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Abstract

Image captioning is an important task, applicable to
virtual assistants, editing tools, image indexing, and sup-
port of the disabled. In recent years significant progress
has been made in image captioning, using Recurrent Neu-
ral Networks powered by long-short-term-memory (LSTM)
units. Despite mitigating the vanishing gradient problem,
and despite their compelling ability to memorize depen-
dencies, LSTM units are complex and inherently sequential
across time. To address this issue, recent work has shown
benefits of convolutional networks for machine translation
and conditional image generation [9, 34, 35]. Inspired by
their success, in this paper, we develop a convolutional im-
age captioning technique. We demonstrate its efficacy on
the challenging MSCOCO dataset and demonstrate perfor-
mance on par with the LSTM baseline [16], while having
a faster training time per number of parameters. We also
perform a detailed analysis, providing compelling reasons
in favor of convolutional language generation approaches.

1. Introduction
Image captioning, i.e., describing the content observed

in an image, has received a significant amount of atten-
tion in recent years. It is applicable in various scenarios,
e.g., recommendation in editing applications, usage in vir-
tual assistants, for image indexing, and support of the dis-
abled. With the availability of large datasets, deep neural
network (DNN) based methods have been shown to achieve
impressive results on image captioning tasks [16, 37].
These techniques are largely based on recurrent neural nets
(RNNs), often powered by a Long-Short-Term-Memory
(LSTM) [10] component.

LSTM nets have been considered as the de-facto stan-
dard for vision-language tasks of image captioning [5, 16,
37, 39, 38], visual question answering [3, 30, 28], ques-
tion generation [14, 20], and visual dialog [7, 13], due
to their compelling ability to memorize long-term depen-

∗ Denotes equal contribution.

dencies through a memory cell. However, the complex
addressing and overwriting mechanism combined with in-
herently sequential processing, and significant storage re-
quired due to back-propagation through time (BPTT), poses
challenges during training. Also, in contrast to CNNs,
that are non-sequential, LSTMs often require more care-
ful engineering, when considering a novel task. Previously,
CNNs have not matched up to the LSTM performance on
vision-language tasks. Inspired by the recent successes of
convolutional architectures on other sequence-to-sequence
tasks – conditional image generation [34], machine transla-
tion [9, 35] – we study convolutional architectures for the
vision-language task of image captioning. To the best of
our knowledge, ours is the first convolutional network for
image captioning that compares favorably to LSTM-based
methods.

Our key contributions are: a) A convolutional (CNN-
based) image captioning method that shows comparable
performance to an LSTM based method [16] (Section 6.2,
Table 1 and Table 2); b) Improved performance with a CNN
model that uses attention mechanism to leverage spatial im-
age features. With attention, we outperform the attention
baseline [39] and qualitatively demonstrate that our method
finds salient objects in the image. (Figure 5, Table 2); c)
We analyze the characteristics of CNN and LSTM nets and
provide useful insights such as – CNNs produce more en-
tropy (useful for diverse predictions), better classification
accuracy, and do not suffer from vanishing gradients (Sec-
tion 6 and Figure 6, 7 and 8). We evaluate our architecture
on the challenging MSCOCO [18] dataset, and compare it
to an LSTM [16] and an LSTM+Attention baseline [39].

The paper is organized as follows: Section 2 gives our
notation, Section 3 reviews the RNN based approach, Sec-
tion 4 describes our convolutional method, Section 5 gives
the details of CNN architecture, Section 6 contains results
and Section 7 discusses related work.

2. Problem Setup and Notation
For image captioning, we are given an input image I and

we want to generate a sequence of words y = (y1, . . . , yN ).
The possible words yi at time-step i are subsumed in a dis-
crete set Y of options. Its size, |Y|, easily reaches several



Figure 1: A sequential RNN powered by an LSTM cell.
At each time step output is conditioned on the previously
generated word, the image is fed at the start only.

thousands. Y contains special tokens that denote a start to-
ken (<S>), an end of sentence token (<E>), and an un-
known token (<UNK>) which refers to all words not in Y .

Given a training set D = {(I, y∗)} which contains pairs
(I, y∗) of input image I and corresponding ground-truth
caption y∗ = (y∗1 , . . . , y

∗
N ), consisting of words y∗i ∈ Y ,

i ∈ {1, . . . , N}, we maximize w.r.t. parameters w, a proba-
bilistic model pw(y1, . . . , yN |I).

A variety of probabilistic models have been considered
(Section 7), from hidden Markov models [40] to recurrent
neural networks.

3. RNN Approach
An illustration of a classical RNN architecture for image

captioning is provided in Figure 1. It consists of three ma-
jor components, all of which contain trainable parameters:
the input word embeddings, the sequential LSTM units con-
taining the memory cell, and the output word embeddings.
Inference. RNNs sequentially predict one word at a time,
from y1 up to yN . At every time-step i, a conditional prob-
ability distribution pi,w(yi|hi, I), which depends on param-
eters w, is predicted (see top of Figure 1). For modeling
pi,w(yi|hi, I), in the spirit of auto-regressive models, the
dependence of word yi on its ancestors y<i is implicitly cap-
tured by a hidden representation hi (see arrows in Figure 1).
Formally, the probability is computed via

pi,w(yi|hi, I) = gw(yi, hi, I), (1)

where gw can be any differentiable function/deep net. Note,
image captioning techniques usually encode the image into
the hidden representation h0 (Figure 1).

Importantly, RNNs are described by a recurrence rela-
tion which governs computation of the hidden state hi via

hi = fw(hi−1, yi−1, I). (2)

Again, fw can be any differentiable function. For image
captioning, long-short-term-memory (LSTM) [10] nets and
variants thereof based on gated recurrent units (GRU) [6],
or forward-backward LSTM nets are used here.

Figure 2: Our convolutional model for image captioning.
We use a feed forward network with masked convolutions.
Unlike RNNs, our model operates over all words in parallel.

Learning. Following classical supervised learning, it is
common to find the parameters w of the word embed-
dings and the LSTM unit by minimizing the negative log-
likelihood of the training data D, i.e., we optimize:

min
w

∑
D

N∑
i=1

− ln pi,w(y
∗
i |hi, I). (3)

To compute the gradient of the objective given in Eq. (3),
we use back-propagation through time (BPTT). BPTT is
necessary due to the recurrence relationship encoded in fw
(Eq. (2)). Note, the gradients of the function fw at time i
depend on the gradients obtained in successive time-steps.

To avoid more complicated gradient flows through the
recurrence relationship, during training, it is common to use

hi = fw(hi−1, y
∗
i−1, I), (4)

rather than the form provided in Eq. (2). I.e., during train-
ing, when computing the latent representation hi, we use the
ground-truth symbol y∗i−1 rather than the prediction yi−1.
This is termed as teacher forcing.

Although highly successful, RNN-based techniques suf-
fer from some drawbacks. First, the training process is in-
herently sequential for a particular image-caption pair. This
results from unrolling the recurrent relation in time. Hence,
the output at time-step i has a true dependency on the output
at i− 1. Secondly, as we will show in our results for image
captioning, RNNs tend to produce lower classification ac-
curacy (Figure 6), and, despite LSTM units, they still suffer
to some degree from vanishing gradients (Figure 8).

Next, we describe an alternative convolutional approach
to image captioning which attempts to overcome some of
these challenges.

4. Convolutional Approach
Our model is based on the convolutional machine trans-

lation model used in [9]. Figure 2 provides an overview of



Figure 3: Our convolutional architecture for image captioning. It has four components: (i) Input embedding layer, (ii) Image
embedding, (iii) Convolutional module and (iv) Output embedding layer. Details of each component are in Section 5.

our feed-forward convolutional (or CNN-based) approach
for image captioning. As the figure illustrates, our tech-
nique contains three main components similar to the RNN
technique. The first and the last components are in-
put/output word embeddings respectively, in both cases.
However, while the middle component contains LSTM or
GRU units in the RNN case, masked convolutions are em-
ployed in our CNN-based approach. This component, un-
like the RNN, is feed-forward without any recurrent func-
tion. We briefly review inference and learning of our model.
Inference. In contrast to the RNN formulation, where the
probabilistic model is unrolled in time via the recurrence
relation given in Eq. (2), we use a simple feed-forward deep
net, fw, for modeling pi,w(yi|I). Prediction of a word yi
relies on past words y<i or their representations:

pi,w(yi|y<i, I) = fw(yi, y<i, I). (5)

To disallow convolution operations from using informa-
tion of future word tokens, we use masked convolutional
layers that operate only on ‘past’ data [9, 34].

Inference can now be performed sequentially, one word
at a time. Hence, inference begins with the start token <S>
and employs a feed-forward pass to generate p1,w(y1|∅, I).
Afterwards, y1 ∼ p1,w(y1|∅, I) is sampled. Note that it
is possible to retrieve the maximizing argument or to per-
form beam search. After sampling, y1 is fed back into the
feed-forward network to generate subsequent words y2, etc.
Inference continues until the end token is predicted, or until
we reach a fixed upper bound of N steps.

Learning. Similar to RNN training, we use ground-truth
y∗<i for past words, instead of using the predicted word. For
prediction of word probability pi,w(yi|y∗<i, I), the consid-
ered feed-forward network is fw(yi, y

∗
<i, I) and we opti-

mize for parameters w using a likelihood similar to Eq. (3).
Since there are no recurrent connections and all ground-

truth words are available at any given time-step i, our CNN
based model can be trained in parallel for all words. In Sec-
tion 5, we describe our convolutional architecture in detail.

5. Architecture

In Figure 3, we show a training iteration of our con-
volutional architecture with input (ground-truth) words
{y∗1 , . . . , y∗5} = { a, woman, is, playing, tennis }. Addi-
tionally, we add the start token <S> at the beginning, and
also the end of sentence token <E>.

These words are processed as follows: (1) they pass
through an input embedding layer; (2) they are combined
with the image embedding; (3) they are processed by the
CNN module; and (4) the output embedding (or classifi-
cation) layer produces output probability distributions (see
{p1, . . . , p6} at top of Figure 3). Each of the four aforemen-
tioned steps is discussed below.
Input Embedding. For consistency with the RNN/LSTM
baseline, we train (from scratch) an embedding layer over
one-hot encoded input words. We use |Y| = 9221 and we
embed the input words to 512-dimensional vectors, follow-
ing the baseline. This embedding is concatenated to the im-
age embedding (discussed next) and provided as input to the



Method MSCOCO Val Set MSCOCO Test Set
B1 B2 B3 B4 M R C S B1 B2 B3 B4 M R C S

Baselines:
LSTM [16] .710 .535 .389 .281 .244 .521 .899 .169 .713 .541 .404 .303 .247 .525 .912 .172
LSTM + Attn (Soft) [39] - - - - - - - - .707 .492 .344 .243 .239 - - -
LSTM + Attn (Hard) [39] - - - - - - - - .718 .504 .357 .250 .230 - - -
Our CNN:
CNN .693 .518 .374 .268 .238 .511 .855 .167 .695 .521 .380 .276 .241 .514 .881 .171
CNN + Weight Norm. .702 .528 .384 .279 .242 .517 .881 .169 .699 .525 .382 .276 .241 .516 .878 .170
CNN +WN +Dropout .707 .532 .386 .278 .242 .517 .883 .171 .704 .532 .389 .283 .243 .520 .904 .173
CNN +WN +Dropout

+Residual .706 .532 .389 .284 .244 .519 .899 .173 .704 .532 .389 .284 .244 .520 .906 .175

CNN +WN +Drop.
+Res. +Attn .710 .537 .391 .281 .241 .519 .890 .171 .711 .538 .394 .287 .244 .522 .912 .175

Table 1: Comparison of different methods on standard evaluation metrics: BLEU-1 (B1), BLEU-2 (B2), BLEU-3 (B3),
BLEU-4 (B4), METEOR (M), ROUGE (R), CIDEr (C) and SPICE (S). Our CNN with attention (attn) achieves comparable
performance (equal CIDEr scores on MSCOCO test set) to [16] and outperforms LSTM+Attention baseline of [39]. We start
with a CNN comprising masked convolutions and fully connected layers only. Then, we add weight normalization, dropout,
residual connections and attention incrementally and show that performance improves with every addition. Here, for CNN
and [16] we use the model that obtains the best CIDEr scores on val-set (over 30 epochs) and report its scores for the test set.
For [39], we report all the available metrics for soft/hard attention from their paper (missing numbers are marked by -).

feed-forward CNN module.
Image Embedding. Image features for image I are ob-
tained from the fc7 layer of the VGG16 network [31]. The
VGG16 is pre-trained on the ImageNet dataset [27]. We ap-
ply dropout, ReLU on the fc7 and use a linear layer to obtain
a 512-dimensional embedding. This is consistent with the
image features used in the baseline LSTM method [16].
CNN Module. The CNN module operates on the combined
input and image embedding vector. It performs three lay-
ers of masked convolutions. Consistent with [9, 34], we use
gated linear unit (or GLU) activations for our conv layers.
However, we did not observe a significant change in perfor-
mance when using the standard ReLU activation. The fea-
ture dimension after convolution layer and GLU is 512. We
add weight normalization, residual connections and dropout
in these layers as they help improve performance (Table 1).
Our masked convolutions have a receptive field of 5 words
in the past. We set N (steps or max-sentence length) to 15
for both CNN/RNN. The output of the CNN module after
three layers is a 512-dimensional vector for each word.
Classification Layer. We use a linear layer to encode the
512-dimensional vectors obtained from the CNN module
into a 256-dimensional representation per word. Then, we
upsample this vector to a |Y|-dimensional activation via a
fully connected layer, and pass it through a softmax to ob-
tain the output word probabilities pi,w(yi|y<i, I).
Training. We use a cross-entropy loss on the probabilities
pi,w(yi|y<i, I) to train the CNN module and the embedding
layers. Consistent with [16], we start to fine-tune VGG16
along with our network after 8 training epochs. We optimize
with RMSProp using an initial learning rate of 5e−5 and
decay it by multiplying with a factor of .1 every 15 epochs.

All methods were trained for 30 epochs and we evaluate the
metrics (in Section 6.2) on the validation set, after every
epoch, to pick the best model for all methods.

5.1. Attention

In addition to the aforementioned CNN architecture, we
also experiment with an attention mechanism, since atten-
tion benefited [9, 35]. We form an attended image vector of
dimension 512 and add it to the word embedding at every
layer (shown with red, green and blue arrows in Figure 3).
We compute separate attention parameters and a separate at-
tended vector for every word. To obtain this attended vector
we predict 7×7 attention parameters, over the VGG16 max-
pooled conv-5 features of dimensions 7× 7× 512 [31]. We
use attention on all three masked convolution layers in our
CNN module. We continue to use the fc7 image embedding
discussed above.

To discuss attention more formally, let dj denote the
embedding of word j in the conv module (i.e., its activa-
tions after GLU shown in Figure 3), let W refer to a linear
layer applied to dj , let ci denote a 512-dimensional spa-
tial conv-5 feature at location i (in 7 × 7 feature map) and
let aij indicate the attention parameters. With this nota-
tion at hand, the attention parameter aij is computed via

aij =
exp(W (dj)

T ci)∑
i
exp(W (dj)T ci)

, and the attended image vector for

word j is obtained from
∑
i

aijci. Note that [39] uses the

LSTM hidden state to compute the attention parameters.
Instead, we compute attention parameters using the conv-
layer activations. This form of attention mechanism was
first proposed in [4].



Method Beam Size=2 Beam Size=3 Beam Size=4
B1 B2 B3 B4 M R C S B1 B2 B3 B4 M R C S B1 B2 B3 B4 M R C S

LSTM [16] .715 .545 .407 .304 .248 .526 .940 .178 .715 .544 .409 .310 .249 .528 .946 .178 .714 .543 .410 .311 .250 .529 .951 .179
CNN .712 .541 .404 .303 .248 .527 .937 .178 .709 .538 .403 .303 .247 .525 .929 .176 .706 .533 .400 .302 .247 .522 .925 .175
CNN+Attn .718 .549 .411 .306 .248 .528 .942 .177 .722 .553 .418 .316 .250 .531 .952 .179 .718 .550 .415 .314 .249 .528 .951 .179

Table 2: Comparison of different methods (metrics same as Table 1) with beam search on the output word probabilities.
Our results show that with beam size= 3 our CNN outperforms LSTM [16] on all metrics. Note, compared to Table 1, the
performance improves with beam search. We use the MS COCO test split for this experiment. For beam search, we pick one
caption with maximum log probability (sum of log probability of words) from the top-k beams and report the above metrics
for it. Beam = 1 is same as the test set results reported in Table 1.

c5 (Beam = 1) c40 (Beam = 1)
B1 B2 B3 B4 M R C B1 B2 B3 B4 M R C

LSTM .704 .528 .384 .278 .241 .517 .876 .880 .778 .656 .537 .321 .655 .898
CNN+Attn .708 .534 .389 .280 .241 .517 .872 .883 .786 .667 .545 .321 .657 .893

c5 (Beam = 3) c40 (Beam = 3)
B1 B2 B3 B4 M R C B1 B2 B3 B4 M R C

LSTM .710 .537 .399 .299 .246 .523 .904 .889 .794 .681 .570 .334 .671 .912
CNN+Attn .715 .545 .408 .304 .246 .525 .910 .896 .805 .694 .582 .333 .673 .914

Table 3: Above, we show that CNN outperforms LSTM on BLEU metrics and gives comparable scores to LSTM on other
metrics for test split on MSCOCO evaluation server. Note, this hidden test split of 40, 775 images on the evaluation server is
different from the 5000 images test split used in Tables 1 and 2. We compare our CNN+Attn method to the LSTM baseline
(metrics same as Table 1). The c5, c40 scores above are computed with 5, 40 reference captions per test image respectively.
We show comparison results for beam size 1 and beam size 3 for both the methods.

6. Results and Analysis

In this section, we demonstrate the following results:

• Our convolutional (or CNN) approach performs on par
with LSTM (or RNN) based approaches on image cap-
tioning metrics (Table 1). Our performance improves
with beam search (Table 2).

• Adding attention to our CNN gives improvements
on metrics and we outperform the LSTM+Attn base-
line [39] (Table 1). Figure 5 shows that with attention
we identify salient objects for the given image.

• We analyze the CNN and RNN approaches and show
that CNN produces (1) more entropy in the output
probability distribution, (2) gives better word predic-
tion accuracy (Figure 6), and (3) does not suffer as
much from vanishing gradients (Figure 8).

• In Table 4, we show that a CNN with 1.5× more pa-
rameters can be trained in comparable time. This is
because we avoid the sequential processing of RNNs.

The details of our experimental setup and these results
are discussed below. The PyTorch implementation of our
convolutional image captioning is available on github.1

1https://github.com/aditya12agd5/convcap

6.1. Dataset and Baselines
We conducted experiments on the MS COCO

dataset [18]. Our train/val/test splits follow [16, 39].
We use 113287 training images, 5000 images for valida-
tion, and 5000 for testing. Henceforth, we will refer to
our approach as CNN, and our approach with the attention
(Section 5.1) as CNN+Attn. We use the following naming
convention for our baselines: [16] is denoted by LSTM and
[39] is referred to as LSTM+Attn.

6.2. Comparison on Image Captioning Metrics
We consider multiple conventional evaluation metrics,

BLEU-1, BLEU-2, BLEU-3, BLEU-4 [23], METEOR [8],
ROUGE [17], CIDEr [36] and SPICE [1]. See Table 1 for
the performance on all these metrics for our val/test splits.
Note that we obtain comparable CIDEr scores and better
SPICE scores than LSTM on test set with our CNN+Attn
method. Our BLEU, METEOR, ROUGE scores are less
than the LSTM ones, but the margin is very small. Our
CNN+Attn method outperforms the LSTM+Attn baseline
on the test set for all metrics reported in [39]. For Table 1,
we form the caption by choosing the word with maximum
probability at each step. The metrics are reported for this
one caption formed by choosing the maximum probability
word at every step.

Instead of sampling the maximum probability words, we
also perform beam search with different beam sizes. We

https://github.com/aditya12agd5/convcap


LSTM: a man and a woman
in a suit and tie
CNN: a black and white photo
of a man and woman in a suit
GT: A man sitting next to a
woman while wearing a suit.

LSTM: a cat is laying
down on a bed
CNN: a polar bear is drinking
water from a white bowl
GT: A white polar bear laying
on top of a pool of water

LSTM: a bear is standing
on a rock in a zoo
CNN: two bears are walking
on a rock in the zoo
GT: two bears touching
noses standing on rocks

LSTM: a box of donuts with
a variety of toppings
CNN: a box of doughnuts with
sprinkles and a sign
GT:A bunch of doughnuts
with sprinkles on them

LSTM: a dog and a
dog in a field
CNN: two cows are
standing in a field of grass
GT: A dog and a horse
standing near each other

Figure 4: Captions generated by our CNN are compared to the LSTM and ground-truth caption. In the examples above our
CNN can describe things like black and white photo, polar bear/white bowl, number of bears, sign in the donut image which
LSTM fails to do. The last image (rightmost) shows a failure case for CNN. Typically we observe that CNN and LSTM
captions are of similar quality. We use our CNN+Attn method (Section 5.1) and the MSCOCO test split for these results.

perform beam search for both LSTM and our CNN meth-
ods. With beam search, we pick the maximum probability
caption (sum of log word probability in the beam). The re-
sults reported in Table 2 demonstrate that with beam size
of 3 we achieve better BLEU, ROUGE, CIDEr scores than
LSTM and equal METEOR and SPICE scores.

In Table 3, we show the results obtained on the
MSCOCO evaluation server. These results are computed
over a test set of 40, 775 images for which ground-truth
is not publicly available. We demonstrate that our method
does better on all BLEU metrics, especially with beam size
3, we perform better than the LSTM based method.
Comparison to recent state-of-the-art. For better perfor-
mance on the MSCOCO leader board we use ResNet fea-
tures instead of VGG-16. Table 5 shows ResNet boosts
our performance on the MSCOCO split (cf. Table 1) and
we compare it to more recent methods [2] and [41]. We are
almost as good as [41]. If we had access to their pre-trained
attribute network, we may outperform it. [2] uses a sophisti-
cated attention mechanism, which can be incorporated into
our architecture as part of future work.

6.3. Qualitative Comparison
See Figure 4 for a qualitative comparison of captions

generated by CNN and LSTM. In Figure 5, we overlay the
attention parameters on the image for each word prediction.
Note that our attention parameters are 7 × 7 as described
in Section 5.1 and therefore the image is divided in a 7× 7
grid. These results show that our attention focuses on salient
objects such as man, broccoli, ocean, bench, etc., when pre-
dicting these respective words. Our results also show that
the attention is uniform when predicting words such as a,
of, on, etc., which are unrelated to the image content.

6.4. Analysis of CNN and RNN
In Table 4 we report the number of trainable parameters

and the training time per epoch. CNNs with∼ 1.5× param-
eters can be trained in comparable time.

Table 1, 2 and 3 show that we obtain comparable per-
formance from both CNN and RNN/LSTM-based methods.
Encouraged by this result, we analyze the characteristics of
these two methods. For fair comparison, we use our CNN
without attention, since the RNN method does not use spa-
tial image features. First, we compare the negative log-
likelihoods (or cross-entropy loss) on a subset of train and
the entire val set (see Figure 6 (a)). We find that the loss
is higher for CNN than RNN. This is because CNNs are
being penalized for producing less-peaky word probability
distributions. To evaluate this further, we plot the entropy
of the output probability distribution (Figure 6 (b)) and the
classification accuracy, i.e., the number of times the max-
imum probability word is the ground truth (Figure 6 (c)).
These plots show that RNNs are good at producing low en-
tropy and therefore peaky word probability distributions at
the output, while CNNs produce less peaky distributions
(and high entropy). Less peaky distributions are not nec-
essarily bad, particularly for a problem like image caption-
ing, where multiple word predictions are possible. Despite,
less peaky distributions, Figure 6 (c) shows that the maxi-
mum probability word is correct more often on the train set
and it is within approx. 1% accuracy on the val set. Note,
cross-entropy loss is a proxy for the classification accuracy
and we show that CNNs have higher cross entropy loss, but
their classification accuracy is good. Less peaky posterior
distributions provided by a CNN may be indicative of CNNs
being more capable of predicting diverse captions.
Diversity. In Figure 7, we plot the unique words and 2/4-
grams predicted at every word position or time-step. The
plot is for word positions 1 to 13. This plot shows that for
the CNN we have higher unique words for more word po-
sitions and consistently higher 2/4-grams than LSTM. This
supports our analysis that CNNs have less peaky (or one-
hot) posteriors and therefore can produce more diversity.
For these diversity experiments, we perform a beam search
with beam size 10 and use all the top 10 beams.
Vanishing Gradient. Since RNNs/LSTMs are known



CNN: a plate of food with
broccoli and rice
GT: A BBQ steak on a plate
next to mashed potatoes
and mixed vegetables.

a plate of food with broccoli ... rice

CNN: a man sitting on a
bench overlooking the ocean
GT: A man sitting on top
of a bench near the ocean

a man sitting on a bench ... ocean

Figure 5: Attention parameters are overlayed on the image. These results show that we focus on salient regions as broccoli,
bench when predicting these words and that the attention is uniform when predicting words such as a, of and on.

Method # Parameters Train time per epoch
LSTM [16] 13M 1529s
Our CNN 19M 1585s

Our CNN+Attn 20M 1620s

Table 4: We train a CNN faster per parameter than the
LSTM. This is because CNN is not sequential like the
LSTM. We use PyTorch implementation of [16] and our
CNN-based method, and the timings are obtained on Nvidia
Titan X GPU.
Method B1 B2 B3 B4 M R C
Our Resnet-101 .72 .549 .403 .293 .248 .527 .945
Our Resnet-152 .725 .555 .41 .299 .251 .532 .972
LSTM Resnet-152 .724 .552 .405 .294 .251 .532 .961
[41] Resnet-152 .731 .564 .426 .321 .252 .537 .984
[2] Resnet-101 .772 - - .362 .27 .564 1.13

Table 5: Comparison to recent state-of-the-art with Resnet.

to suffer from vanishing gradient problems, in Fig-
ure 8, we plot the gradient norm at the output embed-
ding/classification layer and the gradient norm at the in-
put embedding layer. The values are averaged over 1
training epoch. These plots show that the gradients in
RNN/LSTM diminishes more than the ones in CNNs.
Hence RNN/LSTM nets are more likely to suffer from van-
ishing gradients, which stalls learning. If learning is stalled,
for larger datasets than the ones we currently use for image
captioning, the performance of RNN and CNN may differ
significantly.

7. Related Work
Describing the content of an observed image is related

to a large variety of tasks. Object detection [25, 26, 42] and
semantic segmentation [21, 29, 12] can be used to obtain
a list of objects. Detection of co-occurrence patterns and

relationships between objects can help to form sentences.
Generating sentences by taking advantage of surrogate tasks
is then a multi-step approach which is beneficial for inter-
pretability but lacks a joint objective that can be trained end-
to-end.

Early techniques formulate image captioning as a re-
trieval problem and find the best fitting description from a
pool of possible captions [11, 15, 22, 32]. Those techniques
are built upon the idea that the fitness between available tex-
tual descriptions and images can be learned. While this per-
mits end-to-end training, matching image descriptors to a
sufficiently large pool of captions is computationally expen-
sive. In addition, constructing a database of captions that is
sufficient for describing a reasonably large fraction of im-
ages seems prohibitive.

To address this issue, recurrent neural nets (RNNs) or
probabilistic models like Markov chains, which decompose
the space of a caption into a product space of individual
words are compelling. The success of RNNs for image cap-
tioning is based on a key component, i.e., the Long-Short-
Term-Memory (LSTM) [10] or recent alternatives like the
gated recurrent unit (GRU) [6]. These components capture
long-term dependencies by adding a memory cell, and they
address the vanishing or exploding gradient issue of classi-
cal RNNs to some degree.

Based on this success, [19] train a vision (or image)
CNN and a language RNN that shares a joint embedding
layer. [37] jointly train a vision (or image) CNN with a
language RNN to generate sentences, [39] extends [37]
with additional attention parameters and learns to iden-
tify salient objects for caption generation. [16] use a bi-
directional RNN along with a structured loss function in a
shared vision-language space. [41] use an additional net-
work trained on coco-attributes, and [2, 28] develop an at-
tention mechanism for captioning. These recurrent neural
nets have found widespread use for captioning because they
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(a) CNN gives higher cross-entropy loss on
train/val set of MSCOCO compared to LSTM.
But, as we show in (c), CNN obtains better %
word accuracy than LSTM. Therefore, it as-
signs max. probability to correct word. The
CNN loss is high because its output probability
distributions have more entropy than LSTM.
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(b) The entropy of the softmax layer (or pos-
terior probability distribution) of our CNN is
higher than the LSTM. For ambiguous prob-
lems such as image captioning, it is desirable to
have a less peaky (multi-modal) posterior (like
ours) capable of producing multiple captions,
rather than a peaky one (like LSTM).
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(c) Even though the CNN training loss is
higher than LSTM, its word prediction accu-
racy is better than LSTM on train set. On val
set, the difference in accuracy between LSTM
and CNN is small (only ∼ 1%).

Figure 6: In the figures above we plot (a) Cross-entropy loss, (b) Entropy of the softmax layer, (c) Word accuracy on train/val
set. Blue line denotes our CNN and red denotes the LSTM based method [16]. Solid/dotted lines denote train/val set of
MSCOCO respectively. For train set, we randomly sample 10k images and use the entire val set.
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(c) Unique 4-grams
Figure 7: We perform beam search of beam size 10 with our
best performing LSTM and CNN models. We use the top
10 beams to plot the unique words, 2/4-grams predicted for
every word position. CNN (blue) produces higher unique
words, 2/4-grams at more positions, and therefore more di-
versity, than LSTM (red).

have been shown to produce remarkably fitting descriptions.
Despite the fact that the above RNNs based on

LSTM/GRU deliver remarkable results, e.g., for image cap-
tioning, their training procedure is all but trivial. For in-
stance, while the forward pass during training can be in par-
allel across samples, it is inherently sequential in time, lim-
iting the parallelism. To address this issue, [34] proposed
a PixelCNN architecture for conditional image generation
that approximates an RNN. [9] and [35] demonstrate that
convolutional architectures with attention achieve state-of-
the-art performance on machine translation tasks. In spirit
similar is our approach for image captioning, which is con-
volutional but addresses a different task.

8. Conclusion

We discussed a convolutional approach for image
captioning and showed that it performs on par with existing
LSTM techniques. We also analyzed the differences
between RNN based learning and our method, and found
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Figure 8: Here, we plot the gradient norm at the input em-
bedding (dotted line) and output embedding/classification
(solid line) layer. The gradient to the first layer of LSTM
decays by a factor ∼ 100 in contrast to our CNN, where it
decays by a factor of∼ 10. There is prior evidence in litera-
ture that unlike CNNs, RNN/LSTMs suffer from vanishing
gradients [24, 33].

gradients of lower magnitude as well as overly confident
predictions to be existing LSTM network concerns.
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