A Deeper Look at Power Normalizations

Piotr Koniusz*!2

Hongguang Zhang*>!

Fatih Porikli?

'Data61/CSIRO, 2Australian National University
firstname.lastname @ { data61.csiro.au', anu.edu.au’®}

Abstract

Power Normalizations (PN) are very useful non-linear
operators in the context of Bag-of-Words data representa-
tions as they tackle problems such as feature imbalance. In
this paper, we reconsider these operators in the deep learn-
ing setup by introducing a novel layer that implements PN
for non-linear pooling of feature maps. Specifically, by us-
ing a kernel formulation, our layer combines the feature
vectors and their respective spatial locations in the fea-
ture maps produced by the last convolutional layer of CNN.
Linearization of such a kernel results in a positive definite
matrix capturing the second-order statistics of the feature
vectors, to which PN operators are applied. We study two
types of PN functions, namely (i) MaxExp and (ii) Gamma,
addressing their role and meaning in the context of non-
linear pooling. We also provide a probabilistic interpre-
tation of these operators and derive their surrogates with
well-behaved gradients for end-to-end CNN learning. We
apply our theory to practice by implementing the PN layer
on a ResNet-50 model and showcase experiments on four
benchmarks for fine-grained recognition, scene recognition,
and material classification. Our results demonstrate state-
of-the-part performance across all these tasks.

1. Introduction

Second-order statistics of data features have played a
pivotal role in advancing the state of the art on several prob-
lems in computer vision, including object recognition, tex-
ture categorization, action representation, and human track-
ing, to name a few of applications [54, 47, 58, 38, 16, 9, 34].
For example, in the popular region covariance descrip-
tors [54], a covariance matrix, which is computed over
multi-modal features from image regions, is used as an ob-
ject representation for recognition and tracking, and has
been extended to several other applications [54, 47, 58, 38,

]. Given Bag-of-Words histograms or local descriptor
vectors from an image, a second-order co-occurrence pool-
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ing of these vectors captures the occurrences of two fea-
tures together. Such a strategy has been recently shown to
result in a superior performance in semantic segmentation
and visual concept detection, compared to their first-order
counterparts [9, 33, 34]. A natural extension led to higher-
order pooling operators [33, 34, 30] on third-order super-
symmetric tensors which improve results over the second-
order descriptors over 7% MAP on PASCAL VOCO07.

However, second and higher-order statistics require ap-
propriate aggregation and pooling mechanisms to obtain the
highest classification results [9, 33, 34]. Once the statistics
are captured in the matrix form, they undergo next a non-
linearity such as Power Normalization [35] which role is to
reduce/boost contributions from frequent/infrequent visual
stimuli in an image, respectively. A significant progress
made by the Bag-of-Words model provides numerous in-
sights into the role played by pooling during the aggregation
step. The theoretical relation between Average and Max-
pooling was studied in [7]. A detailed likelihood-based
analysis of feature pooling was conducted in [8] which
led to a theoretical expectation of Max-pooling, improving
overall classification results. Power Normalization has also
been applied to Average pooling by Fisher Kernels [46].
Max-pooling has been recognized as a lower bound of the
likelihood of ‘ar least one particular visual word being
present in an image’ [42]. According to an evaluation [35],
these pooling methods are all closely related. However,
evaluations [35] do not consider the second-order pooling
scenario or end-to-end learning. In the context of second-
order pooling, element-wise and eigenvalue Power Normal-
ization (ePN) were both first proposed in [33] in 2013.

In this paper, we aim to revisit the above pooling meth-
ods in end-to-end setting and shed further light on their in-
terpretation in the context of second-order matrices. Firstly,
we propose a kernel formulation which combines fea-
ture vectors collected from the last convolutional layer of
ResNet-50 together with so-called spatial location vectors,
previously explored in [31, 35, 33] around 2011-2013,
which contain spatial locations corresponding to feature
vectors in the CNN feature maps. A linearization of such
a kernel results in a second-order matrix which contains ag-
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Figure 1: Our end-to-end pipeline. We pass an image (or patches) to CNN and extract feature vectors ¢ from its last conv. layer and
augment them by encoded spatial coordinates c. We perform pooling on second-order matrix M by the Power Normalization function G.

gregated second-order statistics of these combined vectors.
Subsequently, we focus on the role of the Power Normaliza-
tion family in end-to-end setting. We show that these func-
tions have a well-founded probabilistic interpretation in the
context of second-order statistics. Moreover, we propose
PN surrogates which have well-behaved derivatives suitable
for back-propagation unlike typical PN functions.

Our contributions are three-fold: (i) we propose to aggre-
gate feature vectors extracted from CNNs and their spatial
coordinates into a second-order matrix by principled deriva-
tions in end-to-end manner, (ii) we revisit Power Normal-
ization functions, derive them for second-order representa-
tions and show that they follow Binomial or Multinomial
distributions if features are drawn from the Brenoulli distri-
bution, (iii) we propose PN surrogates with well-behaved
derivatives for end-to-end learning, (iv) we propose new
spectral variants of pooling. Figure 1 shows our pipeline.

We perform evaluations on ResNet-50 and four image
classification benchmarks such as Flower102, MIT67, FMD
and Food101 where we demonstrate state-of-the-art results.

2. Related Work

Second-order statistics have been extensively studied in
the context of texture recognition [54, 55, 49] by the use of
so-called Region Covariance Descriptors (RCD).

Region Covariance Descriptors (RCD). Such meth-
ods use a representation which typically captures co-
occurrences of luminance, first- and/or second-order deriva-
tives of texture patterns. Alternatively, co-occurrences in
Local Binary Patterns (LBP) are captured to build second-
order matrices [49]. RCD approaches have also been suc-
cessfully applied to tracking [47], semantic segmentation
[9] and object category recognition [34], to name but a few
of applications. The design of RCD typically requires a
decision on what signals need to be aggregated into the
second-order representation and how to compare positive
(semi-)definite datapoints resulting from such an aggrega-
tion step. There exist several non-Euclidean distances often
applied to positive definite matrices which we list next.

Non-Euclidean distances. The distance between two pos-
itive definite datapoints is typically measured according
to the Riemannian geometry while Power-Euclidean dis-
tances [14] extend to positive semi-definite distances. In
particular, Affine-Invariant Riemannian Metric [45, 4], KL-

Divergence Metric (KLDM) [59], Jensen-Bregman LogDet
Divergence (JBLD) [10] and Log-Euclidean (LogE) [2]
have been used in the context of diffusion imaging and the
RCD-based methods. Dictionary and metric learning meth-
ods also use non-Euclidean distances [17, 18, 19, 37, 20].

Our approach differs in that we perform end-to-end
learning in the CNN setting while RCD and dictionary
learning constitute shallow architectures that perform worse
than CNNs on the majority of classification tasks.

We note that the Log-Euclidean distance and Power
Normalization have been implemented in the CNN set-
ting [25, 24, 39, 41] for the purpose of region classifica-
tion. These methods employ back-propagation which re-
quires costly eigenvalue decomposition for computations of
derivatives deeming them computationally inefficient. Note
that the cost of a single eigenvalue decomposition is at least
O(d*), where constant 2 < w < 2.376'. The typical bottle-
neck in using non-Euclidean distances in end-to-end setting
lies in their costly back-propagation rules.

Our work differs in that we make an i.i.d. assumption on
our co-occurrence features in our second-order representa-
tion. Thus, we require only element-wise rather than spec-
tral operations. This reduces the complexity and relies on
trivial arithmetic operations easy to implement on GPU.
Pooling and CNNs. There exist several approaches for
image retrieval and recognition which perform some form
of aggregation over first-order statistics extracted from the
CNN maps e.g., [15, 61, 1]. In [15], the authors propose to
extract multiple regions from an image and aggregate CNN
responses into an image representations. In [61], the authors
aggregate local deep features for the task of image retrieval.
In [1], the authors extend Vector of Locally Aggregated De-
scriptors (VLAD) to an end-to-end trainable system.

Our approach differs in that we use co-occurrences in
end-to-end setting and take an analytical look at how to in-
terpret Power Normalization functions in this setting.

There has been also a revived interest in creating co-
occurrence patterns in CNN setting similar in spirit to RCD.
Approach [40] applies a fusion of two CNN streams via
outer product in the context of the fine-grained image recog-
nition. Another approach for face recognition [23] uses co-
occurrences of CNN feature vectors and facial attribute vec-

'We assume that the eigenvalue decomposition of large matrices (d=
4096) in CUDA BLAS is fast and efficient—which is not the case.



tors to obtain state-of-the-art face recognition results. A re-
cent approach [52] extracts feature vectors at two separate
locations in feature maps and performs an outer product to
form a CNN co-occurrence layer.

In contrast to these papers, we use symmetric positive
(semi-)definite matrices rather than negative definite ones.
Power Normalizations. Practical image representations
have to deal with the so-called burstiness which is ‘the prop-
erty that a given visual element appears more times in an
image than a statistically independent model would predict’
[28]. Power Normalization [0, 46, 28] is known to suppress
this burstiness and has been extensively studied and evalu-
ated in the context of Bag-of-Words [35, 34]. The theoreti-
cal relation between Average and Max-pooling was studied
in [7] which highlighted the underlying statistical reasons
for the superior performance of Max-pooling compared to
a mere average of feature vectors. An analysis of feature
pooling was conducted in [8] under specific assumptions on
distributions from which the aggregated features are drawn.
A relationship between the likelihood of ‘at least one par-
ticular visual word being present in an image’ and Max-
pooling was studied in [42]. According to a survey [35],
these Power Normalization functions are closely related.

We take a similar view on PN functions, however, we
devise an end-to-end trainable CNN layer and derive new
pooling functions with well-behaved derivatives. We follow
theoretical foundations of the Power Normalization family.

3. Background

Below we review our notations and the background on
kernel linearizations and the Power Normalization family.

3.1. Notations

Let x € R? be a d-dimensional feature vector. Then
we use X =1®, x to denote the r-mode super-symmetric
rank-one tensor X generated by the r-th order outer-product
of x, where the element of X € &%, at the (i1, ig, ..., 4, )-
th index is given by II;_;x;;. Zy stands for the index set
{1,2,..., N}. The spaces of symmetric positive semidef-
inite and definite matrices are S¢ and S¢,. Moreover,
Sym(X) =3 (X+XT). A vector with all coefficients equal
one is denoted by 1, j,, is a vector of all zeros except for the
m-th coefficient which is equal one, and J,,,,, is a matrix of
all zeros with a value of one at the position (m,n). More-
over, ® is the Hadamard product (element-wise multiplica-
tion). We use the MATLAB notation v = [begin : step : end]
to generate a vector v with elements starting as begin, end-
ing as end, with stepping equal step. Operator ‘;” in [X; Y]
denotes the concatenation of vectors x and y (or scalars).

3.2. Kernel Linearization

In the sequel, we will use kernel feature maps detailed
below to embed (z, y) locations of feature vectors extracted
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from conv. CNN maps at (z,y) into a non-linear Hilbert
space. Such locations are called spatial coordinates [31, 34].

Proposition 1. Let G,(x—y) = exp(—Hx—yHg /20?%) de-
note a Gaussian RBF kernel centered at y and having a
bandwidth o. Kernel linearization refers to rewriting G,
as an inner-product of two (in)finite-dimensional feature
maps which we obtain via probability product kernels [26].
Specifically, we employ the inner product of d'-dimensional
isotropic Gaussians given X,y € RY as follows:

’
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Eq. (1) can be approximated by replacing the integral with
the sum over Z pivots (1, ..., Cz. Thus, we obtain:

P(x) = |Gy ya(x = 1)y Gy yalx cz)]T , @)
and G5 (x—y) ~ (Vep(x),Vep(y)) 3)

where c is a constant. We refer to (2) as a (kernel) feature
map® and to (3) as the linearization of the RBF kernel.

Proof. The Gaussian kernel can be rewritten as a probabil-
ity product kernel. See [26] (Section 3.1) for derivations. []

3.3. Second- and Higher-order Tensors

Below we show that second- or higher-order tensors
emerge from a linearization of sum of Polynomial kernels.

Proposition 2. Let #1 = {bu}nenn, B = {65 hneni
be datapoints from two images I 5 and ITp, and N = | N4 |
and N*=|Ng| be the numbers of data vectors e.g., obtained
from the last convolutional feature map of CNN for images
Il 4 and Ilg. Tensor feature maps result from a lineariza-
tion of the sum of Polynomial kernels of degree r:

K(®Pa, Pp)=(¥(Pa),¥(Pp)) = 4
1 . AT 1
N S . @) where U ()= > 1®, dn.
nENa n'ENB neN
Proof. See [32] for the details of such an expansion. O

Remark 1. In what follows, we will use second-order ma-
trices obtained from the above expansion for r =2, that is:

neNa n'€Np neNa neNp
)
Thus, we obtain the following (kernel) feature map®:
1
T ({$uhner) =G(5 D dudl),  ©

neN

3Note that (kernel) feature maps are not conv. CNN maps. They are
two separate notions that happen to share the same name.



where G(X) = X will be later replaced by various Power
Normalization functions.

3.4. Power Normalization Family

Max-pooling [7] can be derived by drawing features
from the Bernoulli distribution under the i.i.d. assump-
tion [8] which leads to so-called Theoretical Expectation
of Max-pooling (MaxExp) operator [35] detailed below.

Proposition 3. Assume a vector ¢ € {0,1}" which stores
N outcomes of drawing from Bernoulli distribution under
the i.i.d. assumption for which the probability p of an event
(¢ = 1) and 1 —p for (¢n, = 0) can be estimated as an
expected value e.g., p=avg,, ¢n. Then the probability of at
least one positive event in ¢ from N trials becomes:

Y=1-(1-p)". (7)

Proof. The proof follows the school syllabus for a fair coin
toss. The probability of all N outcomes to be {(¢; =
0), ..., (¢n = 0)} amounts to (1—p)™. The probability of
at least one positive outcome (¢, = 1) amounts to applying
the logical ‘or’ {(¢1=1)|...| (¢ny=1)} and leads to:

Y (N
1-(1-p)N =Y <n>p"(1—p)N"~ ®)
n=1 ]
Remark 2. A practical implementation of this pooling
strategy [35] is given by ¢, = 1— (1 —avg,, ¢gn)", where
0 < n = N is an adjustable parameter and ¢y, is a k-th
feature of an n-th feature vector e.g., as defined in Prop. 2,
which is normalized to range 0—1.

Remark 3. It was shown in [35] that Power Normalization
(Gamma) given by vy, = (avg, ¢irn)", where 0 < v <1
is an adjustable parameter, is in fact an approximation of
MaxExp.

4. Problem Formulation

We start by devising our co-occurrence and pooling lay-
ers. We show that the Power Normalization (Gamma) has
an ill-behaved derivative. Thus, we generalize MaxExp and
Gamma [35, 34] to Logistic a.k.a. Sigmoid (SigmFE) and the
Arcsin hyperbolic (AsinhE) functions.

4.1. Co-occurrence matrix

As in Prop. 2, assume that datapoints @4 = {¢,, }nen,
and @5 = {¢} }nen, from two images IT4 and IIp are
given, N = |M| and N* = |Nj| are the numbers of
data vectors obtained from the last convolutional feature
map of CNN for images II4 and IIp. Moreover, assume
that all ¢ and ¢* are rectified e.g., ¢, := max(0, @y,),

* :=max(0, ¢ ), and subsequently S-centered w.r.t. the
means p = avg,cy, Pn and p* = avg, n, @), so that
@ =¢,—Pp and ¢, :=¢; —Bp*for 0< [ <1.

The role of S-centering is to address anti-occurrences.
Specifically, sophisticated models of Bag-of-Words utilize
so-called negative visual words which are the evidence of
lack of a given visual stimulus in an image. For instance,
the authors of [27] define it as ‘the negative evidence, i.e., a
visual word that is mutually missing in two descriptions be-
ing compared’. Lack of certain visual stimuli may correlate
with certain visual classes e.g., lack of the sky may imply
an indoor scene. Thus, the role of (3 is to offset vectors ¢
by their per-image averages p so that the positive/negative
values yield correlations/anti-correlations, respectively.

Next, let z,, :=2,/(W—1) and y,, :=y,,/(H—1) be spa-
tial coordinates normalized w.r.t. the width W and height
H of conv. feature maps. We form the following kernel and
its linearization by the use of Proposition 1:

<Oé(p($n, C)a OLSD(‘T:/, C>>+<O“P(yﬂ7 C)v O“p(y:,’a C)> ~
O‘2GU(In_x:1’)+a2Go<yn_y:ﬂ)~ ©)

For Z pivots ¢, we use Z in range 3—10 and equally spaced
intervals e.g., ¢ = [-0.2 : 1.4/(Z—1) : 1.2] to encode
the spatial coordinates z,, and y,. The above formulation
extends to the aggregation over patches extracted from im-
ages as shown in Figure 1. We form vectors ¢,, = [¢,; C,1]
which are augmented by encoded spatial coordinates c,, =
[ap(zn, €); ap(Yn, €)]. Thus, we define the total length of
¢, as Z'=2Z. Combining the augmented vectors with the
Proposition 2 and Eq. (6) yields:

_ 1 - -
T ({Pntnen) =G(M), M== > éndy. (10)
neN
Gamma pooling follows Remark 3 and is simply defined
by setting G(X) = (MX)7, where rising M to the power of
~ is element-wise and -y is a small regularization constant:

_ 1 — -\
neN
4.2. Well-motivated Pooling Approaches
Prop. 3 states that quantity 1—(1—p)® is the probability of

at least one success being detected in the pool of the NV i.i.d.
trials performed according to the Bernoulli distribution with
the success probability p and stored in ¢ € {0,1}V. Below
we extend this simple theory to the case of co-occurrences.

Proposition 4. Assume two event vectors ¢, ¢’ € {0, 1}V
which store the N trials each, performed according to the
Bernoulli distribution under i.i.d. assumption, for which
the probability p of an event (¢, NP, = 1) denotes a co-
occurrence and 1—p, for (¢, N, =0), denotes the lack of
it, and p is estimated as an expected value p=avg,, ¢ ).
Then the probability of at least one co-occurrence event
(pnN@., =1) in ¢, and ¢}, simultaneously in N trials be-
comes:

p=1—1-p)". (12)
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Figure 2: Gamma, AsinhE, MaxExp and SigmE are illustrated in Figures 2a and 2b while derivatives of Gamma and AsinhE are shown in
Figure 2c. Lastly, Gamma for several values of v is shown in Figure 2d from which its similarity to MaxExp in range 0-1 is clear.

Proof. The probability of all N outcomes to be {(¢1N¢p] =
0), ..., (pnN@\ =0)} amounts to (1—p)™. The probability
of at least one positive outcome (¢ N ¢} = 1) amounts to
applying the logical ‘or’ {(¢1N¢)=1)|...| (dnNPy=1)}
and leads to 1—(1—p)®, where p=avg,, ¢, ¢,

A stricter proof uses a Multinomial distribution model
with four events for (¢,,) and (¢!,) which describe all pos-
sible outcomes. Let probabilities p, g, s and 1—-p—g—s add up
to 1 and correspond to events (¢, ¥, =1), (¢, =1, ¢}, =0),
(¢ =0,¢], =1) and (¢, U¢!, =0). The first event is a co-
occurrence, the latter two are occurrences only and the last
event is the lack of the first three events. The probability of
at least one co-occurrence (¢, ., =1) in N trials becomes:

N N—n N—n—n' N . N
Z Z (n,n’,n”,anfn’fn”)pnqn s (1—p—q—8) B
n=1n'=0 n’=0 (13)
One can verify algebraically/numerically that Eq. (13) and
(12) are equivalent w.r.t. p which completes the proof. [

Remark 4. A practical implementation of this pooling
strategy is given by Yy = 1— (1 —avg,, dpndin)", where
0 < n =~ N is an adjustable parameter, and ¢y, and ¢,
are k-th and l-th features of an n-th feature vector e.g., as
defined in Prop. 2, which is normalized as detailed next.

Remark 5. In practice, p is an expected value over N recti-
fied co-occurring responses of pairs of convolutional filters
rather than binary variables. A similar strategy is used with
success in the BoW model [34]. In matrix form, we have:

M n
U=g(M,n)=1-|1—-——7— 14
o) =1-(1-par—) a9
where Tr(M) prevents elements of co-occurrence matrix
M in enumerator of Eq. (14) from exceeding value of one,
constant \=le-6 deals with the vanishing trace and 7 is
chosen via cross-validation.

Remark 6. G*(M,n)=G(M,n)(Tr(M)+X)? compen-
sates for the trace in (14) which affected the input-output
ratio of norms. G*(M,n) =G (M, n)+ kM prevents van-
ishing gradients in pooling. Both terms can be combined.

/ "
n—m —n

We note that matrix M contains co-occurrences created
from feature vectors ¢ which were 3-centered. Therefore,
some entries of M may be negative. This breaks down
pooling models such as Gamma and MaxExp for which we
strictly use 8 = 0 that disables the anti-correlation mech-
anism. Nevertheless, we list detailed derivatives of these
pooling functions w.r.t. the feature vectors in Appendix A.

4.3. Well-behaved Power Normalizations

Power Normalizations in Eq. (11) and (14) have infinite
or undetermined gradients if coefficients M,,,,, — 0 and A —
0. If regularization A > 0, both power normalizations are
somewhat compromised as their role is to magnify weak
signals ¢ = 0. Moreover, these pooling schemes break down
in presence of negative entries M,,, < 0. Therefore, we
propose the following poolings extensions.

SigmE pooling, used in lieu of MaxExp in Eq. (12) and
(14), is given by Logistic a.k.a. Sigmoid (SigmE) functions:

!T’:g(MW)*m

—1and 1. (15)

1+e Tr(M)+X

AsinhE pooling is an alternative to Gamma function in Eq.
11. It is defined as the Arcsin hyperbolic function:

W=G(M,n)= arcsinh(y/M) =log(v'M + /1 + v'*M?),

(16)
Pooling | (p) ~ ¢'(p) :
function |if p<0 if p=0 v(p) v(p)
Gamma [34]| inv. 00 7 p !
MaxExp [34]| inv. fin. 1—(1—p)" n(1—p)™*
5 : ; p
AsinhE ok fin. Asinh(y'p) 7@
: 2 _ 2nle” P
SigmE ok fin. =2 (e 77)2

Table 1: A collection of Power Normalization functions. Vari-
ables v > 0, v'> 0, n > 1, and ' > 1 control the level of power
normalization. We indicate properties of 1 such as finite (fin.) or
infinite (co) derivative of ¥ w.r.t. p at p =0 and invalid (inv.) or
valid (ok) power normalization for p < 0.



Figure 2 illustrates MaxExp and SigmE as well as
Gamma and AsinhE functions from which it is clear that,
for negative p, SigmE and AsinhE are natural extensions of
MaxExp and Gamma, respectively. The derivative of As-
inhE is smooth and finite (the same holds for SigmE) unlike
the derivative of Gamma. Due to the above findings, we will
perform our experiments on SigmE and AsinhE only. Table
1 lists various properties of the Power Normalization func-
tions. Moreover, Appendix B provides detailed derivatives
of these pooling functions w.r.t. the feature vectors. We
used these derivatives in our end-to-end learning of CNNs.

Power Normalization functions have a whitening effect
on features i.e., the frequent bursts of the same kind of fea-
ture are reduced while the responses of rarely occurring fea-
tures are magnified [34]. For co-occurrences of visual fea-
tures, we showed in Prop. 4 that Power Normalizations act
as detectors of co-occurring combinations of patterns i.e.,
they capture if at least one co-occurrence of features takes
place but they discard the quantity of such co-occurrences
which otherwise would be a source of nuisance/noise.

4.4. Spectral Power Normalizations

Spectral versions of our pooling methods and their
derivatives can be obtained by performing an SVD on M,
substituting eigenvalues \;; according to Table 1 such that
A% :=1(\;;) and computing G(M) =UX*U™. For deriva-
tives, A%, :=’()\;;) can be applied in back-propagation via
SVD [25]. Table 2 shows that the spectral MaxExp and its
derivative may be computed via matrix multiplications.

5. Experiments

Below we demonstrate experimentally merits of our
second-order pooling with Power Normalizations.

Datasets. We employ four publicly available datasets and
report the mean top-1 accuracy on each of them. The
Flower102 dataset [44] is a fine-grained category recogni-
tion dataset that contains 102 categories of various flowers.
Each class consists of between 40 and 258 images. The
MIT67 dataset [48] contains a total of 15620 images be-
longing to 67 indoor scene classes. We follow the standard
evaluation protocol, which uses a train and test split of 80%
and 20% of images per class. The FMD dataset contains
in total 100 images per category belonging to 10 categories
of materials (e.g., glass, plastic, leather) collected from the
Flickr website. Lastly, the Food-101 dataset [5] has 101000
images in total and 1000 images per category.

‘ Gamma  MaxExp AsinhE SigmE

Experimental setup. For Flower102 [44], we extract 12
cropped 224 x 224 patches per image and use mini-batch of
size 5 to fine-tune the ResNet-50 model [2 1] pre-trained on
ImageNet [50]. We obtain 2048 dim. 12 x 7 x 7 conv. fea-
ture vectors from the last conv. layer for our second-order
pooling layer. For MIT67 [48], we resize original images
to 336 x336 and use mini-batch of size 32, then fine-tune it
on the ResNet-50 model [2 1] pre-trained on the Places-205
dataset [63]. With 336x336 image size, we obtain 2048 dim.
11 x 11 conv. feature vectors from the last conv. layer for
our second-order pooling layer. For FMD [5 1] and Food101
[5], we resize images to 448x448, use mini-batch of size 32
and fine-tune ResNet-50 [2 1] pre-trained on ImageNet [50].
We use the 2048 dim. 14x 14 conv. feature vectors from the
last conv. layer. For ResNet-50, we fine-tune all layers for
~20 epochs with learning rates le-4—1e-6. We use the Root
Mean Square Propagation (RMSprop) [22] with the moving
average 0.99. Where stated, we use AlexNet [36] with fine-
tuned last two conv. layers. We use 256 dim. 6 X 6 conv.
feature vectors from the last convolutional layer.

Our methods. We evaluate the generalizations of MaxExp
and Gamma which are Logistic a.k.a. Sigmoid (SigmE) and
the Arcsin hyperbolic (AsinhE) pooling functions. We focus
mainly on our second-order representation (SOP) but we
also occasionally report results for the first-order approach
(FOP). For the baseline, we use the classifier on top of the
fc layer (Baseline). The hyperparameters of our model are
selected via cross-validation. The use of spatial coordinates
is indicated by (SC) and spectral operators by (Spec).

5.1. Evaluations

We start by combining first- and second-order represen-
tations with SigmE and AsinhE pooling. We also investi-
gate the impact of AlexNet and ResNet-50 on our approach.
Flower102. Table 3 shows that AlexNet performs worse
than ResNet-50 which is consistent with the literature. For
the standard ResNet-50 fine-tuned on Flower102, we ob-

—_n' M _
SOD| M 1=y on (A ) 21T ) L

der. Eq. (24)/SVD Eq. (25) /SVD SVD SVD

Table 2: A collection of spectral Power Normalization functions.
The square, square root, power, log and exp are matrix operations.

Figure 3: Each column shows examples of images from the
Flower102, MIT67 FMD and Food101 dataset, respectively.



Method top-1 accuracy Method acc. || Method acc.
Second-order Bag-of-Words [34] 90.2 IFV+DeCAF [11] 65.5 Baseline 83.4
Factors of Transferability — [3] 91.3 FV+FC+CNN [12] 822 || SOP+SC+AsinhE 85.0
Reversal-inv. Image Repr.  [60] 94.0 SMO Task [62] 82.3 || SOP+SC+SigmE  85.5
Optimal two-stream fusion  [43] 94.5
Neural act. constellations — [53] 953 Table 5: The FMD dataset. Our (right) vs. other methods (left).
Metho_d Alexnet | ResNet-50 shows that all second-order approaches (SOP) outperform
Baseline 82.00 94.06 . .
the standard ResNet-50 network (Baseline) pre-trained on
FoOP 85.40 94.08
. the Places-205 dataset and fine-tuned on MIT67. Moreover,
FOP+AsinhE 85.64 94.60 . . . .
(SigmFE) yields marginally better results than (AsinhE). Us-
SOP 87.20 94.70 ) . . . .. .
, ing spatial coordinates (SC) also results in additional gain
SOP+AsinhE 88.40 95.12 . . .
) in the classification performance. The second-order rep-
SOP+SC+AsinhE 90.70 95.74 . . . . . .
. resentation combined with spatial coordinates and SigmE
SOP+SC+SigmE 91.71 96.78 . . .
pooling (SOP+SC+SigmE) yields 86.3% accuracy and out-
SOP+SC+Spec. Gamma - 96.88 . .
performs our baseline and [29] by 2.3 and 2%, respectively.
SOP+SC+Spec. MaxExp - 97.28

Table 3: The Flower102 dataset. The bottom part shows our re-
sults for Alexnet and ResNet-50. The top part of the table lists
state-of-the-art results from the literature.

tain 94.06% accuracy. The first-order Average and AsinhE
pooling (FOP) and (FOP+AsinhE) score 94.08 and 94.6%
accuracy. The second-order pooling (SOP+AsinhE) outper-
forms (FOP+AsinhE). We obtain the best result of 96.78%
for the second-order representation combined with spatial
coordinates and SigmE pooling (SOP+SC+SigmE) which
is 2.72% higher than our baseline. In contrast, a recent more
complex state-of-the-art method [53] obtained 95.3% accu-
racy. Our scores highlight that capturing co-occurrences of
visual features and passing them via a well-defined Power
Normalization function such as SigmE works well for our
fine-grained problem. We attribute the good performance of
SigmE to its ability to act as a detector of co-occurrences.
The role of the Hyperbolic Tangent non-linearity popular in
deep learning may be explained by its similarity to SigmE.
Lastly, our spectral MaxExp (SOP+SC+Spec. MaxExp)
yields 97.28% accuracy.

Scene recognition. Next, we validate our approach on

MIT67—-a larger dataset for scene recognition. Table 4
Method top-1 accuracy
CNNs with Deep Supervision [57] 76.1
Places-205 [56] 80.9
Deep Filter Banks [12] 81.0
Spectral Features [29] 84.3
Baseline 84.0
SOP+AsinhE 85.3
SOP+SigmE 85.6
SOP+SC+AsinhE 85.9
SOP+SC+SigmE 86.3

Table 4: The MIT67 dataset. The bottom part shows our results
for ResNet-50 pre-trained on the Places-205 dataset. The top part
of the table lists state-of-the-art results from the literature.

Material classification. Next, we quantify our perfor-
mance on the FMD dataset for material/texture recognition.
Table 5 demonstrates that our second-order representation
(SOP+SC+SigmE) scores 85.5% accuracy and outperforms
our baseline approach by 2.1%. We note that our approach
and the baseline use the same testbed. The only difference
is our second-order representations, spatial coordinates and
Power Normalization components in our last layer.

Food101. We apply our strongest second-order represen-
tations (SOP+SC+SigmE) and (SOP+SC+Spec. MaxExp)
to this dataset and obtain 87.5% and 87.8% accuracy. In
contrast, a recent more involved kernel pooling [ 3] reports
85.5% accuracy while the baseline approach scores only
81.9% in the same testbed. This demonstrates the strength
of our approach on fine-grained problems.

97 85.5

96.8

3966 5.1
S g
S 96.4 ©84.9
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Figure 4: Performance w.r.t. hyperparameters. Figures 4a and
4b: B-centering on Flower102 and « for spatial coordinate encod-
ing on FMD. Figures 4c¢ and 4d: the accuracy w.r.t. the n’and 7
parameters given SigmE and the spectral MaxExp.



Performance w.r.t. hyperparameters. Figure 4a demon-
strates that S-centering has a positive impact on image clas-
sification with ResNet-50. This strategy, detailed in Sec-
tion 4.1, is trivial to combine with our pooling. Figure 4b
shows that setting non-zero «, which lets encode spatial co-
ordinates according to Eq. (9), brings additional gain in
accuracy at no extra cost. Figure 4c demonstrates that over
1% accuracy can be gained by tuning our SigmE pooling.
Moreover, Figure 4d shows that the spectral MaxExp can
yield further gains over element-wise SigmE and MaxExp
for carefully chosen 7. Lastly, we have observed that our
spectral and element-wise MaxExp converged in 3—-12 and
15-25 iterations, resp. This shows that both spectral and
element-wise pooling have their strong and weak points.

6. Conclusions

We have studied Power Normalizations in the context of
co-occurrence representations and demonstrated their the-
oretical role which is to ‘detect’ co-occurring pairs of fea-
tures. We have proposed surrogate functions SigmE and As-
inhE which can handle so-called negative evidence and have
well-behaved derivatives for end-to-end learning which we
performed. Our pooling operators are element-wise there-
fore they are cheap to implement in GPU. Moreover, our
pooling operators easily extend to spectral pooling. We
have demonstrated state-of-the-art results on four popular
benchmarks and sensible gains on powerful ResNet-50.

Appendices

A. Derivatives of Average, Gamma and Max-
Exp functions

Let & = [¢1, ..., pn] €RN, C = [cy, ..., cn] € RZ*N,
and some class. loss {(¥, W), where ¥ € Sfrzl (orS, )
and W are our descriptor and a hyperplane. Eq. (10) yields:

03, Pndr _
6¢m’n/
where [0] z+« z- denotes array of size Z'x Z'filled with zeros.

Average poolmg is set by G(M)=M and D=11" so that
=M=+ ¢,pL. Thus, the full derivative becomes:

9T, W) 0%y 2 90T, W) &
; OV o ﬁSym( ow QD)(lzd,:) [C} (18)

jm/cz;/
(0] 2%z

.7m ¢n/ +¢n’.7m/
Cn/_]m/

} ;A7)

Gamma pooling is set by ¥ = G(M) = (A+ M )", where
rising M to the power of v is element-wise and ) is a reg.
constant. Thus, we obtain:

w1 103, P

R— 77
a(b?ﬂ’n’ B N’Y()VFM) © 8¢m’n’

19)

The derivative is given by Eq. (18) if D=+ ()\—l—M)"/fl.

MaxExp pooling W =G (M) =1—(1-M /(Te(M) + N))"
has the derivative given by Eq. (18) with the following D:

M n—1
D= R e — T and T =
"( Tr(M)+A> ©Tan

MOI )

1
(Tr(M)+A_ (Tr(M)+X)2

where multiplication ®, division, rising to the power efc.
are all element-wise operations.

B. Derivatives of SigmE and AsinhE pooling
SigmE pooling is setby W =G(M ) = —1 or trace-
2

o M

14e TE(M) X

2
1He—n'M

normalized —1. The first expression yields:

ow 1 2pe "M , ,
- N 2 © (Jm’(rl)zﬁkd)n’ﬂﬁ’)a
8¢m’n/

N (1+e- M)

where multiplication ®, division, and exponentiation are all
element-wise operations.
AsinhE pooling is set by ¥ = G(M) = arcsinh(y'M ) =
log(7'M + /1 4 ~'°M?) which yields the following:

or 1 ~

8¢m/n’ N 7'2M2 +1

where multiplication ®, division, square root and the square
are all element-wise operations.

For SigmE, trace-normalized SigmE and AsinhE pooling

methods, the final derivatives are given by Eq. (18) with the
following D, respectively:

@

© (G P+ dms),  (22)

!
_—-n' M
2n’e™ " % 2n /e Tr(M)+X ~'
D—W o D=———"7—0T and D=—.
(1+e ) (1+em)2 VA2 M2 41
(23)

Moreover, for SigmE and AsinhE we allow [3-centering so
that ¢, := ¢,—[p and ¢}, := ¢ —[Fp* Thus, the derivative
of this substitution has to be included in the chain rule.

C. Derivatives of Spectral Gamma and MaxExp

Gamma pooling has derivative which can be solved by the
SVD back-propagation or the Sylvester equation if y= 0.5:
oU(P,W)\T . 1 1

T)(:) >d+Z’><d+Z/andM7(]I®M2+M2®]I)T’

(24)

2 Res(Sym <

where ® and 1 are the Kronecker product and the pseudo-
inverse. Matrix vectorization and reshaping to the size mxn
are denoted by (:) and Res(X)xn-

MaxExp has a closed-form derivative which requires the
following chain rule:

ogm) 1
d My

(25)

T (M) ; ]Zl ( TT(M)Y (sz - %“k’) <H_%>77T1771



References

(1]

(2]

(3]

(4]
[5]

(6]

(7]
8]

(9]

(10]

[11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

R. Arandjelovié, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.
NetVLAD: CNN architecture for weakly supervised place
recognition. CVPR, 2016. 2

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-
euclidean metrics for fast and simple calculus on diffusion
tensors. Magnetic resonance in medicine, 56(2):411-421,
2006. 2

H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and
S. Carlsson. Factors of transferability for a generic convnet
representation. CoRR, abs/1406.5774, 2015. 7

R. Bhatia. Positive definite matrices. Princeton Univ Press,
2007. 2

L. Bossard, M. Guillaumin, and L. J. V. Gool. Food-101
- mining discriminative components with random forests.
ECCV, pages 446461, 2014. 6

S. Boughorbel, J.-P. Tarel, and N. Boujemaa. Generalized
Histogram Intersection Kernel for Image Recognition. /CIP,
2005. 3

Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning Mid-
Level Features for Recognition. CVPR, 2010. 1, 3, 4

Y. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analysis
of Feature Pooling in Vision Algorithms. /CML, 2010. 1, 3,
4

J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic Segmentation with Second-Order Pooling. ECCYV,
2012. 1,2

A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopoulos.
Jensen-Bregman LogDet Divergence with Application to Ef-
ficient Similarity Search for Covariance Matrices. TPAMI,
35(9):2161-2174, 2013. 2

M. Cimpoi, S. Maji, 1. Kokkinos, S. Mohamed, and
A. Vedaldi. Describing textures in the wild. CVPR, pages
3606-3613, 2014. 7

M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and segmentation. CVPR, pages 3828—
3836, 2015. 7

Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie.
Kernel pooling for convolutional neural networks. CVPR,
2017. 7

I. L. Dryden, A. Koloydenko, and D. Zhou. Non-euclidean
statistics for covariance matrices, with applications to dif-
fusion tensor imaging. The Annals of Applied Statistics,
3(3):1102-1123, 2009. 2

Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features.
ECCV, pages 392-407, 2014. 2

K. Guo, P. Ishwar, and J. Konrad. Action recognition from
video using feature covariance matrices. Trans. Img. Proc.,
22(6):2479-2494, 2013. 1

M. Harandi, R. Hartley, C. Shen, B. Lovell, and C. Sander-
son. Extrinsic methods for coding and dictionary learning on
grassmann manifolds. IJCV, 2015. 2

M. Harandi and M. Salzmann. Riemannian coding and dic-
tionary learning: Kernels to the rescue. CVPR, 2015. 2

M. Harandi, M. Salzmann, and M. Baktashmotlagh. Beyond
gauss: Image-set matching on the riemannian manifold of
pdfs. ICCV, 2015. 2

M. Harandi, M. Salzmann, and R. Hartley. Joint dimension-

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]
(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

ality reduction and metric learning: A geometric take. ICML,
page 14041413, 2017. 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CVPR, June 2016. 6

G. Hinton. Neural Networks for Machine Learning
Lecture 6a: Overview of mini-batch gradient descent
Reminder: The error surface for a linear neuron. Lecture
notes, https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf,
2017. Accessed: 10-11-2017. 6

G. Hu, Y. Hua, Y. Yuan, Z. Zhang, Z. Lu, S. S. Mukherjee,
T. M. Hospedales, N. M. Robertson, and Y. Yang. Attribute-
enhanced face recognition with neural tensor fusion net-
works. ICCV, 2017. 2

Z. Huang and L. V. Gool. A riemannian network for spd
matrix learning. AAAI pages 20362042, 2017. 2

C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-
propagation for deep networks with structured layers. ICCV,
2015. 2,6

T. Jebara, R. Kondor, and A. Howard. Probability product
kernels. JMLR, 5:819-844, 2004. 3

H. Jegou and O. Chum. Negative evidences and co-
occurrences in image retrieval: the benefit of pca and whiten-
ing. ECCV,2012. 4

H. Jégou, M. Douze, and C. Schmid. On the Burstiness of
Visual Elements. CVPR, pages 1169-1176, 2009. 3

S. H. Khan, M. Hayat, and F. Porikli. Scene categorization
with spectral features. /ICCV, pages 5638-5648, 2017. 7

P. Koniusz and A. Cherian. Sparse coding for third-order
super-symmetric tensor descriptors with application to tex-
ture recognition. CVPR, 2016. 1

P. Koniusz and K. Mikolajczyk. Spatial coordinate coding to
reduce histogram representations, dominant angle and colour
pyramid match. ICIP, 2011. 1,3

P. Koniusz, Y. Tas, and F. Porikli. Domain adaptation by mix-
ture of alignments of second- or higher-order scatter tensors.
CoRR, abs/1409.1556, 2016. 3

P. Koniusz, F. Yan, P. Gosselin, and K. Mikolajczyk. Higher-
order Occurrence Pooling on Mid- and Low-level Features:
Visual Concept Detection. Technical Report, 2013. 1

P. Koniusz, F. Yan, P. Gosselin, and K. Mikolajczyk. Higher-
order occurrence pooling for bags-of-words: Visual concept
detection. PAMI, 2016. 1,2,3,4,5,6,7

P. Koniusz, F. Yan, and K. Mikolajczyk. Comparison of Mid-
Level Feature Coding Approaches And Pooling Strategies in
Visual Concept Detection. CVIU, 2012. 1, 3,4

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Ima-
geNet classification with deep convolutional neural net-
works. NIPS, pages 1106-1114, 2012. 6

S. Kumar Roy, Z. Mhammedi, and M. Harandi. Geometry
aware constrained optimization techniques for deep learning.
CVPR, 2018. 2

P. Li and Q. Wang. Local log-euclidean covariance matrix (12
ecm) for image representation and its applications. ECCV,
2012. 1

P. Li, J. Xie, Q. Wang, and W. Zuo. Is second-order informa-
tion helpful for large-scale visual recognition? ICCV, 2017.
2

T.-Y. Lin, A. R. Chowdhury, and S. Maji. Bilinear cnn mod-
els for fine-grained visual recognition. /CCV, 2017. 2


https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[41]
[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

T.-Y. Lin and S. Maji. Improved Bilinear Pooling with
CNNs. BMVC, 2017. 2

L. Lingqiao, L. Wang, and X. Liu. In Defence of Soft-
assignment Coding. ICCV, 2011. 1,3

J. Liu, C. Gao, D. Meng, and W. Zuo. Two-stream contextu-
alized cnn for fine-grained image classification. AAAZ, 2016.
7

M.-E. Nilsback and A. Zisserman. Automated Flower Clas-
sification over a Large Number of Classes. ICVGIP, Dec
2008. 6

X. Pennec, P. Fillard, and N. Ayache. A Riemannian Frame-
work for Tensor Computing. IJCV, 66(1):41-66, 2006. 2

F. Perronnin, J. Sdnchez, and T. Mensink. Improving the
Fisher Kernel for Large-Scale Image Classification. ECCV,
pages 143-156, 2010. 1, 3

F. Porikli and O. Tuzel. Covariance tracker. CVPR, 2006. 1,
2

A. Quattoni and A. Torralba. Recognizing indoor scenes.
CVPR, 2009. 6

A. Romero, M. Y. Teran, M. Gouiftes, and L. Lacassagne.
Enhanced local binary covariance matrices (ELBCM) for
texture analysis and object tracking. MIRAGE, pages 10:1-
10:8,2013. 2

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet large scale visual
recognition challenge. IJCV, 115(3):211-252, 2015. 6

L. Sharan, R. Rosenholtz, and E. H. Adelson. Material per-
ception: What can you see in a brief glance? Journal of
Vision, 14(9), 2014. 6

Y.-F. Shih, Y.-M. Yeh, Y.-Y. Lin, M.-F. Weng, Y.-C. Lu, and
Y.-Y. Chuang. Deep co-occurrence feature learning for vi-
sual object recognition. CVPR, 2017. 3

M. Simon and E. Rodner. Neural activation constellations:
Unsupervised part model discovery with convolutional net-
works. ICCV, pages 1143-1151, 2015. 7

O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast
descriptor for detection and classification. ECCV, 2006. 1, 2
O. Tuzel, E. Porikli, and P. Meer. Pedestrian detection via
classification on riemannian manifolds. PAMI, 30(10):1713—
1727, 2008. 2

L. Wang, S. Guo, W. Huang, and Y. Qiao. Places205-vggnet
models for scene recognition. CoRR, abs/1508.01667, 2015.
7

L. Wang, C.-Y. Lee, Z. Tu, and S. Lazebnik. Training
deeper convolutional networks with deep supervision. CoRR,
abs/1505.02496, 2015. 7

Q. Wang, F. Chen, and W. Xu. Tracking by third-order ten-
sor representation. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 41(2):385-396, 2011. 1
Z. Wang and B. C. Vemuri. An affine invariant tensor dissim-
ilarity measure and its applications to tensor-valued image
segmentation. CVPR, 2004. 2

L. Xie, J. Wang, W. Lin, B. Zhang, and Q. Tian. Towards
reversal-invariant image representation. IJCV, 123(2):226—
250, 2017. 7

A. B. Yandex and V. Lempitsky. Aggregating local deep fea-
tures for image retrieval. ICCV, pages 1269-1277, 2015. 2
Y. Zhang, M. Ozay, X. Liu, and T. Okatani. Integrating deep
features for material recognition. ICPR, pages 3697-3702,

2016. 7

[63] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places
database. NIPS, 2014. 6



