage One, because the views of the same as-
pect ratios have been directly compared. Second, the views
that are selected as best ones by more than 3 annotators in
Stage Two are considered as the overall best views and will
be paired with the remaining views that have been directly
or indirectly compared with them. On average, we generate
over 100 view pairs for each image, leading to more than 1
million comparative view pairs. Note that the above proce-
dure may not be the optimal way to generate view pairs. We
encourage users to explore various pair generation meth-
ods. The effectiveness of our CPC dataset is demonstrated
in Sec 5.1.

4. Training View Proposal Networks

Inspired by the success of fast detection frameworks [26,
35, 34], we want to train a real-time anchor-box-based View
Proposal Network, which takes an image as input and out-
puts scores corresponding to the list of predefined anchor
boxes. Then we need to figure out if we can directly train
such a VPN as in the object detection task. In object de-
tection, an anchor box with a high IOU (Intersection Over
Union) score with any annotation box will be labeled as
positive; otherwise it is assumed to be a negative sample.
However, such label assignment scheme is problematic in
our task.

As shown in Fig. 2, there is a significant chance that
an anchor box might be a good one even if it does not sig-
nificantly overlap with any of the views annotated as good.
On the other hand, anchor boxes that are close to a good
view can still be a bad view as a subtle shift of the crop may
change the composition drastically.



Figure 2: The label assignment problem. Given a good view
annotation (cyan), there can be many bad views with high
IOU (Intersection Over Union) with the annotation ( e.g. the
view in red), and many good views with low IOU (e.g. the
view in yellow) with the annotation. Traditional IOU-based
label assignment schemes for object detection will fail for
our problem.

To tackle this challenge, we propose a knowledge trans-
fer framework inspired by [21] to train our View Proposal
Net (VPN) as a student model under the supervision of a
teacher model. The teacher model is a View Evaluation Net
(VEN) that takes a view as input and predicts a composi-
tion score, and thus it is straightforward to train on our CPC
dataset. To transfer the knowledge, we run the VEN on
the anchor boxes for a given image, and then use the pre-
dicted scores to train the VPN using a novel Mean Pairwise
Squared Error (MPSE) loss. The training framework is il-
lustrated in Fig. 3 and will be detailed in the next section.

4.1. Knowledge Transfer by MPSE

Formally, a VPN is an anchor-box-based proposal net-
work that takes an image as input and outputs a score list
q = [q1, . . . , qn] for a set of predefined anchor boxes
B = [B1, . . . , Bn]. A VEN is an evaluation network that
predicts the composition score for a given image crop. The
VEN is able to rank all the anchor boxes for an image and
generate a score list y = [y1, . . . , yn] by evaluating each
anchor box. The problem of knowledge transfer is how to
train the VPN to produce the same anchor box rankings as
the VEN.

We first try the simple point-wise approach by regress-
ing the Mean Squared Error (MSE) to minimize the mean
absolute difference between q and y. However, we empir-
ically find that the training under the MSE loss is unsta-
ble. Inspired by the pair-wise and list-wise approaches for
learning-to-rank models [3, 5], we propose a simple yet ef-
fective loss, called the Mean Pairwise Square Error (MPSE)
loss, to jointly consider all the pair-wise ranking orders in a
score list. The MPSE loss is defined as

l(y,q) =

∑
i,j=1...n,i6=j((yi − yj)− (qi − qj))

2

n(n− 1)/2
. (1)

The MPSE loss can be manipulated algebraically to vector-
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Figure 3: Overview of the knowledge transfer framework
for training the View Proposal Network. See text for details.

ized operations to be efficiently implemented [1]. We find
that the MPSE loss makes the VPN training converge faster
and provides better performance than MSE (see Sec. 5.2).

4.2. Implementation

View Proposal Net (VPN): Our VPN is adapted from
two recent successful real-time object detection frame-
works: SSD [26] and MultiBox [17]. The back-bone net-
work is based on SSD (truncated after Conv9). On top of
the backbone network we add a convolutional layer, an aver-
age pooling layer and a fully connected layer that outputs N
scores corresponding to N predefined anchor boxes. Simi-
lar to [17], we predefine the set of anchor boxes by densely
sliding over different scales and aspect ratios of an normal-
ized image, resulting in a set of N = 895 predefined anchor
boxes (similar to [17]). For training and testing, we resize
the image to 320× 320 regardless of its original size.

View Evaluation Net (VEN): Following recent works
[23, 10], given the pair-wise annotations in the CPC dataset,
we train the View Evaluation Net using the Siamese archi-
tecture [12]. The Siamese architecture is composed of two
weight-shared VENs, each of which outputs a score for one
of the two input image pairs, say Ii and Ij . Assuming that
Ii is preferred more than Ij , the following loss is used to
train the Siamese network:

l(Ii, Ij) = max{0, 1 + f(Ij)− f(Ii)}, (2)

where f(Ii) and f(Ij) denote the outputs of the Siamese
network.

The VEN in our work is based on VGG16 [37] (trun-
cated after the last max pooling layer) with two new Fully
Connected (FC) layers and a new output layer. We reduce
the channels of the FC layers to 1024 and 512 respectively
since the our model only outputs one ranking score instead
of the probability distribution over 1000 classes.



Training Details. We initialized the VEN by the weights
of the VGG16 model trained on ImageNet and trained for 60
epochs on image pairs from the CPC dataset with a starting
learning rate of 0.001 that decays by 0.1 every 20 epochs
using Stochastic Gradient Descent (SGD) with momentum
of 0.9. Early stopping was applied based on results on a
validation set from XPView.

To train the VPN, theoretically we can use an unlim-
ited number of images. In our implementation, we use the
images in our CPC dataset plus 40,000 images from the
AADB [23] dataset. Adding more images does not seem
to further improve the result. The VPN is initialized by the
SSD model [26] for object detection and is trained using the
same hyperparameters as the VEN.

5. Dataset and Method Analyses
In this section we analyze the effectiveness of our CPC

dataset (Sec. 5.1). We do so by training VEN baselines on
the existing datasets and comparing their performance on a
test set annotated by experts. We further evaluate the knowl-
edge transfer framework by showing how well the VPN ap-
proximates the ranking produced by VEN (Sec. 5.2).

5.1. Validating the CPC Dataset

The Expert View Dataset (XPView). To evaluate
the ranking performance of models trained on the various
datasets, we collected a new dataset consisting of 992 im-
ages with dense compositions, annotated by three experts
(graduate students in visual-arts) instead of AMT work-
ers. We generated the candidate views as described in
Sec. 3.2 but with more diverse aspect ratios. For each image
we pooled 24 candidate crops from 8 aspect ratios. Each
view was annotated with one of the three labels: good,
fair, or poor. We additionally asked the annotators to draw
good compositions that should have been included in the
set of candidate views. As analyzed in supplementary ma-
terial, our inter- and intra- annotator consistency analysis
shows significant agreement. Keep only unanimously la-
beled ones, we get 1830 good, 4915 fair and 1875 bad
views. A total of 18229 comparisons of views from the
same images are generated. We randomly select a subset
of 200 images from the XPView dataset as the test set.

Baselines and setup. We consider the following VEN
baselines trained on 1) the remaining 792 images of
XPView, 2) the AVA dataset [32], with the classification
training strategy used in [42, 27, 28, 32], 3) the FCDB
dataset with the ranking strategy used in [9], 4) unlabeled
images for unsupervised learning following [9]. For our
CPC dataset, we train two VENs: one based on the ranking
loss described in Eq. 2 and the other based on the softmax
classification loss. For the classification loss, views selected
by 3 or more annotators out of 6 in Stage Two (Sec. 3.3) are

considered positive samples and those selected by less than
3 annotators in Stage One are considered negative.

To control for the model capacity and overfitting issues
on different datasets, for each baseline VEN model we train
three VEN variants with 41M, 27M and 14M parameters
and report the best performance The architectures of the
three variants are described in the supplementary material.
The major differences are the sizes of the FC layers.

For evaluation, we report the swap error (SW) [10],
which is the ratio of erroneously ranked (swapped) pairs
over all valid pairs on the XPView test set.

Results. The results are presented in Tab. 2. The VEN
model with the ranking loss (Eq. 2) trained on CPC achieves
the best performance (0.22 swap error). Training the VEN
under the classification framework yields slightly worse
performance. The performance gap between models trained
on our CPC dataset and the one trained on the FCDB dataset
reveals that the density of annotations and the size of the
dataset are more critical to the performance than the choice
of loss. Note that training VENs on the AVA dataset with
classification loss yields the worst result. We have tried a
ranking loss as well but did not observe improvement (0.45
swap error). This is consistent with the findings in [10] that
models trained on aesthetic relations derived from distinct
images do not necessarily perform well in ranking views
from the same image. Even though models trained on the
792 images from XPView achieve better performance than
previous existing datasets, the cost of drawing views and the
demand on expert annotators makes the dataset difficult to
scale. We have also tried to combine the CPC, FCDB [9],
and XPView datasets to train the VENs but did not observe
better performance. Further analysis is presented in supple-
mentary material.

Training Loss #images Swap error ↓
AVA[32] Classification 250K 0.37
FCDB[9] Ranking 3359 0.32
Unlabeled[10] Ranking - 0.32
XPView* Ranking 792 0.28
CPC* Classification 10.5K 0.24
CPC* Ranking 10.5K 0.22

Table 2: Performance of the View Evaluation Nets trained
on different datasets: models trained on the CPC dataset
perform best; the VEN trained with a ranking loss moder-
ately outperforms the one trained with a classification loss.
All of the models are evaluated on the same test set from
XPView. * indicates datasets collected in our paper.

In the rest of the paper, if not otherwise specified, the
VEN refers to the best model that is trained on the whole
CPC dataset with ranking loss (the last row of Tab. 2).
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Figure 4: Qualitative Results of the View Proposal Net. (a) shows some results of the VPN in image cropping [9] (top row)
and image thumbnailing [18] (bottom row). The ground truth annotations are in cyan and the predicted views are in yellow.
(b) provides a few examples receiving poor IoU metric scores on the ground truth annotations. As we can see, the top and
bottom left predicted views are still well composed even though they do not match well with the ground truth views.

5.2. Analysis on Knowledge Transfer

We investigate the influence of the training loss and the
size of the transfer sets (the set of images that are labeled by
the teacher net for training the student net [21]) on the VPN
trained via the knowledge transfer framework. We com-
pare the swap error between the VPN and the teacher model
VEN over the predefined 895 anchor boxes.

We evaluate VPNs trained with the following configura-
tions: 1) using only the CPC dataset images with the Mean
Squared Error (MSE) loss, 2) using the same set of images
with the Mean Pairwise Squared Error (MPSE) loss, and
3) using an additional set of 40K images from AADB [23]
with the MPSE loss (CPC+AADB).

As shown in Tab. 3, compared to the MSE loss, the
MPSE loss slightly improves performance. The MPSE
loss also leads to faster convergence as we observed during
training. Increasing the size of the transfer set also consid-
erably reduces the swap error.

Transfer set Loss VPN-VEN swap error ↓
CPC MSE 0.1601
CPC MPSE 0.1554
CPC+AADB MPSE 0.1312

Table 3: VPN-VEN Comparisons: Overall the VPN trained
with the knowledge transfer framework performs very sim-
ilar to the VEN. The VPN trained with the MPSE loss with
additional unlabeled data has the closest performance to the
VEN (see CPC+AADB).

6. Experiments
We evaluate the View Proposal Net and the View Evalu-

ation Net by quantitatively comparing them to state-of-the-
art models on benchmark datasets. We also compare the
speed of the VPN on a GPU to existing real-time models
designed for particular tasks in Tab. 5.

6.1. Quantitative Evaluation

We quantitatively evaluate our proposed VPN and VEN
on three benchmark datasets for the image cropping and im-
age thumbnailing tasks and compare them with state-of-the-
art models on these tasks. In addition to the VPN trained
under our knowledge transfer framework, we investigate an
alternative for training the VPN: following object detection
works [34, 26], we assign the positive and negative labels
defined in Sec. 5.1 to each anchor box and train the VPN
with a binary classification loss directly without knowledge
transfer. We denote the VPN trained this way as VPN-
direct. More alternatives of training the VPN are explored
in the supplementary material.

6.1.1 Image Cropping

We evaluate the performance of our VPN and VEN for im-
age cropping tasks.

Dataset. We evaluate on two datasets: (1) FLMS [19]
containing 500 images that have 10 sets of cropping ground
truth by 10 different expert annotators from Amazon Me-
chanical Turk and (2) the FCDB [9] containing 348 testing
images3.

Setup and metrics. To show the generalization ability
of our models, we test the VPN and VEN trained with CPC
on the two datasets with no additional training. For im-
age cropping tasks, there is a content preservation prior that
the cropped view should cover most of the major content.
Therefore, we perform a simple post-processing by discard-
ing small views. We cross-validated the small size threshold
on the training set of FCDB. We report the average overlap
ratio (IoU) and average boundary displacement error (Disp.)
used in previous works [10, 44, 42] as performance evalua-
tion metrics:

3At the time of our downloading, only 343 images were accessible



FCDB [9]
VEN VPN VPN-direct VFN [10] MNA-CNN [31] AesRankNet [23] RankSVM [9]

IoU ↑ 0.7349 0.7109 0.6429 0.6842 0.5042 0.4843 0.6020
Disp.↓ 0.072 0.073 0.092 0.084 0.136 0.140 0.106

FLMS [19]
VEN VPN VPN-direct Wang et al [42] Suh et al [39] Fang et al [19] Chen et al [8]

IoU ↑ 0.8365 0.8352 0.7875 0.8100 0.7200 0.74 0.64
Disp. ↓ 0.041 0.044 0.051 0.057 0.063 - 0.075

Table 4: Image cropping results on the FCDB [9] and FLMS [19] dataset. Both our VPN and VEN models outperform state-
of-the-art models in terms of IoU and Displacement Error on the two datasets substantially. The diminished performance of
VPN-direct (Sec. 6.1) reveals the effectiveness of our knowledge transfer framework (VPN).

IoU =
Areagt ∩Areapred

Areagt ∪Areapred
, (3)

Disp.Error =
∑

k∈{boundaries}

||Bgt
k −Bpred

k ||/4, (4)

where Areagt is the area of the ground truth crop view and
Areapred is the area of the predicted view; Bk is the nor-
malized boundary coordinate.

Results. The results are summarized in Tab. 4. The
baseline model scores are from [42] for the FLMS dataset
and [10] for the FCDB dataset, respectively. Both our VPN
and VEN models outperform state-of-the-art models on the
two datasets substantially. Notably, the lower performance
of VPN-direct reveals the effectiveness of our knowledge
transfer framework.

6.1.2 Image Thumbnailing

We evaluate the performance of VPN and VEN on the im-
age thumbnailing task.

Dataset. We evaluate on the test set of the FAST-AT
dataset [18] that contains 3910 images with 2 to 3 ground
truth thumbnails of different aspect ratios.

Setup and metrics. To match the aspect ratio of the
target thumbnail, we pick the top view from the subset of
895 candidates that have an aspect ratio mismatch less than
0.01 as in [18] and then shrink it to fit the aspect ratio of the
target thumbnail to avoid spilling out of the image border.
Following [18], we use the IoU metric from Sec. 6.1.1, and
the offset error, which is the distance between the centers of
the ground truth bounding box and the predicted bounding
box.

Results. As shown in Tab. 6. Both the VPN and the
VEN outperform the state of the art models in terms of IoU
and offset metrics. The baselines are from [18].

6.2. Qualitative Visualization

Some qualitative results are shown in Fig. 4. Moreover,
since the VPN is general, it also works on images with ex-

Figure 5: View suggestion for panoramic images. For
each panoramic image, we define an aspect ratio and our
VPN returns the top 3 ranked views after a non-maximum-
suppression threshold of 0.2. Our VPN produces satisfac-
tory results even though it is not trained on any panoramic
images.

treme aspect ratios such as panoramas, as in Fig. 5, even
though it was not trained for them.

7. User Study

The subjective nature of image composition requires val-
idating composition models through human surveys. We
demonstrate the accuracy and diversity of our VPN and
VEN models through a challenging user study experiment:
we randomly sample 200 images from XPView. For each
image, we pick the top 5 views generated by each model.
We enforce the diversity of outputs of each model by apply-
ing a non-maximum suppression with a 0.6 IoU threshold.
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Figure 6: User study results. nDCG (normalized Discounted Cumulative Gain, ↑), Average Good View ratio (↑), Average
Bad View ratio (↓) of different models. Our VEN and VPN outperform all baselines by a large margin.

Model Type Speed
View Evaluation Net Sliding Window 0.2 FPS
Wang el al [42] Two Stage 5 FPS
Fast-AT [18] Detection [13] 10 FPS
View Proposal Net Proposal 75+ FPS

Table 5: Speed comparison (on GPU). The VPN is as ac-
curate and 150× faster than the VEN. The VPN is signifi-
cantly more accurate and 7-15× faster than state-of-the-art
models [42, 18] that are designed for particular view sug-
gestion tasks.

Fast-AT Thumbnail Dataset [18]
Method VEN VPN Fast-AT [18] SOAT [40]
IoU↑ 0.7021 0.7079 0.6800 0.5200
offset ↓ 49.9 48.2 55.0 80.5

Table 6: Thumbnailing results on the Fast-AT dataset [18].
Both VPN and VEN outperform the baseline models.

The top anchors are then shrunk to the closest normal as-
pect ratio(e.g., 1 : 1, 3 : 4 ...) for VPN. We mix and pool
the outputs from different models together and ask 6 grad-
uate students majoring in art (different from the annotators
of the XPView dataset) to exhaustively select the good and
bad views. In addition to the average good view rate and
average bad view rate, we also report the nDCG (normal-
ized Discounted Cumulative Gain, [43]) that measures the
consistency between the model’s rankings and user prefer-
ences:

nDCG =
DCG

Ideal(DCG)
, (5)

where DCG =
∑k

i=1
reli

log2(i+1) in which reli is the rele-
vance score of the i-th view (1 for good, -1 for bad and 0
for fair). The Ideal(DCG) is the DCG score when all k
(k = 5 in our case) scores are 1.

We carefully implemented the following baselines and
validated them on the benchmark datasets that the original
implementations reported on.

Sal+Face. We reimplemented [19] using a state-of-the-
art saliency method [47] and added a face detector. Our
implemented Sal+Face baseline achieves an IoU score of
0.82 on FLMS [19], which is even higher than the current
state-of-the-art model [42].

VPN-direct. Described in Sec. 6.1, the VPN-direct
model is essentially an alternative to the Fast-AT model [18]
and slightly outperforms it as shown in Tab. 6.

VFN*. we implemented the View Finding Network [10],
a state-of-the-art model based on aesthetics. For fair com-
parison to our model, we replaced the AlexNet [24] back-
bone in [10] with VGG [37]. Our implementation of VFN,
denoted as VFN*, achieves a comparable IoU score (0.68)
on FCDB-test [10].

AVA-Cls. We trained a VEN with classification loss us-
ing the AVA dataset following the Aesthetic Assessment
network in [42].

Results are shown in Fig. 6. The proposed VEN and
VPN outperform the baselines by a large margin. Notably,
VPN, while trained under the supervision of VEN, performs
even better than the VEN. We posit that the reason is that the
VPN takes the whole image as input and considers global
information during learning.

8. Conclusions

We have presented the CPC dataset, a large scale photo
composition dataset with more than 1 million view pairs
and proposed a knowledge transfer framework to train the
real-time View Proposal Net. We have shown that the View
Proposal Net trained on the CPC dataset using knowledge
transfer achieves state-of-the-art performance and runs at
75+ FPS. In the future work we plan to explore the effect of
professional versus AMT annotations in the quality of the
predictions.
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