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Ground-truth

Question
answer

How old is the I can’t see his| He looks| Twenties I can’t
man? face, but maybe mid thirty tell
or late twenties

Thirtys I say
teenager

Twentys

What race is White White White| In five-| I can’t|Caucasian
the man? thirty see
away

He looks
white

Is he wearing I don’t see his No Yes Yes Yes No
a hat? head

No

Is he wearing Yes Yes Yes No No Yes
a shirt?

What color? Dark grey Grey Grey Black White Black

What gender is
the baby?

I can’'t really 1 Boy I Male 1
tell, maybe a girl

What is the A bib Shirt
baby wearing?

T-shirt | Shirt and| Shirt and Looks
has pants shirt shirt like
white

Shirt and
shirt

White and black White silver silver It is White
white and
black

What color is
the remote?

Black

Is the chair No, it’s leather No No Yes | No it’s a No
wood? chair

What color is
the chair?

Like a light Brown | White has| A light Gray Brown

burgundy white brown with
checkered white
texture

Gray
A man sitting in a chair holding a baby who is chewing on a remote

Figure 1: Diverse answers generated by FLIPDIAL in the one-way visual dialogue (1VD) task. For a given time step (row),
each column shows a generated answer to the current question. Answers are obtained by decoding a latent z; sampled from
the conditional prior — with conditions being the image, caption and dialogue history up until that time step.

Abstract

We present FLIPDIAL, a generative model for Visual
Dialogue that simultaneously plays the role of both partici-
pants in a visually-grounded dialogue. Given context in the
form of an image and an associated caption summarising
the contents of the image, FLIPDIAL learns both to answer
questions and put forward questions, capable of generating
entire sequences of dialogue (question-answer pairs) which
are diverse and relevant to the image. To do this, FLIPDIAL
relies on a simple but surprisingly powerful idea: it uses
convolutional neural networks (CNNs) to encode entire di-
alogues directly, implicitly capturing dialogue context, and
conditional VAEs to learn the generative model. FLIPDIAL
outperforms the state-of-the-art model in the sequential an-
swering task (1VD) on the VisDial dataset by 5 points in
Mean Rank using the generated answers. We are the first to
extend this paradigm to full two-way visual dialogue (2VD),
where our model is capable of generating both questions and
answers in sequence based on a visual input, for which we
propose a set of novel evaluation measures and metrics.

1. Introduction

A fundamental characteristic of a good human-computer
interaction (HCI) system is its ability to effectively acquire
and disseminate knowledge about the tasks and environ-
ments in which it is involved. A particular subclass of such
systems, natural-language-driven conversational agents such
as Alexa and Siri, have seen great success in a number of well-
defined language-driven tasks. Even such widely adopted
systems suffer, however, when exposed to less circumscribed,
more free-form situations. Ultimately, an implicit require-
ment for the wide-scale success of such systems is the effec-
tive understanding of the environments and goals of the user
— an exceedingly difficult problem in the general case as it
involves getting to grips with a variety of sub-problems (se-
mantics, grounding, long-range dependencies) each of which
are extremely difficult problems in themselves. One avenue
to ameliorate such issues is the incorporation of visual con-
text to help explicitly ground the language used — providing
a domain in which knowledge can be anchored and extracted
from. Conversely, this also provides a way in which language
can be used to characterise visual information in richer terms,



for example with sentences describing salient features in the
image (referred to as “captioning”) [13, 15].

In recent years, there has been considerable interest in
visually-guided language generation in the form of visual
question-answering (VQA) [1] and subsequently visual di-
alogue [6], both involving the task of answering questions
in the context of an image. In the particular case of visual
dialogue, along with the image, previously seen questions
and answers (i.e. the dialogue history) are also accepted, and
a relevant answer at the current time produced. We refer
to this one-sided or answer-only form of visual dialogue as
one-way visual dialogue (1VD). Inspired by these models
and aiming to extend their capabilities, we establish the task
of two-way visual dialogue (2vD) whereby an agent must
be capable of acting as both the questioner and the answerer.

Our motivation for this is simple — Al agents need to
be able to both ask questions and answer them, often inter-
changeably, rather do either one exclusively. For example,
a vision-based home-assistant (e.g. Amazon’s Alexa) may
need to ask questions based on her visual input (“There is
no toilet paper left. Would you like me to order more?””) but
may also need to answer questions asked by humans (“Did
you order the two-ply toilet paper?”’). The same question-
answer capability is true for other applications. For example,
with aids for the visually-impaired, a user may need the an-
swer to “Where is the tea and kettle?”, but the system may
equally need to query “Are you looking for an Earl Grey or
Rooibos teabag?” to resolve potential ambiguities.

We take one step toward this broad research goal with
FLIPDIAL, a generative model capable of both 1VD and
2vD. The generative aspect of our model is served by using
the conditional variational auto-encoder (CVAE), a frame-
work for learning deep conditional generative models while
simultaneously amortising the cost of inference in such mod-
els over the dataset [17, 24]. Furthermore, inspired by the
recent success of convolutional neural networks (CNNs) in
language generation and prediction tasks [11, 14, 21], we
explore the use of CNNs on sequences of sequences (i.e. a
dialogue) to implicitly capture all sequential dependences
through the model. Demonstrating the surprising effective-
ness of this approach, we show sets of sensible and diverse
answer generations for the 1vD task in Fig. 1.

We here provide a brief treatment of works related to
visual dialogue. We reserve a thorough comparison to Das
et.al. [6] for §4.3, noting here that our fully-generative con-
volutional extension of their model outperforms their state-
of-the-art results on the answering of sequential visual-based
questions (1vD). In another work, Das et.al. [7] present a
Reinforcement Learning based model to do 1VD, where they
instantiate two separate agents, one each for questioning and
answering. Crucially, the two agents are given different in-
formation — with one (QBot) given the caption, and the other
(ABot) given the image. While this sets up the interesting

task of performing image retrieval from natural-language
descriptions, it is also fundamentally different from having
a single agent perform both roles. Jain et.al. [12] explore
a complementary task to VQA [1] where the goal is instead
to generate a (diverse) set of relevant questions given an
image. In their case, however, there is no dependence on
a history of questions and answers. Finally, we note that
Zhao et.al. [27] employ a similar model structure to ours,
using a CVAE to model dialogue, but condition their model
on discourse-based constraints for a purely linguistic (rather
than visuo-linguistic) dataset. The tasks we target, our archi-
tectural differences (CNNs), and the dataset and metrics we
employ are distinct.

Our primary contributions in this work are therefore:

o A fully-generative, convolutional framework for visual
dialogue that outperforms state-of-the-art models on se-
quential question answering (1VD) using the generated
answers, and establishes a baseline in the challenging two-
way visual dialogue task (2vD).

e Evaluation using the predicted (not ground-truth) dialogue
— essential for real-world conversational agents.

e Novel evaluation metrics for generative models of two-
way visual dialogue to quantify answer-generation quality,
question relevance, and the models’s generative capacity.

2. Preliminaries

Here we present a brief treatment of the preliminaries for
deep generative models — a conglomerate of deep neural net-
works and generative models. In particular, we discuss the
variational auto-encoder (VAE) [17] which given a dataset X’
with elements & € &, simultaneously learns i) a variational
approximation g, (z | «)' to the unknown posterior distri-
bution py(z | ) for latent variable z, and ii) a generative
model py(x, z) over data and latent variables. These are
both highly attractive prospects as the ability to approximate
the posterior distribution helps amortise inference for any
given data point « over the entire dataset X', and learning
a generative model helps effectively capture the underlying
abstractions in the data. Learning in this model is achieved
through a unified objective, involving the marginal likelihood
(or evidence) of the data, namely:

log ps(z) = D.(gs(z | @) || po(z | x))
+ Eqd,(zkc)[logp@(mv Z) - log Qti)(z | :D)}

> Eq, (za)[log po(x]2)] — D (4o (2[2)]| po(2))
6]

The unknown true posterior py(z | ) in the first Kullback-
Leibler (KL) divergence is intractable to compute making the
objective difficult to optimise directly. Rather a lower-bound

Following the literature, the terms recognition model or inference
network may also be used to refer to the posterior variational approximation.



of the marginal log-likelihood log pg(x), referred to as the
evidence lower bound (ELBO), is maximised instead.

By introducing a condition variable y, we capture a con-
ditional posterior approximation g4(z | «,y) and a con-
ditional generative model py(x, z | y), thus deriving the
CVAE [24]. Similar to Eq. (1), the conditional ELBO is:

logpo(z | y) > Eq, (2(a,y) llogpe( | 2,9)]
—Dul(gs(z |z y)lpo(zy) (2

where the first term is referred to as the reconstruction or
negative cross entropy (CE) term, and the second, the reg-
ularisation or KL divergence term. Here too, similar to the
VAE, q4(z | ,y) and pg(z | y) are typically taken to be
isotropic multivariate Gaussian distributions, whose param-
eters (g, 02) and (p,,07) are provided by deep neural
networks (DNNs) with parameters ¢ and 6, respectively. The
generative model likelihood py(x | 2z, vy), whose form varies
depending on the data type — Gaussian or Laplace for images
and Categorical for language models — is also parametrised
similarly. In this work, we employ the CVAE model for the
task of eliciting dialogue given contextual information from
vision (images) and language (captions).

3. Generative Models for Visual Dialogue

In applying deep generative models to visual dialogue,
we begin by characterising a preliminary step toward it, VQA.
In VQA, the goal is to answer a single question in the context
of a visual cue, typically an image. The primary goal for
such a model is to ensure that the elicited answer conforms
to a stronger notion of relevance than simply answering
the given question — it must also relate to the visual cue
provided. This notion can be extended to one-way visual
dialogue (1vD) which we define as the task of answering
a sequence of questions contextualised by an image (and a
short caption describing its contents), similar to [6]. Being
able to exclusively answer questions, however, is not fully
encompassing of true conversational agents. We therefore
extend 1VD to the more general and realistic task of two-way
visual dialogue (2vD). Here the model must elicit not just
answers given questions, but questions given answers as well
— generating both components of a dialogue, contextualised
by the given image and caption. Generative 1VD and 2VD
models introduce stochasticity in the latent representations.

As such, we begin by characterising our generative ap-
proach to 2VD using a CVAE. For a given image ¢ and
associated caption ¢, we define a dialogue as a sequence
of question-answer pairs di.7 = ((qs, at)>;[:1, simply de-
noted d when sequence indexing is unnecessary. Addition-
ally, we denote a dialogue context h. When indexed by step
as hy, it captures the dialogue subsequence d; ;.

With this formalisation, we characterise a generative
model for 2vD under latent variable z as py(d, z | 3, ¢, h) =

po(d | z,4,¢,h) po(z|1i,c,h), with the corresponding
recognition model defined as ¢4(z | d,%, ¢, h). Note that
with relation to Eq. (2), data «x is dialogue d and the condi-
tion variable is y = {¢, ¢, h}, giving:

logpe(d | 2,¢,h)
> By, (z|di.c.h)llogpe(d | 2,4, ¢, h)]
- DKL(qu(z | dviv C, h) || pf?'(z | ia C, h)), (3)

with the graphical model structures shown in Fig. 2.

) C\ h z\ c h
Figure 2: Left: Conditional recognition model and Right:
conditional generative model for 2VD.

The formulation in Eq. (3) is general enough to be applied
to single question-answering (VQA) all the way to full two-
way dialogue generation (2vD). Taking a step back from
generative 2VD, we can re-frame the formulation for genera-
tive 1 VD (i.e. sequential answer generation) by considering
the generated component to be the answer to a particular
question at step ¢, given context from the image, caption and
the sequence of previous question-answers. Simply put, this
corresponds to the data x being the answer a;, conditioned
on the image, its caption, the dialogue history to ¢-1, and
the current question, or y = {4, ¢, ht_1, q:}. For simplic-
ity, we denote a compound context as hy = (h;_1, q;) and
reformulate Eq. (3) for 1vD as:

T
logpo(d | i,¢,h) =) logpo(as | i,c,hy),
logpe(at | %,¢, hy) =t
> Ky, (zlarisch)) 108 po(a | 2,4, ¢, hy)]
—Dulas(z | ar, i e, hy) || po(2z | 4,¢,hy)), (D)

with the graphical model structures shown in Fig. 3.
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Figure 3: Left: Conditional recognition model and Right:
conditional generative model for 1VD.

Our baseline [6] for the 1VD model can also be repre-
sented in our formulation by taking the variational posterior
and generative prior to be conditional Dirac-Delta distri-
butions. That is, g4(2 | at, %, ¢, hf) = pe(z | ¢,¢c,h;) =
d(z | 4, ¢, hy). This transforms the objective from Eq. (4)




by a) replacing the expectation of the log-likelihood over the
recognition model by an evaluation of the log-likelihood for
a single encoding (one that satisfies the Dirac-Delta), and
b) ignoring the Dy, regulariser, which is trivially 0. This
computes the marginal likelihood directly as just the model
likelihood log py(a; | z, 1, ¢, h;), where z~0(z | i, ¢, h}).

Note that while such models can “generate” answers to
questions by sampling from the likelihood function, we typi-
cally don’t call them generative since they effectively make
the encoding of the data and conditions fully deterministic.
We explore and demonstrate the benefit of a fully generative
treatment of 1vD in §4.3. It also follows trivially that the
basic VQA model (for single question-answering) itself can
be obtained from this 1vVD model by simply assuming there
is no dialogue history (i.e. step length T' = 1).

3.1.“Colouring” Visual Dialogue with Convolutions

FLIPDIAL’s convolutional formulation allows us to im-
plicitly capture the sequential nature of sentences and se-
quences of sentences. Here we introduce how we encode
questions, answers, and whole dialogues with CNNs.

We begin by noting the prevalence of recurrent ap-
proaches (e.g. LSTM [10], GRU [5]) in modelling both
visual dialogue and general dialogue to date [6, 7, 8, 12, 27].
Typically recurrence is employed at two levels — at the lower
level to sequentially generate the words of a sentence (a
question or answer in the case of dialogue), and at a higher
level to sequence these sentences together into a dialogue.

Recently however, there has been considerable interest
in convolutional models of language [3, 11, 14, 21], which
have shown to perform at least as well as recurrent models,
if not better, on a number of different tasks. They are also
computationally more efficient, and typically suffer less from
issues relating to exploding or vanishing gradients for which
recurrent networks are known [19].

In modelling sentences with convolutions, the tokens
(words) of the sentence are transformed into a stack of
fixed-dimensional embeddings (e.g. using word2vec [18]
or Glove [20], or those learned for a specific task). For
a given sentence, say question g, this results in an em-
bedding ¢; € R¥* for embedding size E and sentence
length L, where L can be bounded by the maximum sen-
tence length in the corpus, with padding tokens employed
where required. This two-dimensional stack is essentially
a single-channel ‘image’ on which convolutions can be ap-
plied in the standard manner in order to encode the entire
sentence. Note this similarly applies to the answer a; and
caption ¢, producing embedded a; and ¢, respectively.

We then extend this idea of viewing sentences as ‘images’
to whole dialogues, producing a multi-channel language em-
bedding. Here, the sequence of sentences itself can be seen
as a stack of (a stack of) word embeddings d € RF*Ex2T'
where now the number of channels accounts for the num-

ber of questions and answers in the dialogue. We refer to
this process as “colouring” dialogue, by analogy to the most
common meaning given to image channels — colour.

Our primary motivation for adopting a convolutional ap-
proach here is to explore its efficacy in extending from sim-
pler language tasks [11, 14] to full visual dialogue. We hence
instantiate the following models for 1vD and 2vD:
Answer [1VD]: We employ the CVAE formulation from

Eq. (4) and Fig. 3 to iteratively generate answers, condi-
tioned on the image, caption and current dialogue history.
Block [1VD, 2VD]: Using the CVAE formulation from
Eq. (3) and Fig. 2 we generate entire blocks of dialogue
directly (i.e. h = ( since dialogue context is implicit
rather than explicit). We allow the convolutional model
to implicitly supply the context instead. We consider this
2vD, although this block architecture can also generate
iteratively, and can be evaluated on 1VD (see §4.2).
Block Auto-Regressive [1VD, 2VD]: We introduce an
auto-regressive component to our generative model in
the same sense as recent auto-regressive generative
models for images [9, 25]. We augment the Block
model by feeding its output through an auto-regressive
(AR) module which explicitly enforces sequentiality in
the generation of the dialogue blocks. This effectively
factorises the likelihood in Eq. (3) as py(d | 2z,%,¢, h) =
po(d' | z,4,¢,h) HfLQ po(d™ | d¥"1) where N is the
number of AR layers, and d' is the (intermediate) output
from the standard Block model. Note, again h = (), and
d" refers to an entire dialogue at the n-th AR layer (rather
than the ¢-th dialogue exchange as is denoted by d;).

4. Experiments

We present an extensive quantitative and qualitative
analysis of our models’ performance in both 1vD, which
requires answering a sequence of image-contextualised
questions, and full 2vD, where both questions and an-
swers must be generated given a specific visual context.
Our proposed generative models are denoted as follows:

A — answer architecture for 1vD
B — block dialogue architecture for 1VvD & 2vD

Bar — auto-regressive extension of B for 1vD & 2vD
A is a generative convolutional extension of our baseline [6]
and is used to validate our methods against a standard bench-
mark in the 1VD task. B and Bag, like A, are generative,
but are extensions capable of doing full dialogue genera-
tion, a much more difficult task. Importantly, B and Bag
are flexible in that despite being trained to generate a block
of questions and answers (h = (), they can be evaluated
iteratively for both 1vD and 2VD (see §4.2). We summarise
the data and condition variables for all models in Tab. 1. To
evaluate performance on both tasks, we propose novel evalu-
ation metrics which augment those of our baseline [6]. To
the best of our knowledge, we are the first to report models



Table 1: Data (x) and condition (y) variables for models A
and B/Bag for 1vD and 2VD. Models B/Bag can be evalu-
ated as a block or iteratively (see §4.2), accepting ground-
truth (g/a) or predicted (¢/a) dialogue history (see Tab. 2).

Task  Model Train Evaluate Eval method
z Yy z Yy
VD A a; i,c,hf 0 i,¢,h} —
B,Bar d i,c {d-qa, d—qa} i,c iterative
. ] , block
2vD B.Bsr  d ne d-ga ne iterative

that can generate both questions and answers given an image

and caption, a necessary step toward a truly conversational

agent. Our key results are:

o We set state-of-the-art results in the 1VD task on the Vis-
Dial dataset, improving the mean rank of the generated
answers by 5.66 (Tab. 3, S,,2,) compared to Das et al. [6].

e Our block models are able to generate both questions and
answers, a more difficult but more realistic task (2VD).

e Since our models are generative, we are able to show
highly diverse and plausible question and answer genera-
tions based on the provided visual context.

Datasets: We use the VisDial [6] dataset (v0.9) which
contains Microsoft COCO images each paired with a caption
and a dialogue of 10 question-answer pairs. The train/test
split is 82, 783 /40, 504 images, respectively.

Baseline: Das et al. [6]’s best model, MN-QIH-G, is a
recurrent encoder-decoder architecture which encodes the
image 2, the current question g; and the attention-weighted
ground truth dialogue history d;.._1. The output conditional
likelihood distribution is then used to (token-wise) predict
an answer. Our A model is a generative and convolutional
extension, evaluated using existing ranking-based metrics [6]
on the generated and candidate answers. We also (iteratively)
evaluate our B/Bg for 1VD as detailed in §4.2 (see Tab. 3).

4.1. Network architectures and training

Following the CVAE formulation (§3) and its convolu-
tional interpretation (§3.1), all our models (A, B and Bagr)
have three core components: an encoder network, a prior
network and a decoder network. Fig. 4 (top) shows the en-
coder and prior networks, and Fig. 4 (middle, bottom) show
the standard and auto-regressive decoder networks.

Prior network The prior neural network, parametrised
by 6, takes as input the image ¢, the caption ¢ and the di-
alogue context. Referring to Table 1, for model A, recall
y = {4, ¢, h{ } where the context h; is the dialogue history
up to t-1 and the current question g;. For models B/Bag,
y = {4, ¢} (note h = (). To obtain the image representation,
we pass ¢ through VGG-16 [23] and extract the penultimate
(4096-d) feature vector. We pass caption c through a pre-
trained word2vec [ 18] module (we do not learn these word
embeddings). If h # (), we pass the one-hot encoding of

Figure 4: Convolutional (top) conditional encoder and prior
architecture, (middle) conditional decoder, and (bottom)
auto-regressive conditional decoder architectures, applying
to both one- and two-way visual dialogue (1VD and 2VD).

each word through a learnable word embedding module and
stack these embeddings as described in §3.1. We encode
these condition variables convolutionally to obtain y, and
pass this through a convolutional block to obtain p,, and
log 02, the parameters of the conditional prior pg(z | y).

Encoder network The encoder network, parametrised
by ¢, takes x and the encoded condition y (obtained from
the prior network) as input. For model A, x = a; while
for B/Bar, z=d =((q:, at)g:l. In all models, « is trans-
formed through a word-embedding module into a single-
channel answer ‘image’ for A, or a multi-channel image of
alternating questions and answers for B/Bsgr. The embedded
output is then combined with y to obtain pt, and log 0'3, the
parameters of the conditional latent posterior g4 (2 | x, y).

Decoder network The decoder network takes as input
a latent z and the encoded condition y. The sample is
transpose-convolved, combined with y and further trans-
formed to obtain an intermediate output volume of dimen-
sion E x L x M, where E is the word embedding dimension,
L is the maximum sentence length and M is the number of
dialogue entries in « (M = 1 for A, M = 2T for B vari-
ants). Following this, A and B employ a standard linear
layer, projecting the E dimension to the vocabulary size V'
(Fig. 4 (middle)), whereas Bogr employs an autoregressive
module followed by this standard linear layer (Fig. 4 (bot-
tom)). At train time, the V' -dimensional output is softmaxed
and the CE term of the ELBO computed. At test time, the



Table 2: Iterative evaluation of B/Bag for 1vD and 2VD.
Under each condition, the input dialogue block is filled with
ground-truth or predicted history (g/a or ¢/ a, respectively),
while future entries are filled with the PAD token.

1vD 2VD
d—qa d—-qa d-qa
<t (g, a) (g,a) (g,a)
=t (g, PAD) (g, PAD) (PAD, PAD) / (g, PrD)
>t (paD, PAD) (PAD, PAD) (PAD, PAD)

argmax of the output provides the predicted word index.
The weights of the encoder and prior’s learnable word embed-
ding module and the decoder’s final linear layer are shared.

Autoregressive module Inspired by PixelCNN [26]
which sequentially predicts image pixels, and similar to [9],
we apply N = {8, 10} size-preserving autoregressive layers
to the intermediate output of model B (size E x L x 2T"), and
then project E' to vocabulary size V. Each layer employs
masked convolutions, considering only ‘past’ embeddings,
sequentially predicting 27 * L embeddings of size F, enforc-
ing sequentiality at both the sentence- and dialogue-level.

KL annealing Motivated by [4] in learning continuous
latent embedding spaces for language, we employ KL an-
nealing in the loss objectives of Eq. (3) and Eq. (4). We
weight the KL term by « € [0, 1] linearly interpolated over
100 epochs, and then train for a further 50 epochs (o = 1).

Network and training hyper-parameters In embed-
ding sentences, we pad to a maximum sequence length of
L = 64 and use a word-embedding dimension of £ = 256
(for word2vec, E = 300). After pre-processing and filtering
the vocabulary size is V' = 9710 (see supplement for further
details). We use the Adam optimiser [16] with default pa-
rameters, a latent dimensionality of 512 and employ batch
normalisation with momentum= 0.001 and learnable param-
eters. For model A we use a batch size of 200, and 40 for
B/Bar. We implement our pipeline using PYTORCH [22].

4.2. Evaluation methods for block models

Although B/Bsgr generate whole blocks of dialogue di-
rectly (h = ()), they can be evaluated iteratively, lending
them to both 1vVD and 2VD (see supplement for descriptions
of generation/reconstruction pipelines).

e Block evaluation [2VD]. The generation pipeline gener-
ates whole blocks of dialogue directly, conditioned on the
image and caption (i.e. x = () and y = {%, ¢} for B/Bsg
evaluation in Tab. 1). This is 2vD since the model must
generate a coherent block of both questions and answers.

e Iterative evaluation. The reconstruction pipeline can
generate dialogue items iteratively. At time ¢, the input
dialogue block is filled with zeros (PAD token) and the
ground-truth/predicted dialogue history to < ¢ is slotted in
(see below and Tab. 2). This future-padded block is then

Table 3: 1VD evaluation of A and B/Bag on VisDial (v0.9)
test set. Results show ranking of answer candidates based
on the score functions Sy; and S,,5,.

Score
function Method MR MRR R@1 R@5 R@10

RL-QAbot [7] 21.13 04370 -  53.67 60.48
Su MN-QIH-G[6] 17.06 0.5259 4229 62.85 68.88
A@Lw) 2387 04220 3048 53.78 57.52

A (ELBO) 2038 04549 34.08 56.18 61.11

MN-QIH-G[6] 31.31 02215 16.01 2242 3476
A (RECON) 1536 04952 41.77 54.67 66.90
A (GEN) 25.65 0.3227 2588 3343 47.75

B 2845 0.2927 2350 29.11 4229
d—qa Bar8 2587 0.3553 29.40 36.79 51.19
Bar10 2630 0.3422 28.00 3534 50.54

B 3057 0.2188 16.06 20.88 35.37
d-qa Bar8 29.10 0.2864 22.52 29.01 4843
Bar10 29.15 0.2869 22.68 2897 46.98

SwZv

encoded with the condition inputs, and then reconstructed.

The ¢-th dialogue item is extracted (whether an answer if

1VD or a question/answer if 2vD), and this is repeated T’

(for 1vD) or 2T (for 2VD) times. Variations are:

— d—qa [1VD]. At time t, the input dialogue block is
filled with the history of ground-truth questions and
answers up to ¢-1, along with the current ground-truth
question. All future entries are padded — equivalent
to [6] using the ground-truth dialogue history.

— d—qa [1vD]. Similar to d—qa, except that the input
block is filled with the history of ground-truth questions
and previously predicted answers along with the current
ground-truth question. This is a more realistic 1VD.

— d—qa [2VD]. The most challenging and realistic condi-
tion in which the input block is filled with the history of
previously predicted questions and answers.

4.3. Evaluation and Analysis

We evaluate our A, B, and Bog models on the 1vD and
2vD tasks. Under 1VD, we predict an answer with each
time step, given an image, caption and the current dialogue
history (§4.3.1 and Tab. 3), while under 2vD, we predict
both questions and answers (§4.3.2 and Tab. 4). All three
models are able to perform the first task , while only B and
Bar are capable of the second task.

4.3.1 One-Way Visual Dialogue (1VD) task

We evaluate the performance of A and B/Bsg on 1VD using
the candidate ranking metric of [6] as well as an extension
of this which assesses the generated answer quality (Tab. 3).
Fig. 1 and Fig. 5 show our qualitative results for 1VD.

Candidate ranking by model log-likelihood [Sp]

The VisDial dataset [6] provides a set of 100 candidate an-
swers {a§}1% for each question-answer pair at time ¢ per
image. The set includes the ground-truth answer a; as well
as similar, popular, and random answers. Das et al. [6] rank

these candidates using the log-likelihood value of each under



Ground-
Question truth
answer

How old is the | Maybe three Looks
girl? about six

What race is White Yes Caucasi an
the girl?

Is she outside? Yes No

Is her hair t's|  straignte
curly or

Straight

Shirt and| Jeal
pants| a

Is the teddy ves No Yes
bear in her
lap?

J

young girl swinging with her
teddy bear

What color is
the teddy bear?

Is it nice Yes sunny Yes| It looks
outside?

Ground-
Question truth
answer

How old does
she look?

Any other
people?

Any buildings?

Is it day or
night?

Is it raining?

What color
umbrella?

Is it open or
closed?

Is it sunny?

What color is
her hair?

A young girl holding an
umbrella on the sidewalk

Is it long o say
short? long

Figure 5: Example generated answers from A’s conditional
prior — conditioned on an image, caption, question and dia-
logue history. See supplement for further examples.

their model (conditioned on the image, caption and dialogue
history, including the current question), and then observe the
position of the ground-truth answer (closer to 1 is better).
This position is averaged over the dataset to obtain the Mean
Rank (MR). In addition, the Mean Reciprocal Rank (MRR;
1/MR) and recall rates at k = {1, 5,10} are computed.

To compare against their baseline, we rank the 100 candi-
dates answers by estimates of their marginal likelihood from
A. This can be done with i) the conditional ELBO (Eq. (4)),
and by ii) likelihood weighting (LW) in the conditional gener-
ative model py(a; | ¢,¢,h;) = [po(ai, z | i,¢,h])dz =
[ po(z]|i,¢e,hi)po(a] z,4,¢,h;)dz. Ranking by both
these approaches is shown in the Sy section of Tab. 3, in-
dicating that we are comparable to the state of the art in
discriminative models of sequential VQA [6, 7].

Candidate ranking by word2vec cosine distance [S,,]

The evaluation protocol of [6] scores and ranks a given set of
candidate answers, without being a function of the actual an-
swer predicted by the model, a;. This results in the rank of
the ground-truth answer candidate reflecting its score under
the model relative to the rest of the candidates’ scores, rather
than capturing the quality of the answer output by the model,
which is left unobserved. To remedy this, we instead score
each candidate by the cosine distance between the word2vec
embedding of the predicted answer a; and that candidate’s
word2vec embedding. We take the embedding of a sentence
to be the average embedding over word tokens following

Arora et al. [2]. In addition to accounting for the predicted
answer, this method also allows semantic similarities to be
captured such that if the predicted answer is similar (in mean-
ing and/or words generated) to the ground-truth candidate
answer, then the cosine distance will be small, and hence the
ground-truth candidate’s rank closer to 1.

We report these numbers for A, iteratively-evaluated
B/BARr, and also our baseline model MN-QIH-G [6], which
we re-evaluate using the word2vec cosine distance ranking
(see S,,», in Tab. 3). In the case of A (GEN), we evaluate an-
swer generations from A whereby we condition on ¢, ¢ and
h; via the prior network, sample z ~ N (z; u,, o?) and
generate an answer via the decoder network. Here we show
an improvement of 5.66 points in MR over the baseline. On
the other hand, A (RECON) evaluates answer reconstructions
in which z is sampled from N (z; p,, a'g) (where ground-
truth answer a; is provided). We include A (RECON) merely
as an “oracle” autoencoder, observing its good ranking per-
formance, but do not explicitly compare against it.

We also note that the ranking scores of the block models
are worse (by 3-4 MR points) than those of A. This is ex-
pected since A is explicitly trained for 1vD which is not the
case for B/Bag. Despite this, the performance gap between
A (GEN) and B/Bag (with d—ga) is not large, bolstering our
iterative evaluation method for the block architectures. Note
finally that the B/Bog models perform better under d—qa
than under d—ga (by 2-3 MR points). This is also expected
as answering is easier with access to the ground-truth dia-
logue history rather than when only the previously predicted
answers (and ground-truth questions) are provided.

4.3.2 Two-way Visual Dialogue (2VD) task

Our flexible CVAE formulation for visual dialogue allows
us to move from 1VD to the generation of both questions
and answers (2VD). Despite this being inherently more chal-
lenging, B/BaR are able to generate diverse sets of questions
and answers contextualised by the given image and caption.
Fig. 6 shows snippets of our two-way dialogue generations.
In evaluating our models for 2vD, the candidate ranking
protocol of [6] which relies on a given question to rank the
answer candidates, is no longer usable when the questions
themselves are being generated. This is the case for B/Bar
block evaluation, which has no access to the ground-truth
dialogue history, and the d—qa iterative evaluation, when the
full predicted history of questions and answers is provided
(Tab. 2). We therefore look directly to the CE and KL terms
of the ELBO as well as propose two new metrics, sim., q and
simy, to compare our methods in the 2vD task:
¢ Question relevance (sim.q). We expect a generated
question to query an aspect of the image, and we use the
presence of semantically similar words in both the ques-
tion and image caption as a proxy of this. We compute the
cosine distance between the (average) word2vec embed-
ding of each predicted question g, and that of the caption



Are it sunny? Yes

Can you see the sky? No

B 7y birds? No

Can you see any people? No

8] 15 this a sunny photo? Yes

Is the sheep in? Yes

B8 hat color is the sheep?

Any people? No.

Is it sunny? Yes

is the the doing? It is

the sheep made? Yes, is

Are there people? Yes

Is it a professional photo? Yes

Color color is the uniform? White

© |can you see the team? No

any people? No

an you see the bases? No

How many people are you see

Can you see the sky?

ke
b¢

Is the sky visible? Yes
¥

Is the people visible?

B poes he have a?

Is it a? Yes is is

What color is the cabinets? White

Are there any people in the table? No

Does the window have curtains Yes

Is the fridge on? Yes

Are there any people in the? No

Is the magnets on? No

What color is the walls? White

How many chairs are there? Two

Is there any people? No

Is it daytime? Yes

Is there? No

How pics the? No

What color are the uniforms?

Can you see any sky? No

Is it people visible? Yes

Is this a game? Yes

Is the photo in color? No

Is the photo close? Yes, it

Can you see the bases? No

Can you see the ball? No

Is the person wearing a hat? Yes

Can you see the the No

Can you see the people? No

Two guys playing baseball, with trees in
the back

Figure 6: Examples of two-way dialogue generation from
the B/Br models. Different colours indicate different gen-
erations — coherent sets with a single colour, and failures in
white. See supplement for further examples.

¢, and average over all 7" questions in the dialogue (closer
to 1 indicates higher semantic similarity).

e Latent dialogue dispersion (sim;). For a generated
dialogue block d?, sim; computes the KL divergence
D (go(2]d9, 4, c) || go(2]d, %, c)), measuring how close
the generated dialogue is to the true dialogue d in the
latent space, given the same image ¢ and caption c.

From Tab. 4, we observe a decrease in the loss terms as the

auto-regressive capacity of the model increases (none —

8 — 10), suggesting that explicitly enforcing sequentiality

in the dialogue generations is useful. For sim within a

particular model, the dispersion values are typically larger

Table 4: 2vD evaluation on VisDial (v0.9) test set for B/Bagr
models. For d, ‘0’ indicates block evaluation, and ‘d—ga’
indicates iterative evaluation (see §4.2).

Method d CE KLD sim., simy

0 31.18 434 04931 14.20

d-ga 2540 401 04091 1.86

Bg 0 2881 254 04878 3150
AR d-ga 2660 229 03884 239
Buelo 0 2849 189 04927 4434
AR d-ga 2493 180 04101 235

for the harder task (without dialogue context). We also
observe that dispersion increases with number of AR layers,
suggesting AR improves the diversity of the model outputs,
and avoids simply recovering data observed at train time.

While the proposed metrics provide a novel means to eval-
uate dialogue in a generative framework, like all language-
based metrics, they are not complete. The question-relevance
metric, sim, g, can stagnate, and neither metric precludes
redundant or nonsensical questions. We intend for these
metrics to augment the bank of metrics available to evaluate
dialogue and language models. Further evaluation, including
i) using auxiliary tasks, as in the image-retrieval task of [7],
to drive and evaluate the dialogues, and ii) turning to human
evaluators to rate the generated dialogues, can be instructive
in painting a more complete picture of our models.

5. Conclusion

In this work we propose FLIPDIAL, a generative convo-
lutional model for visual dialogue which is able to generate
answers (1vD) as well as generate both questions and an-
swers (2VD) based on a visual context. In the 1VD task, we
set new state-of-the-art results with the answers generated
by our model, and in the 2VD task, we are the first to estab-
lish a baseline, proposing two novel metrics to assess the
quality of the generated dialogues. In addition, we propose
and evaluate our models under a much more realistic setting
for both visual dialogue tasks in which the predicted rather
than ground-truth dialogue history is provided at test time.
This challenging setting is more akin to real-world situations
in which dialogue agents must be able to evolve with their
predicted exchanges. We emphasize that research focus must
be directed here in the future. Finally, under all cases, the
sets of questions and answers generated by our models are
qualitatively good: diverse and plausible given the visual
context. Looking forward, we are interested in exploring
additional methods for enforcing diversity in the generated
questions and answers, as well as extending this work to
explore recursive models of reasoning for visual dialogue.
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