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Abstract

Adversarial attacks are known to succeed on classifiers,
but it has been an open question whether more complex vi-
sion systems are vulnerable. In this paper, we study ad-
versarial examples for vision and language models, which
incorporate natural language understanding and complex
structures such as attention, localization, and modular ar-
chitectures. In particular, we investigate attacks on a dense
captioning model and on two visual question answering
(VQA) models. Our evaluation shows that we can generate
adversarial examples with a high success rate (i.e., > 90%)
for these models. Our work sheds new light on understand-
ing adversarial attacks on vision systems which have a lan-
guage component and shows that attention, bounding box
localization, and compositional internal structures are vul-
nerable to adversarial attacks. These observations will in-
form future work towards building effective defenses.

1. Introduction
Machine learning, especially deep learning, has achieved

great success in various application scenarios, such as im-
age classification, speech recognition, and machine trans-
lation. However, recent studies prove the existence of ad-
versarial examples for many vision-based learning models,
which may hinder the adoption of deep learning techniques
to security-sensitive applications [19, 43, 56, 65]. Most ex-
isting works consider image classification and demonstrate
that it is almost always possible to fool these models to clas-
sify an adversarially generated image as a class specified by
the adversary [66]. Albeit numerous defenses have been
proposed [19, 60, 52, 67, 51, 48], almost all of them are
later shown to be broken [8, 23, 9].

Recently, there has been an increasing interest in whether
adversarial examples are practical enough to attack more
complex vision systems [44, 45, 6]. In the latest results of
this debate, Lu et al. show that previous adversarial exam-
ples constructed to fool CNN-based classifiers cannot fool
state-of-the-art detectors [45]. We are interested in whether

other forms of localization and/or language context offer ef-
fective defense.

In this work, we extend the investigation towards more
complex models that not only include a vision component
but also a language component to deepen our understand-
ing of the practicality of adversarial examples. In particular,
we investigate two classes of systems. First, we are inter-
ested in dense captioning systems, such as DenseCap [30],
which identify regions of interest first and then generate
captions for each region. Second, we are interested in vi-
sual question answering (VQA) systems, which answer a
natural language question based on a given image input.
The state-of-the-art VQA systems typically compute atten-
tion maps based on the input and then answer the question
based on the attended image regions. Therefore, both types
of models have a localization component, and thus they are
good targets for studying whether localization can help pre-
vent adversarial attacks. Further, we explore state-of-the-art
VQA models based on Neural Modular Networks [25], and
evaluate whether such compositional architectures are also
vulnerable to adversarial attacks; in these models, a new
network architecture is instantiated for each question type,
potentially providing a buffer against attacks.

We evaluate adversarial examples against these vision
and language models. We find that in most cases, the attacks
can successfully fool the victim models despite their inter-
nal localization component via attention heatmaps or region
proposals, and/or modular structures. Our study shows that,
in an online (non-physical) setting when the attackers have
full access to the victim model including its localization
component (white-box attack), the generated adversarial ex-
amples can fool the entire model regardless of the localiza-
tion component. Therefore, our evaluation results provide
further evidence that employing a localization in combina-
tion with a classifier may not be sufficient to defend against
adversarial examples, at least in non-physical settings.

We also make the following additional contributions.
First, we develop a novel attack approach for VQA models,
which significantly outperforms the previous state-of-the-
art attacks. Second, we observe and analyze the effect of a
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language prior in attacking VQA models, and define a prin-
ciple which explains which adversarial examples are likely
to fail. In particular, when the target answer is not com-
patible with the question, it is difficult to find a successful
adversarial attack using existing approaches. To sum up,
our work sheds new light on understanding adversarial at-
tacks on vision and language systems and shows that atten-
tion, bounding box localization and compositional internal
structures are vulnerable to adversarial attacks. These ob-
servations will inform future work towards building effec-
tive defenses.

2. Related Work
In the following, we first review recent work on image

captioning and visual question answering. We focus on the
models that incorporate some form of localization, e.g. soft
attention or bounding box detection. We then review the
state-of-the-art methods to generate adversarial examples as
well as defense strategies against these methods.

Image Captioning Most recent image captioning ap-
proaches have an encoder-decoder architecture [11, 12, 32,
33, 50, 69]. A spatial attention mechanism for image cap-
tioning was first introduced by [73]. They explored soft at-
tention [7] as well as hard attention. Others have adopted
this idea [15, 42, 46, 76] or extended it to perform attention
over semantic concepts, or attributes [77, 79]. Recently [61]
proposed an end-to-end model which regresses a set of im-
age regions and learns to associate caption words to these
regions. Notably, [2, 12, 32] exploited object detection re-
sponses as input to the captioning system. As opposed to
image captioning of the entire image, [30] have proposed
dense captioning, which requires localization and descrip-
tion of image regions (typically bounding boxes). Some
other dense captioning approaches include [40, 74].

Visual Question Answering. Early neural models for vi-
sual question answering (VQA) were largely inspired by
image captioning approaches, e.g. relying on a CNN for im-
age encoding and a RNN for question encoding [17, 49, 62].
Inspired by [73], a large number of works have adopted an
attention mechanism for VQA [16, 47, 64, 72, 75, 80]. Se-
mantic attention has been explored by [78]. Other direc-
tions explored by recent work include Dynamic Memory
Networks (DMN) [36, 71], and dynamic parameter layers
(DPP) [55]. Recently a new line of work focused on de-
veloping more compositional approaches to VQA, namely
neural module networks [3, 4, 25, 29]. These approaches
have shown an advantage over prior work for visual ques-
tion answering which involve complex reasoning.

Adversarial Examples. Existing works on adversarial
example generation mainly focus on image classification
models. Several different approaches have been pro-

posed for generating adversarial examples, including fast
gradient-based methods [19, 43], optimization-based meth-
ods [66, 10], and others [58, 54]. In particular, Carlini
et al. [10] proposed the state-of-the-art attacks under con-
straints on L0, L2, and L1 norms. Our work improves [10]
on both attack success rate and adversarial probability.

Another line of research studies adversarial examples
against deep neural networks for other tasks, such as recur-
rent neural networks for text processing [59, 28], deep re-
inforcement learning models for game playing [41, 26, 34],
semantic segmentation [14, 70], and object detection [24,
70]. To our best knowledge, our work is the first to study
adversarial examples against vision-language models.

While our work assumes that models are known to the
attacker, prior works demonstrate that adversarial examples
can transfer between different deep neural networks for im-
age classification [66, 19, 43, 56, 58, 53], which can be used
for black-box attacks. We briefly analyze the transferability
of VQA models in the supplemental material.

Defense against Adversarial Examples. On the defense
side, numerous strategies have been proposed against ad-
versarial examples [19, 60, 52]. Early attempts to build a
defense using distillation [60] were soon identified as vul-
nerable [8]. Some recent proposals attempt to build a de-
tector to distinguish adversarial examples from natural im-
ages [52, 21, 18, 13]. Others study ensembles of different
models and defense strategies to see whether that helps to
increase the robustness of deep neural networks [67, 68, 51].
However, He et al. show that with the knowledge of the
detector network and the defense strategies being used, an
attacker can generate adversarial examples that can mislead
the model, while still bypassing the detector [23].

The most promising line of defense strategies is called
adversarial training [19, 37, 67, 48]. The idea is to generate
adaptive adversarial examples and train the model on them
iteratively. The latest results along the line [48] show that
such an approach can build a robust MNIST model. But the
same approach currently fails on extending to CIFAR-10.

3. Generating Targeted Adversarial Examples
In this section, we first present a generic adversarial ex-

ample generation algorithm, and then our implementations
for dense captioning models and VQA models.

3.1. Background: targeted adversarial examples
for a classification model

Consider a classification model f
✓

(x), where ✓ is the pa-
rameters and x is the input. Given a source image x, a tar-
geted adversarial example is defined as x? such that
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(x
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) = y

t ^ d(x
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where y

t is the target label, and d(x
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, x)  B says that the
distance between x and x

? is bounded by a constant B.
Without loss of generality, f

✓

(x) predicts the dimension
of the largest softmax output. We denote J
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(x) as the soft-
max output, then a standard training algorithm typically op-
timizes the empirical loss
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✓ using a gradient decent-based approach. Existing adver-
sarial example generation algorithms leverage the fact that
J
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(x) is differentiable, and thus solve (1) by optimizing the
following objective:
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where � > 0 is a hyper-parameter. In fact, the state-of-the-
art attack [10] approximates the solution to (2) using Adam.

3.2. Targeted adversarial examples for DenseCap
The DenseCap model [30] predicts M = 1000 regions,

ranks them based on confidence, and then generates a cap-
tion for each region. It uses a localization network, similar
to Fast R-CNN [63], for predicting regions. For each re-
gion, the model uses a CNN to compute the embedding and
then uses an RNN to generate a sequence of tokens from the
embedding to form the caption.

To train the DenseCap model, Johnson et al. include five
terms in the loss: four for training the region proposal net-
work, and the last one to train the RNN caption generator.
To fool the model to predict the wrong target caption, we
can leverage a similar process as discussed above. Note that
existing works [24, 70] have demonstrated that an object
detection/segmentation model can be fooled by adversarial
examples. In this work, we focus on generating adversarial
examples to fool the captioning module of the model, while
retaining the proposed regions unchanged.

To achieve this goal, assuming the target caption is
C

t and the ground truth regions for a source image are
{R

i

}, we construct a new set of target region-caption pairs
{(R

i

, C

t

)}. Using these target region-caption pairs as the
new “ground truth”, we can use the DenseCap loss, with
addition of the �d(x

?

, x) term as in (2), as the new objec-
tive, and minimize it with respect to x

?.

3.3. Targeted adversarial examples for VQA models
We now briefly present our novel targeted adversarial at-

tack against VQA models. More details can be found in
Appendix A in the supplemental materials. Our design is in-
spired by two goals: (1) maximizing the probability of the
target answer, which is equivalent to the confidence score
of the model’s prediction; and (2) removing the preference
of adversarial examples with smaller distance to the source
image, as long as this distance is small enough (i.e., below
an upper bound). Our evaluation shows that our algorithm
performs better than the previous state-of-the-art [10].

Algorithm 1 Targeted Adversarial Generation Algorithm
against a VQA model

Input: ✓, x,Q, y

t

, B, ✏,�1,�2, ⌘,maxitr

Output: x?

1 x

1  x+ � for � sampled from a uniform
distribution between [�B,B];

2 for i = 1!maxitr do
3 y

p  f

✓

(x

i

, Q);
4 if yp = y

t and i > 50 then
5 return x

i as x?;
6 x

i+1  update(x

i

, ⌘,r
x

⇠(y

p

));
7 return x

maxitr+1 as x?;

A VQA model takes an additional natural language in-
put Q, and predicts an answer from a candidate set of K

answers. Similar to (1), a targeted adversarial example x

?

given a question Q is defined to be a solution to:
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We employ Algorithm 1 to generate the adversarial
example x

?. The algorithm takes as input: model pa-
rameters ✓, source image x, question Q, target answer
y

t, the distance bound B, and several hyper-parameters:
✏,�1,�2, ⌘,maxitr. This algorithm iteratively approxi-
mates the optimal solution to the following objective:
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and returns the final result as output. There are two termi-
nating conditions: (1) after at least 50 iterations, if the pre-
diction matches the target, then the algorithm stops and re-
turns the current xi as output; or (2) after a maximal number
of iterations (maxitr), if the prediction still does not match
the target, the algorithm returns xmaxitr+1 as output.

We now take a closer look at (4). y

p denotes the pre-
diction in each iteration. The objective (4) contains three
components. The first is the same as in (2). The second
component maximizes the difference between J

✓

(x,Q) and
the prediction y

p when y

p is not the target yt. ⌧ is a con-
stant, e.g., log(K), set to ensure that the second compo-
nent is always non-negative. The third component mod-
els the constraint d(x?

, x)  B in (3). ✏ is a small con-
stant set to (L(f

✓

(x,Q), y

t

)+�1⌧)/�2 ensures that the ad-
versarial example x

? which optimizes (4) always satisfies
d(x

?

, x)  B. By using a ReLU function, our attack no
longer minimizes the distance d(x

?

, x) if it is smaller than
B � ✏. In practice we choose d(x, x

?

) = ||x � x

?||2/
p
N

and set B = 20. Other hyper-parameters ⌘,maxitr are
the learning rate and the maximal number of iterations. We
defer a formal analysis to the supplemental material.



(a) Caption 1 (b) Caption 2 (c) Caption 3 (d) Caption 4 (e) Caption 5
Figure 1: Top-K accuracy on the Caption A dataset averaged across 1000 images generated with each target caption

4. Experiments With Dense Captioning
In this section, we evaluate our attacks on Dense-

Cap [30], the state-of-the-art dense captioning model.
DenseCap employs a region proposal network to first iden-
tify the bounding boxes of objects, and then generates cap-
tions for each bounding box. We obtain the pre-trained
model from their website1.

To evaluate the attack, we use Visual Genome
dataset [35], which was originally used to evaluate Dense-
Cap in [30]. For an extensive evaluation, we create the fol-
lowing three attack sets from Visual Genome:

1) Caption A. We randomly select 5 captions as the tar-
get captions and 1000 images as the source images;

2) Caption B. We randomly select 1000 captions as tar-
get captions and 5 images as source images;

3) Gold. We select 100 images where DenseCap model
generates correct captions and manually select target cap-
tions irrelevant to the images.

For each caption-image pair, we set the caption as the tar-
get, and the image as the source to generate an adversarial
example. To evaluate the attack effectiveness, we measure
the percentage of top-K predictions from generated adver-
sarial examples that match the target captions. We consider
two metrics to determine caption matching:

1) Exact-match. The two captions are identical.
2) METEOR> !. The METEOR score [38] between

the two captions is above a threshold !. We consider the
threshold ! to be 0.15, 0.2, or 0.25, similar to [30].

Formally, we measure Acc

µ,K
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t

) =P
K

i=1 µ(C
t

, C

i

)/K where C

t is the target caption,
x

? is the adversarial example, C
i

for i = 1, ...,K are the
top-K predictions for x?, and µ is the matching metric (i.e.,
Exact-match or METEOR> !).

4.1. Results and Observations
The evaluation results on Caption A are presented in

Figure 1. Each subfigure shows the results for one target
caption. For each caption and each K 2 {1, 2, 3, 4, 5}, we

1
https://github.com/jcjohnson/densecap

compute Acc

µ,K

for each of the 1000 randomly selected
images, and report the average value of Acc

µ,K

across 1000
images. Each plot contains such 5 top-K accuracy values
for each metric described above (see the legend).

We observe that using the metric derived from METEOR
score, the accuracy is higher than using the Exact-match
metric. This is intuitive, since Exact-match is an over-
conservative metric, which may treat a semantically correct
caption as a wrong answer. In contrast, using METEOR
score as the metric can mitigate this issue. Even with Exact-
match, we observe that all captions have an average top-K
accuracy above 30%. Further, for target captions Caption 1-
3, the top-1 accuracy is always above 50%. That means, at
least 500 generated adversarial examples can successfully
fool the DenseCap system to produce the exact target cap-
tions with the highest confidence score.

We further investigate the number of attack “failures”
among caption-image pairs in Caption A. The attack fails
if none of the top-5 predictions matches the target based
on METEOR> 0.15. We find only 17 such caption-image
pairs, i.e., 0.35% of the entire set, which lead to adversarial
attack failure. This means that for the rest 99.65% caption-
image pairs, the attacks are successful in the sense that there
exists at least one prediction for each adversarial example
that matches the target caption. The 17 cases can be found
in Appendix B in the supplemental material.

The results on Caption B set are similar, and we ob-
serve that 97.24% of the caption-image pairs can be suc-
cessfully fooled in the sense described above. For the Gold

set we find that our attack fails only on one image. Due to
space limitations, we defer detailed results on Caption B

and Gold sets to Appendix B in the supplemental materials.
Note that the attack does not achieve a 100% success

rate. We attribute it to two reasons: (1) it is challenging
to train an RNN-based caption generation model to gener-
ate the exactly matching captions; and (2) the DenseCap
network involves randomness, and thus may not produce
the same results for all runs. Still, we observe that the at-
tack success rate is over 97%, and thus we conclude that the
DenseCap model can be fooled by adversarial examples.

https://github.com/jcjohnson/densecap


(a) (b) (c) (d) (e)
Figure 2: Adversarial examples generated from different images with the target caption to be “a window on a building”.

(a) head of a person (b) the plate is white (c) the water is calm (d) a key on a keyboard (e) this is an outside scene
Figure 3: Adversarial examples generated from Image 4 with different target captions (shown as sub-figure captions).

4.2. Qualitative Study
We conduct qualitative study to investigate the generated

adversarial examples and their predictions. In Figure 2, we
present five adversarial examples generated for the same tar-
get caption. We see that most of the predicted captions ex-
actly match the target (e.g., all top-5 predictions for Fig-
ure 2a and Figure 2b), or be semantically equivalent to the
target (e.g., the top-2 prediction for Figure 2e). We further
examine the bounding boxes of the regions proposed by the
model. We find that the model localizes objects in the adver-
sarial examples, although the caption generation module of
the model is completely fooled. For example, in Figure 2c,
the model can successfully identify the plates, but label all
of them as “a window on a building”.

To further understand this effect, in Figure 3, we show
the adversarial examples generated from the same source
image but with different target captions. We observe that all
adversarial images look identical to each other, and the re-
gions proposed for different images are also similar. For ex-
ample, we observe that the top proposed regions for the first
four images all circumscribe the tree on the left. However,
the top captions generated for this region are all different,
and match the target captions very well.

5. Experiments with VQA
In this section, we evaluate the previous state-of-the-art

attack [10] and our novel algorithm on two VQA models.

We also investigate the effect of adversarial attacks on atten-
tion maps of the VQA models to gain more insights about
the way the attacks work. Finally, we analyze the successes
and failures of our attacks with respect to language prior.
More results on qualitative study, transferability, and fur-
ther investigations to the failure cases can be found in Ap-
pendix D and E in the supplemental materials.

5.1. Models
We experiment with two state-of-the-art models for

open-ended visual question answering, namely the MCB
model [16], which is the winner of the VQA challenge in
2016, and the compositional model N2NMN [25]. Both
models achieve similar performance on the VQA bench-
mark [5], while being very different in terms of internal
structures. MCB relies on a single monolithic network
architecture for all questions, while N2NMN dynamically
predicts a network layout for every given question. In our
experiments we investigate whether such compositional dy-
namic architecture is more resilient than the monolithic one.

We retrieve the pre-trained model of MCB from their
website2, and the pre-trained model of N2NMN by con-
tacting the authors through email directly. The code imple-
menting N2NMN is acquired from the website.3 Notice that
the MCB model is trained not only on the VQA dataset but

2
https://github.com/akirafukui/vqa-mcb

3
https://github.com/ronghanghu/n2nmn

https://github.com/akirafukui/vqa-mcb
https://github.com/ronghanghu/n2nmn


MCB, ours

N2NMN, ours
N2NMN, carlini
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Figure 4: CDF of adversarial probability on the Gold set.

also on the Visual Genome dataset [35], while the N2NMN
model only considers the VQA dataset.

5.2. Datasets
To evaluate different adversarial example generation al-

gorithms we derive three datasets from the VQA dataset [5].
In particular, we choose source images and question-answer
targets from the VQA validation set as follows:

1) VQA-A: We randomly select 6,000 question-answer
pairs and 5 source images to constitute 30,000 triples;

2) VQA-B: We randomly select 5,000 source images and
10 question-answer pairs to construct 50,000 triples;

3) Gold: We manually select 100 triples, such that MCB
and N2NMN models can correctly answer the questions
based on the images, and the target answers are plausible
for the questions but incorrect for the images.

For each triple of question-answer-image, we generate
an adversarial example close to the source image using the
answer as the target. More details can be found in Ap-
pendix C in the supplemental materials.

5.3. Evaluation metrics
Given a set of question-answer pairs (Q, y

t

) and the gen-
erated adversarial examples {x?}, we evaluate two metrics:
the attack success rate and the adversarial probability.

Attack success rate. The attack is considered successful if
f

✓

(x

?

, Q) = y

t. The attack success rate is computed as the
percentage of successful attacks over all triples in a dataset.

Adversarial probability. The adversarial probability is
computed as J

✓

(x

?

, Q)

y

t , where J(·, ·)
i

indicates the i-th
dimension of the softmax output. Adversarial probability
indicates the confidence score of the model to predict the
target answer yt, and thus provides a fine-grained metric.

5.4. Results
Here we report the overall success of adversarial attacks

on VQA models, and also compare our new algorithm de-
scribed above with the performance of the previous attack
algorithm (CW [10]) applied to this novel VQA setting. We
present the quantitative results below, and defer more qual-
itative results to the supplemental material.

Image # 1 2 3 4 5

MCB ours 94.67 94.78 94.97 95.02 95.15
CW [10] 94.10 94.28 94.27 94.52 94.78

N2NMN ours 94.25 94.53 95.57 95.80 96.15
CW [10] 93.82 93.78 95.02 95.08 95.37

Table 1: Attack success rate (%) on VQA-A.

MCB, ours

N2NMN, ours
N2NMN, carlini

MCB, carlini

Figure 5: CDF of adversarial probability on VQA-A.

Gold. For both MCB and N2NMN models, we achieve
100% attack success rate using either approach. Note that
both models can correctly answer all the questions on the
original source images. The 100% attack success rate for
both VQA models shows that both of them are vulnerable
to targeted adversarial examples.

We inspect the adversarial probabilities of the generated
adversarial examples, and plot the Cumulative Distribution
Function (CDF) in Figure 4. Note that a lower CDF curve
indicates a higher probability in general. From the figure we
observe that the CDF curve of N2NMN is above MCB’s, in-
dicating that N2NMN is slightly more resilient than MCB.
However, we also observe that for both models, almost in
all cases the adversarial probability is above 0.7. Thus, we
conclude that our attack is very successful at misleading the
VQA models to predict the target answers. We also observe
that the CDF curve of CW attack is much higher than ours,
showing that our approach is more effective at achieving a
high adversarial probability. Overall, we show that such at-
tacks can be performed very successfully for target answers
that are meaningful to questions.

VQA-A. We further investigate VQA adversarial examples
across a wide range of target question-answer pairs. We
separately compute the attack success rate using each im-
age as the source. The results are presented in Table 1, and
the corresponding CDF curves are plotted in Figure 5. We
can draw similar conclusions as for the Gold set: (1) the
attack success rate is high, i.e., > 90%; (2) the adversarial
probability of our attack is high; and (3) our attack is more
effective than CW attack.

We observe that the attack’s performance against
N2NMN model is worse than against MCB. In particular,
from Figure 5, we see that the adversarial probability of at-



Original image
Benign attention maps Adversarial attention maps

MCB Attention N2NMN Attention MCB Attention N2NMN Attention

What is the man holding? Original answer: racket Target: phone

What does this sign say? Original answer: stop Target: one way

What type of vehicle is this? Original answer: train Target: bus

Table 2: Attention maps of benign and adversarial images on MCB and N2NMN models.

tacks generated on the N2NMN model is significantly lower
than the MCB model. This further shows that N2NMN
model is somewhat more robust against adversarial attacks.
We also observe that the attack success rate with respect to
different images does not vary too much. We hypothesize
that the attack success is not sensitive to a source image,
but more dependent on a target question-answer pair. Our
further investigations on VQA-B and language priors below
provide more evidence to confirm this hypothesis.

The attack success rate is not 100%, which shows that
there exist a few question-answer pairs where neither ours
nor the CW attack can succeed. In fact, for these question-
answer pairs, we have also tried other attack methods and
none of them can succeed in fooling the victim VQA model.
We find that these question-answer pairs tend to appear in-
frequently in the training set, and this observation leads to
our hypothesis regarding language prior. We present more
analysis of the language prior in the following section.

VQA-B. We test the hypothesis that the attack success rate
is not strongly dependent on the choice of source images us-
ing the VQA-B dataset. In our evaluation, we observe that
for 9 out of 10 question-answer pairs, the adversarial exam-
ples generated from any of the 5,000 source images fool the
victim model with 100% attack success rate. For the one
remaining question-answer pair, however, we cannot gener-
ate successful adversarial examples from any of the source

images. This result further confirms our hypothesis. Inter-
estingly, we observe that the “hard” question-answer pairs
for the two VQA models are different. For the MCB model,
the question is “Why is the girl standing in the middle of
the room with an object in each hand?” with the target
answer “playing wii”; for the N2NMN model, the ques-
tion and answer are “Who manufactured this plane?” and
“japan”, respectively. This suggests that the hard question-
answer pairs are model-specific, which further motivates us
to investigate language prior in VQA models.

5.5. Adversarial examples fool attention mechanism

We conduct a qualitative study to gain more insights as to
how the attack succeeds. In the following we use the Gold

dataset. In particular, both models in our experiments have
attention mechanism. That is, to answer a question, a model
first computes an attention map, which is a weight distri-
bution over local features extracted from a CNN based on
the image and the question. Intuitively, a well-performing
model should put more weight, i.e. attend to, the image
region that is most informative to answer the question.

We demonstrate the attention heatmaps for three source
images and their adversarial counterparts in Table 2. We ob-
serve that the adversarial examples mislead the VQA mod-
els to ignore the regions that support the correct answer to
the question. For example, in the second source image both



MCB and N2NMN focus on the stop sign when answer-
ing the question. The adversarial examples fool MCB and
N2NMN to pay attention to the street sign instead, which
leads to predicting a one-way traffic sign, likely because
both signs are long rectangular metal plates. In the last ex-
ample, the attention is mislead to ignore the rail tracks but
focusing on the windows which look similar to those on a
bus. Therefore, we observe that adversarial examples can
fool both the attention and the classification component of
the VQA models to achieve the malicious goal.

5.6. Language Prior

We illustrate the language prior phenomenon in Fig-
ure 6. It provides an example which cannot be successfully
attacked by any algorithm in our evaluation. We show an
adversarial example generated by our attack algorithm, and
the top-5 predictions from the MCB model. Clearly, the
model is confused about the image and the question. The
answer with the highest probability only has a probability
of less than 5%. Although the model is confused, it cannot
be fooled to predict the target answer “partly” to the ques-
tion “what animal is next to the man?”. This observation
is different than those reported in the literature [66], i.e.,
that targeted adversarial examples can always be success-
fully generated against an image classifier regardless of the
image and the target label. We believe that the observed
phenomenon is due to the internal mechanism of a VQA
model which learns to process natural language questions
and predict semantically relevant answers.

In all previous experiments we choose question-answer
pairs from the VQA validation set, and thus the answers are
likely meaningful to the questions. To evaluate the effect of
language prior we construct the Non-Sense dataset. Specif-
ically, we choose question-answer pairs, such that answers
do not match the questions semantically, as they belong to
questions of a different type (e.g. “what color” vs. “how
many”). We find that the attack success rates using our ap-
proach against MCB and N2NMN are only 7.8% and 4.6%

respectively; the corresponding numbers for CW attack are
even lower, 6.8% and 3.8%. This experiment further con-
firms the significance of the language prior.

Prior work has noted the effect of language prior, i.e. that
the VQA models capture the training data biases and tend
to predict the most frequent answers [1, 20, 27, 31]. We
find that N2NMN is more influenced by language prior than
MCB. Specifically, N2NMN produces a smaller number of
distinct answers, predicting question-relevant answers inde-
pendent of image content. This may explain why it is more
difficult to achieve a high probability on some targets with
N2NMN than with MCB. We include more results and anal-
ysis in Appendix E in the supplemental materials.

Source image Adversarial example

Rank Answer Probability
1 yes 0.042
2 middle 0.041
3 on wall 0.040
4 left 0.031
5 background 0.025

Figure 6: The effect of language prior. The target question /
answer are “What animal is next to the man?”/“partly”. We
show the top-5 predictions from MCB after the attack.

6. Conclusion

In this work, we study adversarial attacks against vi-
sion and language models, specifically, dense captioning
and visual question answering models. The models in our
study are more complex than previously studied image clas-
sification models, in the sense that they contain language
generation component, localization, attention mechanism,
and/or compositional internal structures. Our investigation
shows that (1) we can generate targeted adversarial exam-
ples against all victim models in our study with a high
success rate (i.e., > 90%); and (2) the attacks can ei-
ther retain the localization output or also fool the attention
heatmaps to fool the victim model. While studying attacks
on VQA models, as additional contributions, we propose a
better attack method than the previous state-of-the-art ap-
proach. Also, we observe and evaluate the effect of lan-
guage prior that may explain which question-answer pairs
represent harder targets. Our work sheds new light on un-
derstanding adversarial attacks on complex vision and lan-
guage systems, and these observations will inform future
directions towards building effective defenses.
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