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Abstract

We present a novel approach to template matching that
is efficient, can handle partial occlusions, and comes with
provable performance guarantees. A key component of
the method is a reduction that transforms the problem of
searching a nearest neighbor among N high-dimensional
vectors, to searching neighbors among two sets of order
V'N vectors, which can be found efficiently using range
search techniques. This allows for a quadratic improve-
ment in search complexity, and makes the method scalable
in handling large search spaces. The second contribution
is a hashing scheme based on consensus set maximiza-
tion, which allows us to handle occlusions. The resulting
scheme can be seen as a randomized hypothesize-and-test
algorithm, which is equipped with guarantees regarding the
number of iterations required for obtaining an optimal so-
lution with high probability. The predicted matching rates
are validated empirically and the algorithm shows a sig-
nificant improvement over the state-of-the-art in both speed
and robustness to occlusions.

1. Introduction

Matching a template 7" (a small image) to a target I (a
larger image) can be trivial to impossible depending on the
relation between the two. In the classical setup, when [ is a
digital image and 7" is a subset of it, this amounts to a search
over the set of IV discrete 2D-translations, where N would
be the number of pixels in I. When 7" and I are images
of the same scene taken from different vantage points, their
relation can be described by a complex deformation of their
domain, depending on the shape of the underlying scene,
and of their range, depending on its reflectance and illumi-
nation. For a sufficiently small template, such deformations
can be approximated by an affine transformation of the do-
main (“warping”), and an affine (“‘contrast”) transformation
of the range ...except for occlusions: An arbitrarily large
portion of the template, including all of it, may be occluded
and therefore have no correspondent in the target image.

This poses a fundamental problem to many low-level
tasks: To establish local correspondence (co-visibility), the
template should be large, so as to be discriminative. But
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Figure 1. Instances of the occlusion experiment (Sec. 4.2) A tem-
plate (overlaid in green) that is 60% occluded by random blocks is
searched for in an image. OATM shows the best results in dealing
with significant deformation and occlusion (use zoom for detail).

increasing the area increases the probability that its corre-
spondent in the target image will be occluded, which causes
the correspondence to fail, unless occlusion phenomena are
explicitly taken into account.

In this work we model occlusions explicitly as part of a
robust template matching process where the co-visible re-
gion is assumed to undergo affine deformations of the do-
main and range, up to additive noise. We search for trans-
formations that maximize consensus, that is the size of the
co-visible set, in a manner that is efficient and comes with
provable convergence guarantees.

Efficiency comes from the first contribution - a reduc-
tion method whereby the linear search of nearest neighbors
for the d-dimensional template 7" through NN versions in the
target image is converted to a search among two sets of vec-
tors, with each set of size O(v/N) (Sect. 2.2). This re-
duces the search complexity from O(N) to O(v/N), which
is practical even for very large search spaces, such as the
discretized space of affine transformations.

For this method to work, we need a hashing scheme that
is compatible with occlusions, which we achieve by adapt-
ing the scheme of Aiger et al. [2], leading to our second
contribution: Rather than reporting close neighbors under
the Euclidean /5 norm, we are interested in reporting pairs
of vectors that are compatible, up to a threshold, on a max-
imum (co-visibility) consensus set. Our hashing scheme is
akin to a random consensus (RANSAC-type) procedure un-
der the /., norm (Sect. 2.3).

Finally, our third contribution is an analysis of the algo-
rithm (Sect. 2.4), specifically regarding guarantees on the
number of candidate hypotheses required for obtaining the



optimal solution, in the sense of maximal inlier rate, within
a certain probability.

While for many low-level vision tasks speed, not con-
vergence guarantee, is the key, there are applications where
being able to issue a certificate is important, such as high-
assurance visual pose estimation for satellite maneuvering.
In our case, we achieve both speed and assurance, all the
while being able to handle occlusions, which allows using
larger, and therefore more discriminative, templates.

The algorithm is rather generic and is presented for
a general geometric transformation of the domain space,
while possible explicit decompositions are given for the
2D-translation and 2D-affine groups. In the experimental
section, our algorithm is shown empirically to outperform
the state-of-the-art in affine template matching [17] both in
terms of efficiency and robustness to occlusion. In addition,
it shows some clear advantages over some modern image
descriptors on the recent HPatches [4] benchmark.

1.1. Related work

Research in template matching algorithms has focused
heavily on efficiency, a natural requirement from a low level
component in vision systems. This was largely achieved
in the limited scope of 2D-translation and ¢, similarity,
where full-search-equivalent algorithms accelerate naive
full-search schemes by orders of magnitude [22]. unlike
in real-time applications, such as robotic navigation and
augmented reality, there are applications where accuracy
and performance guarantees are important, such as high-
assurance pose estimation for high-value assets, such as
satellites or industrial equipment. This requires extending
the scope of research in several aspects.

One line of works focuses on geometric deformations
due to camera or object motion. Early works such as
[11, 26] extend the sliding window approaches to handle
rotation and scale. The Fast-Match algorithm [17] was de-
signed to handle 2D-Affine transformations. It minimizes
the sum-of-absolute-differences using branch-and-bound,
providing probabilistic global guarantees. [29] uses a ge-
netic algorithm to sample the 2D-affine space.

To achieve photometric invariance, [13] introduced a
fast scheme for matching under non-linear tone mappings,
while [10] used the Generalized Laplacian distance, which
can handle multi-modal matching. Our method can provide
affine photometric invariance, i.e., up to global brightness
and contrast changes.

In this work we propose a quadratic improvement upon
the runtime complexity of these methods, which depends
linearly on the size of the search-space (i.e., exponential
in its dimension). More recently we are seeing attempts
at matching under 2D-homographies using deep neural net-
works [9, 20], although these methods do not provide any
guarantees and like the previously mentioned methods -

they were not designed to handle partial occlusion.

Two recent works can handle both geometric deforma-
tions and partial occlusion through similarity measures be-
tween rectangular patches: the Best Buddies Similarity
(BBS) measure [8], based on maximizing the number of
mutual nearest-neighbor pixel pairs, and Deformable Di-
versity Similarity (DDIS) [25], that examines the nearest
neighbor field between the patches. DDIS dramatically im-
proves the heavy runtime complexity of BBS, but is limited
in the extent of deformation it can handle, since it penal-
izes large deformations. Also, the sliding window nature of
these methods limits the extent of occlusion they can han-
dle. While OATM is limited to handling rigid transforma-
tions, it is provably able to efficiently handle high levels of
deformation and occlusion.

Another relevant and very active area of research is
learning discriminative descriptors for image patches (nat-
ural patches or those extracted by feature detectors), from
the earlier SIFT [19] and variants [7, 23] to the more recent
[24, 5, 12]. We show OATM to be superior in its ability to
match under significant deformation and occlusion.

Lastly, the problem of occlusion handling was addressed
in many other areas of computer vision, including track-
ing [31, 30, 15], segmentation [28], image matching [27],
multi-target detection [6], flow [14] and recognition [21].

Within a landscape of “X-with-deep-learning” research,
our work is counter-tendence: We find that the need to
provide provable guarantees in matching, albeit relevant to
niche applications, is underserved, and data-driven machine
learning tools are not ideally suited to this task.

2. Method
2.1. Problem Definition

In template matching, one assumes that a template 7'
and an image I are related by a geometric transformation
of the domain F = {f : R? — R?} and a photomet-
ric transformation of the range space. The goal is to de-
termine the transformation of the domain, despite transfor-
mations of the range. Here we assume that both 7' and
I are discretized, real valued, square images, and hence
can be written as 7 : {1,...,n}?> — R (and similarly
I:{1,...,m}*> - R), where T and I are n x n and
m X m images, respectively. The set of transformations
F" can be approximated by a discrete set of size IV, possibly
large, up to a desired tolerance. For example, in the standard
2D-translation setup, the set F' contains all possible place-
ments of the template over the image at single pixel offsets,
and hence N = |F| ~ (m — n)? with a tolerance of one
pixel. Moreover, in our analysis we will assume nearest-
neighbor interpolation (rounding) which allows us to sim-
plify the discussion to fully discretized transformations of
the form f : {1,...,n}? — Z2.



With a slight abuse of notation we indicate with p € T’
(and likewise ¢ € I) a pixel p in the template domain
{1,...,n}? and T(p) will denote its real valued intensity.

For a given transformation f, we define the (photomet-
ric) residual, or reprojection error, at pixel p € T by
resg(p) = |T(p) — I(f(p))|- The known “brightness con-
stancy constraint” guarantees that the residual can be made
small (to within a threshold) by at least one transformation
f. However, it is only valid for portions of the scene that
are Lambertian, seen under constant illumination and most
importantly: co-visible (unoccluded).

We are now ready to pose Occlusion-Aware Tem-
plate Matching (OATM) as a Consensus Set Maximization
(CSM) problem, where we search for a transformation un-
der which a maximal number of pixels are co-visible, i.e.,
mapped with a residual that is within the a threshold.

Definition 1. [Occlusion-Aware Template Matching
(OATM)] For a given error threshold t, find a transforma-
tion f* given by:
f* = argmax Z[resf(p) <t (1)
feF peT
where [-] represents the indicator function.

Our reduction to a product space relies extensively on a
distance notion between geometric transformations (which
depends on the source domain - the template 7T').

Definition 2. [Distance A between transformations] Let
fi,fa € F. We define the distance A(f1,f2) =
maxper || f1(p) — f2(p)|| where || - || represents the Eu-
clidean distance in the (target) domain of the image 1.

2.2. Reduction to a Product Space

Recall (Equation (1)) that our goal is to find an optimal
transformation f*, one whose residual

resp-(p) = [T(p) — I(f*(p))| @)

is below a threshold ¢ at as many pixels p € T as possible.
In order to optimize (1) we would need to compare T to
N possible target vectors I(f(T")) (all possible transformed
templates in the target image).

The main idea here will be to enumerate the search space
in a very different way. On the source image side we define
a set U of templates (vectors) obtained by local perturba-
tions of the template 7", while on the target side we define
a set V' of templates that “covers” the target image [ in a
sense that every target template location will be close to one
of those in V. In such a way, if a copy of the template ap-
pears in the image, there must be a pair of similar templates
(vectors) u € U and v € V. Refer to Figure 2 to get the
intuition for the 2D-translation case.

Formally, for a given tolerance ¢ > 0, let f € F be a
transformation such that A(f, f*) < e. For an arbitrary

p’ € T, if we assume the existence of some p € T such that
f(p) = f*(p'), which is the case in our model under the as-
sumption of co-visibility, by substituting p’ = f*~*(f(p))
in Equation (2), we get:

resp(p) = [T(f* 7 (f() = I(f@). 3

Ifweseth = f*'o f, we can write:

resy-(p') = [T(h(p)) — I(f(p))| 4)

for pixels p in the sub-template Ty, = {p € T' : h(p) € T'},
for which h(p) =p' € T.

Regarding h, since we know that A(f, f*) < ¢, it is
easy to see that A(h,id) < €/s(f*), where id is the identity
transformation and s( f*) is the minimal scale of f*, defined
by s(f) = minyer | F(p)/I1p].

If we call € = €/s(f*) we can now define the restricted
subset of functions (which is a ball of radius € around the
identity, in the function space F’):

Fo={heF : A(h,id) <€} Q)

Let Net.(F') be an arbitrary e-net over the space F, with
respect to the distance A. Namely, for any f € F' there
exists some f’ € Net(F) such that A(f, f') < e.

The result is that we have decomposed the search for an
optimal f* € F in Eq. (1), to the search of the equivalent
(recall that h = f*~' o f) optimal pair (h, f) in the prod-
uct space Fr X Net.(F). Namely, we can reformulate the
OATM problem (Equation (1)) as:

. 1
fr=argnax 3 o ITE) -1 E) <] ©
[S¥i
feNeto(r) PET
For simplicity of description and implementation we can
work with a fixed subtemplate 7" of T, defined by the inter-
section of all sub-templates {7}, } ner, , which results in:

/1= agmax Y- |[T(hp) - IGG)I <t @

It may appear that, up to this point, we stand to gain
nothing, since under any reasonable discretization of the
transformation sets Net.(F') and F., it holds that |F| ~
|Net.(F)| - |Fe|, i.e. that the size of the search space re-
mains unchaged. However, this decomposition allows us to
design preprocessing schemes for two sets of vectors'

{T(M(T"))}ner. (8)
{I(F(T")} fenet.p) 9

in a manner that enables an efficient search over the terms
|T(h(p)) —I(f(p))| from (7) for all (h, f)€ FoxNet(F).

"h(T") and f(T") are shorthands for {h(p)},c7 and {f(p)}pe1

U =
V =




Efficiency comes from designing the product space in a way
that the sets U and V have approximately equal size (v/N)
and from using a search algorithm whose complexity de-
pends on the sum of the space sizes (order v/N), and not on
their product (of size N). We provide explicit decomposi-
tions for the 2D-translation and 2D-affine spaces.

2.3. Search by Random Grid based Hashing

We have transformed the problem of matching between a
single vector and N target vectors to that of finding match-
ing vectors between two sets of ~+/ N vectors. Matching
between a pair of high-dimensional point sets is a classi-
cal problem in the search literature, clearly related to the
problem of finding all close neighbors in a single point-set.
Our approach is based on random grid hashing [1] - an al-
gorithm that is straightforward to implement and which has
been shown to work well in practice [2].

In [1], to hash a collection of d dimensional points, the
space is divided into cells by laying a randomly shifted uni-
form grid (each cell is an axis-parallel cube with side-length
¢). The points are arranged accordingly in a hash table and
then all pairs of points that share an entry in the hash table
are inspected, reporting those whose distance is below the
specified threshold. The process is then repeated a suitable
number of times in order to guarantee, with high probabil-
ity, that all or most pairs of close points are reported.

Unlike the work of Aiger et al. [1, 2] that uses the /5
norm to measure the similarity between vectors, we use the
number of coordinates whose absolute difference is below
a threshold. Furthermore, we replace the dimensionality
reduction in [2] (a Johnson-Lindenstrauss transform) by a
random choice of a small number of coordinates (pixels), in
order to enable matching under occlusions. These changes
require a different analysis of the algorithm. Refer to Algo-
rithm 1 for a summary of our basic hashing module.

2.4. Analysis

The main result needed for a high-assurance template
matcher is a guarantee on the success probability of Algo-
rithm 1. The following term will be used in our claims:

A_(O&‘d)_Oéd-(ad—l)-...-(ad_ci+1)
Hed = B dd-1)...(d—d+1)

Claim 1. [analysis of Algorithm 1] Algorithm I succeeds
(reports a pair w,v € U x V with maximal possible inlier
rate of o) with probability at least

. t d
P(a,d,d) - (1 — ) (10)
c
Proof. The derivation is straightforward, since the algo-
rithm succeeds if a pair of optimal matching vectors u, v
collide in the hash table. A collision is guaranteed to occur,

input: Sets U and V' of vectors in R?: threshold ¢;

output: A vector pair (u,v) € U x V with maximal
found consensus set (inlier rate)

parameters: Sample dimension d; cell dimension ¢;

1. Pick d random dimensions out of 1,...,d.

2. LetU and V be the vector sets U and V reduced
to the d random dimensions.

3. Generate a random d-dimensional offset vector o
in [0, c]<.

4. Map each vector in U and V into a d-dimensional
integer, according to Map(9) = | (0 + 0)/c|.

5. Arrange the resulting integers into a hash table
using any hash function from N¢ to {1,...,|U}.

6. Scan the hash table sequentially, where for each
pair of vectors @ and © that share a hash value,
count the number of inlier coordinates in 7 &€
{1,...,d} (those for which |u(z) — v(i)| < ¢t).

7. Return a pair u, v with maximal found inlier rate

Algorithm 1: Consensus Set Maximization in vector sets.

given a combination of two events. First, the event that the
set of the d sampled dimensions is a subset of the ad inlier
dimensions. This occurs with probability P(a, d, d), since
this is a hyper-geometric distribution with «d success items
among a population of d, with d samples all required to be
success items. Second, we need to multiply by the probabil-
ity that a collision occurred subject to the randomness in the
grid offset. In this case, the d-dimensional @ and © differ by
at most ¢ in each coordinate. Therefore, and since the off-
set is uniform and independent between coordinates, 4 and
© are mapped into the same cell (and hence collide in the

hash table) with probability at least (<%)¢ = (1 - L)%, O

Claim 2. [analysis of Algorithm 1 - stronger version] As-
sume there exists a pair w,v € U x V which are identical
up to a zero-mean Gaussian noise with standard deviation
o at an a-fraction of their coordinates. Algorithm 1 suc-
ceeds (reports a pair u,v € U x V with inlier rate at least
«) with probability at least

R ¢ 9 2 d
P(a,d,d) - (/o (1- %) . U\\CE . ea?p(—;?)dx) (11)
Proof. The only difference here compared to the previous
claim is regarding the probability of vectors of inlier co-
ordinates falling into a single cell. The difference is in the
definition of inliers, where here we not only assume a maxi-
mal absolute difference of ¢ at each coordinate but we rather
make the stronger (but realistic) assumption that the vectors
at inlier coordinates differ only due to Gaussian noise of



1)

(a) e-net construction

(b) simple construction

Figure 2. Illustration of two possible decompositions for 2D-translation. In each of (a) and (b) the sets of sampled vectors (templates) U
(from T") and V' (from ) are represented by gray pixels which denote the top left corner position of the sampled templates. If the Template
(red) appears in the target image, there will be a respective pair of matching samples in U and V' (shown in yellow). The parameter € is
taken such that the number of samples (number of gray squares) on both sides is approximately equal (both approximately v/N).

a known standard deviation. In such a case, the absolute
difference per coordinate follows a folded Gaussian distri-
bution (see e.g. [18]), and therefore we integrate over the
possible absolute differences x in the range [0, ¢]. O

2.5. Occlusion-Aware Template Matching

Given Algorithm 1 and its performance guarantees, we
can now specify our complete OATM template matching
algorithm. The template matcher will run Algorithm 1
a certain number of times and return the target location
in the image, which corresponds to the overall best pair
of vectors found. As a reminder, Algorithm | returns a
pair of vectors which are of the form {T'(h(p))}pers and
{I(f(p))}per, which suggests the pair of transformations
(h, f) as a candidate solution, from which a single transfor-
mation f* = f o h~! can be extracted.

There are two reasons to evaluate directly the inlier rate

P* = 1 X per [IT(p) — I(f*(p))| < t] instead of the
proxy 1z Sper [[T(h(p)) — I(f(p)| < t]. One is
to avoid interpolation errors by applying the concatenated
transformation f* = f o h~! directly. The second and
more important one is that the detected inlier rate reflects

input: template 7" and image [; threshold ¢;
family of transformations F' (of size N);
output: f € F with maximum consensus (Eq. (1))

1. Decompose F into the product F, x Net.(F)
choosing an € s.t. |F./| ~ |Net.(F)| ~ v/N.
2. Construct the vector sets U and V' (Egs. (8)-(9)).

3. repeat Algorithm 1 for k times (with U, V and t)
to obtain transformations { f;}%_;.

4. return the transformation f; with largest consen-
sus set (Eq. (1)).

Algorithm 2: OATM: Occlusion Aware Template Matching

only pixels of 7" in a sub-template of 7.

Occlusion-Aware Template Matching (OATM) is sum-
marized in Algorithm 2. It consists of running Algorithm 1
for k iteration. If we denote by P, the success probability
of Algorithm 1, given in Equation (11) of Claim 2, it holds
that the success probability of Algorithm 2 is at least:

1= (1= Py)* (12)
and conversely, the number of iterations & needed in order
to succeed with a predefined probability pg (e.g. 0.99) is:
log(1 — po)/log(1l — Fa).

It is important to note that the number of iterations k can
be determined adaptively, based on the findings of previ-
ous rounds. As is common in the RANSAC pipeline, every
time the best maximal consensus (inlier rate) is updated, the
number of required iterations is decreased accordingly.

Notice that the algorithm is generic with respect to the
underlying transformation space F. It does however re-
quire the knowledge of how to efficiently decompose it into
a product space (Step 1). We next describe two such con-
structions for 2D-translations and provide a construction for
the 2D-affine group in the supplementary material [16].

2.6. 2D-translation constructions

Recall that at the basis of our algorithm is the decompo-
sition of the transformation search space F' into a product of
spaces Fo x Net.(F'), controlled by a parameter €. Depend-
ing on the structure of the space F' (|F'| = N), we will pick
a value of e (and ¢') for which |F./| ~ |Net.(F)| ~ V/'N,
in order to minimize the complexity which depends on the
sum of the sizes of the product spaces. We make the decom-
position explicit for the case of 2D-translations.

Since no scale is involved, s(f*)=1 and hence ¢’ =e.
Given a square template 7' and image I of dimensions
m x m and n X n, the subspaces F. and Net.(F) can
be constructed using a hexagonal cover of a square by
circles of radius €, as is depicted in Figure 2(a). The
sizes of the resulting subspaces F, and Net (F): me? and
(n —m + 1)2/(1.5v/3€?), can be made equal by tuning e.
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Figure 3. Empirical validation of Algorithm 2’s guarantees.
The theoretical success probabilities of OATM as a function of
the number of iterations k (solid curves) for different inlier rates
« (notice the log-scale x-axis) can be seen to match the algorithm
success rates (markers) measured in a large-scale experiment.

However, this covering is sub-optimal by a multiplica-
tive factor of 1.5v/3 due to the overlap of circles. We
can actually get a practically optimal decomposition (while
not strictly following the e-net definition), as is depicted
in Figure 2(b). We take the product of the sets: F, =
{i,j : i,j € —€,...,¢} and Net(F) = {i,j : i,j €
{e+2ke} fork=1,...,[(n—m+1)/2¢)]}. This results
in |F.| = 4¢® and | Net (F)| = (n—m+1)%/(4¢€?). Taking
e =0.5y/n —m+ lyields |F.| = |[Net.(F)| =n—m+1.

3. Empirical validation of the analysis

Algorithm success rate (2D-translation)

We begin with a large-scale validation of the theoretical
guarantees of the algorithm (shown for the 2D-translation
case), with each of the number k of iterations in the set
{1,2,4,8,16, 32,64, 128,256,512}, while the other pa-
rameters are kept fixed.

We run 200 template matching trials for each inlier rate
a in the set {0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}. The success
rate reported is the relative number of trials for which an
exact match was found. For each trial we created a template
matching instance, by first extracting a 100 x 100 template
T from a 500 x 500 image I with grayscale intensities in
[0,1], taken (scaled) at random from the Unplash data-set?.
A random a-fraction of the template pixels are labeled as
inlier pixels, and the intensity T'(p) of each outlier pixel p
is replaced with the intensity that is 0.5 away from it in ab-
solute difference. This setting guarantees that the resulting
inlier rate is exactly «, and the algorithm succeeds only if it
samples a pure set of inliers. Finally, we add to the image [
white Gaussian noise with std equivalent of 5 greylevels.

The results are shown in Figure 3, where the empirical
success rates per « (markers) can be seen to match the theo-
retical success rates from Equation (12) (solid curves). It is
important to mention that these are minimal success rates

2A set of 65 high-res images we collected from https://unsplash.com/,
which we present in the supplementary material [16].
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Figure 4. Scalability experiment. OATM is compared empirically
to FM, over a 2D-affine search space of size N. As expected, the
runtime of OATM grows linearly in v/IN, while that of FM is linear
in N (notice the /N z-axis).

guaranteed for finding the perfect match, which strictly
hold, irrespective of the template and image contents, while
in practice we often observe significantly better rates.

Algorithm scalability (2D-affine)

In this experiment (result shown in Figure 4) we verify the
argued O(v/N) runtime of our algorithm. A simple way
of doing so is by creating a sequence of affine matching
instances (see the experiment in Section 4.1 for the techni-
cal details), were square templates of a fixed side length of
32 pixels are searched in square images with varying side
lengths in the set {100,200, 300, ...,3200}, while keep-
ing other affine search limits fixed - scales in the range
[2/3,3/2] and rotations in the range [—7/4,7/4]. This
leads to a sequence of configuration sizes N that grows
quadratically (hence the markers are distributed roughly lin-
early in the VN z-axis). As can be seen, the runtime of
OATM grows linearly with v/N, and can handle in reason-
able time a ratio of up to 100 between template and im-
age dimensions. For reference, the complexity of the Fast-
Match (FM) algorithm [17], representing the state-of-the-
art in affine template matching, depends on a standard pa-
rameterization of the 2D-affine space (whose size grows lin-
early in IV - see [17] for details). As can be seen, it cannot
cope with template-image side length ratio of over 20.

4. Results

In this section we demonstrate the advantages of the
proposed algorithm through several controlled and uncon-
trolled experiments on real data.

Implementation details The parameters used in our im-
plementation were chosen by simple coordinate descent
over a small set of random synthetic instances (generated
as described in Sec. 4.1). For the random grid, we use sam-
ple dimension d = 9; cell dimension ¢ = 2.5¢; where we
take the threshold ¢t = 20y/2/7 (twice the mean of a zero-
mean folded-normal-distribution), given a noise level of o,
or t = 10 greylevels when it is unknown. Our method can
provide affine photometric invariance, i.e., global bright-
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Figure 5. Results of the occlusion experiment (Sec. 4.2): median center location errors (left) and average run-times (right).

ness and contrast changes, by standardizing the vector sets
U and V (in step 2 of Algorithm 2) to have the mean and
standard deviation of the template.

4.1. Template matching evaluation

We test our algorithm in a standard template matching
evaluation, not involving occlusions, in order to compare
to other algorithms, such as Fast-Match (FM) [17] repre-
senting state-of-the-art in affine template matching. We run
a large-scale comparison, using different combinations of
template and image sizes (a larger gap between their sizes
implies a larger size IV of the search space). We will use the
following shorthands for template and image dimensions:
T1 for 16 x 16, T2 for 32 x 32 and T3 for 64 x 64. Likewise:
I1 for 160 x 160, I2 for 320 x 320 and I3 for 640 x 640.

For each template-image size combination, we ran 100
random template matching trials. Each trial (following [17])
involves selecting a random image (here, from the Un-
plash data-set) and a random affine transformation (paral-
lelogram in the image). The template is created by inverse-
warping the parallelogram and white gaussian noise with 5
graylevels equivalent std is added to the image.

For each trial we report average overlap errors and run-
times. The overlap error is a scalar in [0, 1] given by 1 minus
the ratio between the intersection and union of the detected
and true target parallelograms.

The results are summarized in Table 1. OATM is typi-
cally an order of magnitude faster than FM, at similar low
error levels. FM cannot deal with the setting T1-I3, due
to the large number of configurations [NV (the image edge
length is 40 times the template edge length), while OATM
deals with a more tolerable size of v/N.

template-image sizes
[ [ T1-11 T1-12 T1-13 T2-11 T2-12 T2-13 T3-I1 T3-12 T3-13

EM | & 0.09 0.13 NA 0.05 005 0.09 0.02 0.01 0.03
time [12.22 25.37 NA 4.35 7.78 32.07 1.33 1.90 11.61
OATM | & 0.07 0.10 0.13 0.02 0.04 0.04 0.01 0.02 0.13
time| 0.15 0.18 0.39 0.53 0.76 1.73 0.51 0.64 1.01

Table 1. Template matching evaluation for different template im-
age sizes, including average runtime (seconds) and overlap error.

4.2. Robustness to occlusions

In this experiment, we evaluate how well OATM and sev-
eral other methods deal with occlusion. We repeat the proto-
col from the previous experiment (Section 4.1), except that
we take a fixed template-image size (T2-12) and we synthet-
ically introduce a controlled amount of outlier pixels. One
way of doing so (see examples in Figure 1) is by introduc-
ing random 4 x 4 blocks. We repeated the experiment with
two other ways of introducing occlusion, resulting in simi-
lar results, which we provide in the supplementary material
[16]. These come to show that our method is robust to the
spatial arrangement of the occlusion mask.

In addition to Fast-Match (FM) [17], we compare with
two additional template matching methods - Best Buddies
Similarity (BBS) [8] and Deformable Diversity Similarity
(DDIS) [25], both specialized in handling complex geomet-
ric deformations and high levels of occlusion. For a fair
comparison, since BBS and DDIS match the template in a
sliding window fashion (and account for deformation within
the window), we measure center location errors (rather than
overlap error) - the distance between the center of the target
window and the true target center location, as a percentage
of the template dimension (clipped at 100%).

The plots in Figure 5 summarize the experiment. OATM
can be seen to provide the most accurate detections at a very
wide range of inlier rates, starting from around 0.25. DDIS
can handle inlier rates of above 0.5, but is slightly less ac-
curate in localization due to its sliding window search. FM
was not designed to handle occlusions explicitly and fails to
do so for inlier rates under 0.75. BBS does not handle in-
lier rates under 0.75 and its localization is suboptimal when
dealing with the affine deformations in this setting.

In terms of speed, DDIS is clearly the most efficient.
DDIS and BBS are agnostic of the inlier rate, while the run-
time of OATM is inverse proportional to the inlier rate, due
to its RANSAC-like adaptive stopping criterion.

4.3. Matching partially occluded deformed patches

In this experiment we use the recent HPatches [4] data-
set, which was designed for benchmarking modern local



image descriptors. The patches were extracted from 116
sequences (59 with changing viewpoint, 57 with changing
illumination), each containing 6 images of a planar scene
with known geometric correspondence given by a 2D ho-
mography. Approximately 1300 square 65 x 65 reference
patches (rectified state-of-the-art affine detected regions)
are extracted from the first image in each sequence. The ex-
act set of corresponding patches were then extracted from
the 5 other sequence images, using the ground-truth projec-
tion, while introducing 3 levels (Easy, Hard, Tough) of con-
trolled geometric perturbation (rotation, anisotropic scaling
and translation), to simulate the location inaccuracies of
current feature detectors.

These perturbations introduce significant geometric de-
formations (e.g. rotation of up to 10°/20°/30°) as

well as increasing levels of occlusion (average overlap of
78%/63%/51%) for the Easy/Hard/Tough cases. Figure 6
shows several examples of extracted reference patches and
their matching patches at the different levels of difficulty.

ref E1 E2 E3E4E5 HI1H2H3H4HS5 T1T2T3T4T5
Figure 6. Samples from the HPatches [4] dataset. viewpoint se-
quences (rows 1-3) and illumination sequences (rows 4-6).

This data is useful in showing the capabilities of our
method in handling such challenges, in comparison with the
common practice of matching features by their descriptors.
We focus on the proposed ‘matching’ task [4], in which
each reference patch needs to be located among each of the
patches of each sequence image. A template matching al-
gorithm cannot strictly follow the suggested task protocol,
which was defined for matching patches by their descrip-
tors. Instead, we pack all the (~1300) square target patches
into a single image in which we search for the template us-
ing the photometric invariant version of OATM. The target
patch chosen is the one which contains the center location
of the warped template patch. For mean-Average-Precision
(mAP) calculation, since our method only produces a single
target patch we assign a weight of 1 to the detected target
patch and O to the rest.

The results are summarized in Table 2. The refer-
ence descriptor methods include SIFT [19] and its variant
RSIFT [3], the binary descriptors BRIEF [7] and ORB [23]
and the deep descriptors DeepDesc (DDESC) [24] and
TFeat ratio* (TF-R) [5]. For SIFT, TF-R, DDESC and
RSIFT, results are given for the superior whitened and nor-

malized versions of the descriptors (as reported in [4]).

viewpoint seqs illumination seqs
method Easy \ Hard \ Tough | Easy \ Hard \ Tough

BRIEF [7] | 256 | 6.9 2.4 205 | 59 2.0
ORB [23] | 364 | 11.1 3.7 289 | &8 3.2
SIFT [19] | 59.4 | 30.6 | 153 |52.6 | 26.1 133
TF-R[5] |589 |355 | 19.0 |485 |28.6 15.6
DDESC [24] | 58.6 | 36.0 | 20.2 | 50.7 | 30.0 | 17.0
RSIFT [3] | 64.0 | 352 | 185 |57.1 | 30.2 15.9
OATM 72.7 | 49.2 | 32.1 (433 | 293 19.7

Table 2. Results on the HPatches [4] Image Matching bench-
mark. Results are in terms of mean-Average-Precision (mAP),
where all results except that of OATM were reported in [4].

Clearly, for both viewpoint and illumination sequences
- the mAP of OATM deteriorates more gracefully with the
increase in geometric deformation and level of occlusion,
compared to the descriptor based methods. While the state-
of-the-art features and descriptors may be highly insensitive
to certain local geometric deformations and different photo-
metric variations (and hence some outperform OATM in the
Eagy illumination case), they are not as effective in dealing
with significant deformation and occlusion, unlike OATM
which explicitly explores the space of affine deformations
and reasons about substantial occlusion levels.

Furthermore, the naive current application of OATM on
this data suggests that performance could be further im-
proved by: (i) finding a distribution over target locations
rather than one single detection; (ii) being aware of the
patch structure of the stacked target image; (iii) using ad-
vanced representations instead of the greylevel pixelwise
description. That being said, unlike the descriptor based
methods, the template matching nature of OATM is cer-
tainly not suitable for large-scale matching, where a large
pool of patches needs to be matched against another. Never-
theless, many of the ideas presented here could be possibly
adapted, e.g. to the image-to-image matching setup.

5. Conclusions

We have presented a highly efficient algorithm for 2D-
affine template matching that is carefully analyzed and is
shown to improve on previous methods in handling high
levels of occlusion and geometric deformation.

The results on the HPatches data-set raise the question
of whether descriptor based matching is able to handle the
geometric deformations and high occlusion levels that are
inherent in the localization noise introduced by feature de-
tectors. This is the case even in the advent of deep learning,
and the development of methods that can explicitly reason
for deformation and occlusion seems to be necessary for
improving the state-of-the-art in visual correspondence.
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