Texture Mapping for 3D Reconstruction with RGB-D Sensor

Yanping Fu' Qingan Yan?

Long Yang?

Jie Liao! Chunxia Xiao®

1 School of Computer, Wuhan University, China
2 JD.com
3 College of Information Engineering, Northwest A&F University, China

{ypfu,liaojie,cxxiao}@whu.edu.cn, gingan.yan@ijd.com, yl@nwsuaf.edu.cn

Abstract

Acquiring realistic texture details for 3D models is im-
portant in 3D reconstruction. However, the existence of ge-
ometric errors, caused by noisy RGB-D sensor data, always
makes the color images cannot be accurately aligned on-
to reconstructed 3D models. In this paper, we propose a
global-to-local correction strategy to obtain more desired
texture mapping results. Our algorithm first adaptively s-
elects an optimal image for each face of the 3D model,
which can effectively remove blurring and ghost artifacts
produced by multiple image blending. We then adopt a non-
rigid global-to-local correction step to reduce the seaming
effect between textures. This can effectively compensate for
the texture and the geometric misalignment caused by cam-
era pose drift and geometric errors. We evaluate the pro-
posed algorithm in a range of complex scenes and demon-
strate its effective performance in generating seamless high
fidelity textures for 3D models.

1. Introduction

With the emergence of RGB-D sensors, 3D reconstruc-
tion has made significant progress in recent years. While
both small-scale objects and large-scale scenes can be mod-

eled with impressive geometric details [10, 17, 26, 27, 28],
the recovered texture fidelity for 3D models is still less sat-
isfactory [7, 13, 22].

Why does texture mapping technology lag so behind 3D
modeling? The reasons are fourfold: 1) Due to the noise
of depth data, reconstructed 3D models always accompa-
ny geometric errors and distortions. 2) In camera trajectory
estimation, the pose residual would be gradually accumu-
lated and lead to camera drift. 3) The timestamp between
captured depth frame and color frame is not completely syn-
chronized. 4) RGB-D sensors are usually in low resolution,
and the color image is also vulnerable to light and motion
conditions. All of the challenges above contribute to the
produce of misalignments between geometric models and

corresponding images and lead to undesired mapping re-
sults.

While projective mapping methods [21, 23] can re-
duce blurring and ghosting artifacts caused by multi-image
blending, the texture bleeding is unavoidable on the bound-
ary of different views, due to geometric registration errors
and camera trajectory drift. Zhou and Koltun [30] pro-
pose an optimization framework using local image warping,
which can compensate for geometric misalignments. How-
ever, this method needs to subdivide the mesh model, which
will greatly increases the amount of data and limit its appli-
cation scope. Furthermore, the weighted average strategy
which is usually adopted in multi-image blending is sensi-
tive to the light change and motion blur cased by fast camera
movement.

To overcome the challenges, in this paper we propose a
novel texture mapping method which performs a global-to-
local non-rigid correction optimization. First, we choose an
optimal image for each face to avoid the artificial effects
in multi-image blending. In the global optimization step,
we use a unified color consistency and geometry consisten-
cy optimization to rectify the camera pose of each texture
block from different views. Then in the local optimization
step, we find an additional transformation for boundary ver-
tices of the block to refine the texture coordinate drift caused
by geometric errors. Finally, we adopt the texture atlases to
map the texture onto desired 3D model.

We validate the effectiveness of the proposed method in a
range of complex scenes and show high fidelity textures. In
contrast to the method [30], our method is much faster and
needs much less triangle information. The texture blurring
artifacts are also greatly eliminated. As compared to [23],
our method can effectively reduce the seam inconsistency
between face boundaries and is tolerant of geometric mis-
alignments.

2. Related Work

Texture mapping is an important step for acquiring real-
istic 3D models [11, 16, 26, 29]. In this section, we revisit

07007 007 '
2007007007 00
307007 0

273307007 00°

(a) Input (b) View image selection

(c) Global optimization (d) Global + local optimization

Figure 1: The overview of the proposed approach. (a) The input images for texture mapping. (b) The selected optimal texture
image for each face. The numbers with different colors indicate the selected image indexes. (c) The result using only global

optimization. (d) The result of global-to-local optimization.

some kinds of related approaches that aim at improving the
effect of texture mapping.

Blending-based methods: A commonly used way for tex-
ture mapping is to blend multiple images into textures [3, &,
20] adopting different weighted average strategies. Current
RGB-D reconstruction systems [25, 19, 7] mainly rely on
the truncated signed distance function (TSDF) representa-
tion. That means, they need to add an additional color volu-
metric grid, besides TSDF volumetric grid, to compute the
color of each vertex by running weighted average of mul-
tiple images. However, this makes such kind of methods
sensitive to computational noises; the blurring and ghosting
would easily emerge if the recovered camera pose or 3D
geometry is slightly inaccurate. Moreover, the process of
model subdivision and the variety of model size in different
viewpoints also affect their performance.
Projection-based methods: Another mechanism is projec-
tive texture mapping, which associates each face or vertex
with one appropriate image. Lempitsky et al. [21] use the
pairwise Markov Random Field to select an optimal image
for each face. Inspired by this work, Allene et al. [2] and
Gal et al. [14] introduce additional metrics to improve the
data term and smooth term for selecting more appropriate
views. However, these methods face a challenging issue,
that is, how to mitigate the visual seams between adjacent
face textures. To overcome the problem, they have to addi-
tionally add a post-process by respectively utilizing multi-
band blending [6] and poisson editing [15]. Waechter et
al. [23] propose a global color adjustment algorithm to di-
minish the visual fracture caused by view projection. While
these methods can greatly reduce blurring and ghosting arti-
facts caused by multi-image blending, the texture bleeding
is unavoidable on the boundary of different views, due to
geometric registration errors and camera trajectory drift.
Warping-based methods: Different from above approach-
es, warping-based methods have more resistance to the mis-
alignment problem caused by geometric errors and camera
drift. Eisemann et al. [12] introduce a local texture warping
method by estimating the optical flow between projected

texture images. Aganj et al. [1] apply different deformation-
s to different images in order to fit the recovered mesh. The
displacement field is computed by matching feature points
in different views through a thin-plate spline approxima-
tion. Furthermore, Zhou and Koltun [30] design a texture
mapping framework where both camera poses and geomet-
ric errors are rectified via local image warping. However,
this method needs to subdivide the mesh model, which will
greatly increase the amount of data and limit its application
scope. Moreover, these methods also suffer from blurring
artifacts as weighted average blending strategies are still u-
tilized. More recently, Bi et al. [4] use patch-based synthe-
sis to generate a new target texture image for each face to
compensate for the camera drift and reconstruction errors,
but the scenes containing dynamic shadows will be a chal-
lenge to this method.

3. Overview

The goal of this work is to map texture images onto 3D
models which are acquired by a commodity depth camera.
The input is a RGB-D sequence or live video that contains
depth frames and corresponding color frames, and the out-
put is a 3D model accompanying high fidelity textures. To
achieve this goal and overcome the aforementioned chal-
lenges, we propose a global-to-local optimization strategy
which contains four main steps. Fig. | shows the overview
of the proposed approach.

Input: The input of our algorithm is a RGB-D sequence or
live video acquired by Kinect V1. For more detailed color
information, it is also recommended to add an additional
HD camera on top of the Kinect to obtain high resolution
texture images. However, in justice to comparison, we still
adopt the low resolution color image of Kinect V1 as input
in experiments.

Preprocess: A mesh model is reconstructed from the input
depth sequence as initial model M for texture mapping,
and a subset of frames is extracted from the original color
sequence as texture candidates. To improve the quality and

reduce computation complexity, unlike [30], we utilize [28]
to reconstruct 3D models instead of KinectFusion [18, 22],
and select texture candidate images by weighting the ele-
ments of image clarity, jitter, blur and viewport overlay.
This step produce an initial model M and a set of cam-
era poses {T{} corresponding to the selected color image
subsequence {C;} and depth image subsequence {D; }.
Optimization: To construct high fidelity texture, our ap-
proach combines the advantages of [23] and [30]. We select
an optimal texture image for each face of the model to avoid
the blurring caused by multi-image blending. Thus by re-
garding each candidate image as a label, we formulate the
selection problem into a multi-label Markov field in compa-
ny with the angle between camera poses and normal map,
projection area and the distance from model face to camera
plane. However, because both T and M are not absolutely
accurate, adjacent faces with different labels usually can not
be completely stitched. To solve this problem, we adopt a
global-to-local optimization strategy. For global optimiza-
tion, we adjust the camera pose of each texture block based
on the color consistency and geometric consistency between
relevant blocks. In local optimization stage, we import an
additional transformation to refine texture coordinates on
the boundary of the different blocks and make seamlessly
stitched textures.

Texture Atlases: Finally, we utilize texture atlases to map
the desired texture onto 3D models. Each face is project-
ed onto its associated texture image, under optimized cam-
era pose, to get projection region. Every projected region
is used to establish the texture atlases, while recording the
vertex coordinate of each triangle face. We then transfor-
m them into atlases space. In this way, the texture of each
vertex can be directly retrieved in atlases via texture coordi-
nates, and generate the final textured model.

4. Texture Mapping Method

In this section we will elaborate on each step in more
detail. Let M, represent the reconstructed mesh model for
texture mapping, {v;} and {f;} are respectively the vertex
set and the face set of M, where each face represents a
triangle mesh on the model. T is a 4 x 4 transformation
matrix, which transforms the vertex v; of M, from world
coordinates to local camera coordinates, as defined by:

R t
T:[O 1], 1)

where R is the 3 x 3 rotate matrix and tis the 3 x 1 translation
vector.

We also specify the perspective projection of a 3D vertex
v = [x,y,2]T onto 2D image plane as II. Thus the pixel
coordinate u(u,v) for the vertex v on the image plane can

be computed through:

) = 106) = (2 1 0, B

+e) @
where K is the camera intrinsic matrix, f, f, are the focal
lengths, and ¢, ¢, correspond to the coordinate of the cam-
era center in pinhole camera model. Furthermore, we use
D representing depth image, C denoting color image and
corresponding to the intensity of color image.

4.1. Model Reconstruction

The input of our pipeline is a stream of depth images
and an accompanying RGB color sequence. In our system,
we make use of Microsoft Kinect V1 to capture these data.
As the input frames of Kinect V1 are in low resolution and
would be easily influenced by motion blur and jitter effect,
we thus select a subset of high confidence frames for scene
modeling and texture mapping.

Our method utilize the sparse-sequence fusion (SSF)
method [28], instead of KinectFusion [18, 22], to recon-
struct the initial 3D model and extract high confidence col-
or frames. This method takes account of the jitter, blur and
some other factors that contribute to noises in scanning. It
can reconstruct a mesh model M, with a sparse depth im-
age sequence {D; }. The basic function of [28] is defined as
follows:

Eosf = MEji(1) + Mo Eais (1) + A3 Eyer (1) + Eser(3), (3)

where E;(i) is a switch term controls the selection of depth
image D;. It should be set to 1 if current image is considered
as valid image to be integrated, otherwise it takes 0. Ej;: (i)
measures the jittering effect via calculating the instant view-
point change between selected images. The continuity term
E4;¢(i) is to ensure sufficient scene overlap between two
selected supporting images by accumulating camera pose
change, and E,.;(i) evaluates the camera motion velocity.
Besides of these elements, in order to get high clarity im-
ages, we additionally import a term to depict the quality of
each color frame. Eq. 4 shows our objective function for
frame extraction:

E(Z) = Essf<7/) +)\claEcla(i)a (4)

where E,r is the SSF term and A, is a balance parameter.
We use A\, = 10 in our experiments, and the others are set
in accordance with [28]. Clarity term E, is defined as:

9. .
N Jexp” =1, if Egq==1
Beia (i) = { 0. if Byt == 0)

The blurriness value 6 is calculated via [9]. Eq. 5 shows
that once the depth image D; is added into the supporting
subset, the clarity of its corresponding color image C; has to

be calculated; otherwise, ignored directly, according to the
value of (7). The iteration proceeds until all captured
images have been processed. This will produce a sparse col-
or image sequence {C;} with associate camera poses {T"},
which can be used as the texture candidates.

4.2. Texture Image Selection

Many texture mapping methods [3, 8, 20] project mesh
onto multiple image planes, and then adopt weighted aver-
age blending strategy to synthesize model textures from pix-
els [11, 16]. They ideally assume that the estimated geom-
etry surfaces and camera poses are enough accurate, how-
ever in practice, this would be easily violated. Therefore,
instead of directly synthesizing from multiple images, we
respectively select an optimal texture image for each face
of the model M. By regarding each candidate image as a
label, we formulate this selection problem into a pairwise
Markov Random Field (MRF) based on [2]:

E(C) = E4(C) + AE,(C). (©)

The data term Ej; projects each model face onto each
candidate image C; and measure the area of projection re-
gion, which is related to the angle view proximity, angle,
image resolution, and visibility constraint, as defined by:

{Ci} {85}

E4(C) Z Z area[Ilc, (f;)]. @)

The smooth term E, described by Eq. 8, calculates the
integral along edge e to measures color differences, where
e is the common edge between adjacent faces assigned to
different texture images (C;, C;). ¢ is the entire edge set of
the model M.

B.(C) = Z/e

ejjEe

e, (¢, (z)) — Ic,(c, (x))|| dz. (8)

The MRF function E(C) of Eq. 6 is minimized with
graph cuts and alpha expansion [5].

4.3. Global Optimization

The above step associates each face with an texture im-
age C;. However, due to the existence of geometry error and
camera drift, directly using texture stitching or color adjust-
ment post-processing [21, 14] cannot make the textures on
adjacent faces visually consistent. This is the main chal-
lenge for projective texture mapping methods. To eliminate
visual seams, we draw upon the idea of non-grid correction
to stitch textures between adjacent faces.

Through extrinsic matrix T° and intrinsic matrix K,
model faces can be easily projected to their associate images
to obtain texture colors. Yet matrix {T"} are always noisy,

v
ovgaew;,‘:;ﬁ«

e-l\f*
0000

w

Figure 2: Clustering the model faces according to their tex-
ture images.

so that the texture colors obtained through these transforma-
tions may be also inaccurate. In this section, we thus have to
optimize {T?} to make sure that all the faces coming from
different texture images can be closely aligned.

We first perform a face clustering process based on tex-
ture image {C; }, that is, if two adjacent faces correspond to
the same texture image, we put them together in the same
labeled cluster. After traversing all faces, a collection of
clusters can be obtained, as shown in Fig. 2 with different
colors. For the sake of clarity, we name that the all faces
within the same cluster as a chart. In order to improve ro-
bustness, if the number of faces Fj in a chart 7 is less than
a threshold Fy, this chart will be merged into its closest
neighbor j, which is measured by three elements: 1) The
viewpoint angle between texture images of chart ¢ and j
should be minimal. 2) The number of faces meets the crite-
ria of F; > Fy. 3) The projection of all vertices in chart ¢
onto the texture image of chart j should still stay in bound-
s. We empirically set Fiy = 50 in our subsequent exper-
iments. Based on the clusters, we establish an undirected
connection graph G from the charts; if two charts are ad-
jacent to each other, there will be an edge g;; € G linking
them.

The texture for faces in the chart comes from the same
image, so they are well aligned. That means, in order to
generate a natural texture for the model, we only need to
adjust the textures between different charts. For ideal tex-
ture mapping, we believe that the boundary texture of one
chart can be totally recovered by the texture of its adjacen-
t charts. Based on this observation, we can align adjacent
chart textures as long as it is possible to minimize the incon-
sistency between associated texture and projected texture of
each chart and its neighbors. However, only considering the
color consistency may lead to misalignment in texture-less
regions. Therefore, we additionally take the geometric con-
sistency into consideration, which serves as a regular term
in Eq. 9. We formulate our objective function as follows by

measuring both color consistency and geometric consisten-
cy for each chart:

chartN N
E(M= Y > > (LOKTw) - LI(Tv)))
i Jj€G; k€chart;
chartN N

+ Ndepth Z Z (@(Tivi) — Ds(IL(T;vg)))?

i k€Echart;
)

where v, denotes the whole vertex set in chart ¢ and [V is its
number. chartN represents the number of chart on model
M. Function ¢(x) computes the Z component of the vec-
tor X. G; depicts the neighborhood of chart 7. The first term
makes the texture of chart ¢ consistent with the projected
texture of its adjacent chart 5. The second term ensure that,
when T changes, the optimized camera pose not only makes
the texture consistent, but also the reconstructed model to be
consistent with the depth image acquired by RGB-D camer-
a, and ensure the camera pose T not to deviate far apart from
the initial value Ty when the color constraint is insufficien-
t. By minimizing the Eq. 9, we can compute a correction
transformation matrix for each chart, which makes the ad-
jacent charts closer to each other and reduces visual seams.

4.4. Local Optimization

While the global optimization is able to make most tex-
tural regions stitched, for some areas with large geometric
errors (as shown in the red box of Fig. 1(c)), the textures
still could not be accurately aligned. The global optimiza-
tion can only correct the camera drift of each chart. If the
reconstructed geometric model is accurate enough, all tex-
tures will be well stitched after the global optimization. Un-
fortunately, the ubiquity of geometry errors makes the only
global optimization is insufficient for high fidelity texture
mapping. Thus we introduce a further adjustment on each
face of the model so that local textures can be also well
aligned.

Because all faces on one chart correspond to the same
texture image, there is therefore no need to optimize the
entire chart. In addition, as each chart has been roughly
aligned in the global optimization step, it is only necessary
to perform correcting on a small set of vertices to make up
for texture misalignment caused by geometric errors. In-
stead of editing the mesh model, we propose to warp the
projected coordinates of boundary vertices in each chart. As
shown in Fig. 3(b), in order to align the texture at vertex v,
we can move the projected coordinate of v in image A to
align the texture of v in image B. As long as the bound-
ary vertices are optimized, the texture of whole chart will
be well aligned.

However, moving the projection coordinate of a vertex
is a ill-posed problem. To address the challenge, we find

(a)

(b)

Figure 3: (a) The projection area of two adjacent charts onto
their respective texture images. (b) Correcting the texture
coordinate of the vertex v in chart A makes it align to the
coordinate of vertex v in the texture image of chart B.

an optimal moving vector for the texture coordinate of each
boundary vertex and make it aligned with its adjacent chart
textures. To this end, we compute an additional transforma-
tion matrix for the vertex v on the boundary of chart instead
of calculating the moving vector directly. The additional
transformation ensures that the chart where the vertex v is
located is sufficiently aligned with the charts connected to
v. Then we use this matrix to obtain the optimal projection
coordinate for v as texture coordinate. The texture coordi-
nate correction process is able to make the local texture at
each boundary vertex v to be sufficiently aligned. We de-
sign an objective function to compute this matrix of v to
correct texture coordinate in the image as follows:

chartN vertN adjN

E(Ti;)= Z Z Z(Ii(H(TijTivj)))
: ik

chartN vertN

LT Thvi)))? + Mg >, Y (THT; =)

(10)

where j represents the boundary vertex of chart ¢, k rep-
resents the adjacent charts of ¢ which share vertex j and v
represents the whole vertices in chart 4. T;; is an additional

)

(2)

(©)

Figure 4: Comparisons with the state-of-the-art algorithms of [23] and [30]. (a) The results generated by [23]. (b) The results

produced by [30]. (c) The mapping results of our method.

transformation matrix used to correct the texture coordinate
of vertex j, which make projection texture of vertex j in
chart 7 consistent with the projected texture on texture im-
age of the adjacent chart k. T; and T are the transform ma-
trix optimized by global optimization for chart A and chart
B. Irepresents the identity matrix. The first item is data ter-
m, which makes the texture of the vertex on the boundary
of chart as aligned as possible. The second item is regular
term, it ensure that the additional matrix is not deviate from
the result of global optimization.

We use the Gaussian Newton iteration to solve Eq. 9 and
Eq. 10. We get the camera transformation T; for each chart
after the global optimization. For a vertex on the boundary
of chart, we obtain an additional transformation to correct
the projected texture coordinate, which can make the texture
align to the texture of adjacent faces at this vertex. Then we
repeat the process until all the boundary texture coordinates
are processed.

The entire chart can be projected via T; to the texture im-
age to get the texture coordinates, for the vertices on bound-
ary of the chart we further use a transformation T;; for non-
rigid correction to get corrected texture coordinates. We
save the texture coordinates and obtain the texture atlases.
Finally, using texture atlases technology, we can generate a
seamless texture model.

5. Results

We evaluate the proposed approach on four datasets,
which are acquired by Microsoft Kinect V1 sensor. All ex-
periments were performed on a computer with Intel Core i7
3.6 GHz CPU, 8 GB of RAM, and NVIDIA GeForce GTX
1060 6 GB. The parameters Ageptn = 2 and A.q = 10 are
used in our experiments. We validate the performance of
the proposed method by mainly comparing with the state-
of-the-art approaches [23] and [30]. We directly use the
code provided by the authors of [23] and implement a ver-
sion of [30] by ourselves. The experiments show the outper-
formance of our method, especially in challenging lighting
and shadow conditions.

Fig. 4 shows the comparison results of these three meth-
ods in different scenes. Because of the limited frame res-
olution of Kinect V1, the reconstructed models miss a lot
of geometric details. In addition, low quality of color im-
ages also lead to the absence of texture information, which
causes a big challenge for texture mapping. Our method
fully takes advantage of the available image context on both
global and local layers. The global optimization tries to
make the textures coming from different charts aligned as
much as possible. In local layer, boundary textures are re-
fined through a texture coordinate correction. As illustrat-
ed in Fig. 4(c), even though the doll is only 25¢m high, our

(a)

(b)

Figure 5: Texture mapping results in the scene with shadows. The area indicated by red arrow shows the error caused by

shadow. (a) The result of [23]. (b) The result generated by [

1.

(c) Our texture mapping result.

scene information running time (s)
model points \ faces \ key frames T, \ T, \ T \ T, \ [23] \ [30]
toy 40705 79682 14 1.087 | 16.591 | 4.446 | 27.608 | 147.068 | 341.755
book 178584 | 352510 16 2.262 | 84.792 | 57.053 | 157.014 | 486.649 | 902.207
hat 70623 | 137767 10 2.475 | 29.193 | 13.263 | 59.949 | 214.774 | 1002.190
keyboard | 68238 | 134475 13 4223 | 26.478 | 7.594 | 47.637 | 321.973 | 1513.080

Table 1: The performance statistics of [

LI

] and our algorithm. The running time of global optimization and local

optimization of our method is recorded through 30 iterations and 10 iterations respectively. T, Ty and T; respectively denote
the computational time required by view selection, global optimization and local optimization. T} is the total process time of

our algorithm. The timings of [

method is still able to produce more faithful mapping result-
s than the other approaches; the texture is very closer to the
original content of input images and contain rarely blurring
and seaming artifacts. As [23] cannot overcome the dis-
turbance of geometric and camera drift, the mapping result
generated by this approach contains obvious misalignment
errors and texture seams. On the other hand, the weighted
averaging strategy adopted in [30] makes it suffer from blur
effects. This will become even more serious when the color
image resolution is low. Even with the help of local warping
process, the texture is still blurred as shown in Fig. 4(b).

Table 1 shows the performance statistics of the proposed
algorithm, including point, face and key frame numbers, the
running time of each step in our method and timings re-
quested by [23] and [30]. To be fair, all methods share the
same model and keyframe sequences and iteration number.
While [23] does not optimize the geometric errors and cam-
era drift, it spends more time on global color correction and
local color stitching. We also found that the method of [30]
not only correct the camera drift and geometric distortion,
but also subdivide the grid of 3D model, which increases
the amount of processing data and requires more time than
ours.

Fig. 5 shows the comparison results in a challenging
shadow scene. The shadows are produced by multiple light-
s, and the shadow position and shape vary in different views.
In Fig. 5(c), it is notable that our method can produce much

] is recorded under 30 iterations.

clearer result than the others, for example, the texture be-
side of the keyboard cable. In our approach, the texture
information of shadow regions are selected from the same
texture image or similar viewpoint images, which can effec-
tively avoid the influence of position and shape differences
in different views. In contrast, [23] incorrectly generates
multiple cable textures beside the keyboard, as they only
consider color consistency and correct the texture without
considering the depth constraints. The results of [30] suffer
from blurring issue; the texture color is diluted by neighbor-
ing pixels. Although it uses local warping to further correct
the texture, due to the difference of shadow shape in mul-
tiple images, the blur inevitably occur after using weighted
average. We also evaluate our algorithm in some challeng-
ing scenes with sparse and sharp texture details, as shown
in Fig. 6. The first row shows a box with sharp shape pat-
terns and small characters. The other is a chair covered with
a sparse-flower style cushion. Due to its sparseness in tex-
ture and lack of geometric details, [23] and [30] produce
seriously ghosting and blurring artifacts on these datasets.

Furthermore, to illustrate the effect of each step in our
proposed global-to-local optimization framework, we give
the comparison between only using global optimization and
joint global and local process. As shown in Fig. 7(a), using
only global optimization, while the texture can be basically
alignment, visual seams are still existed in the areas with
large geometric errors; yet the local optimization can great-

(d)

Figure 6: Comparisons on challenging datasets with sparse and sharp texture details. (a) The input image. (b) The results
reconstructed by [23]. (c) The results reconstructed by [30]. (d) The results reconstructed by our method.

(a) Only global optimization (b) Global-to-local optimization

Figure 7: The results of using only global optimization and
joint global-to-local optimization.

(a) Without depth consistency (b) With depth consistency
constraint constraint

Figure 8: The results of using depth consistency constraint
and without depth consistency constraint.

ly reduce these artifacts as in Fig. 7(b).

Fig. 8 shows the reason why we import the depth consis-
tency constraint into our global optimization. The regions
around shoes and eyes are misaligned, due to the lack of tex-

ture variety. This can not be solved only using color consis-
tency, but in depth image the information is rich. As shown
in Fig. 8(b), the texture can be aligned well after further
using the depth consistency constrain.

Limitation: Our method also suffers from two limitation-
s. Local optimization requires adding an affine transforma-
tion to the texture area, yet the texture may be stretched and
shrunk on the boundary of charts. When geometric error is
large, the correction would still generate some local texture
distortions to final mapping results. Moreover, the lack of
sufficient geometric details also increases the challenges in
face clustering and texture sitching.

6. Conclusion

In this paper, we have proposed a non-rigid texture map-
ping method for 3D models reconstructed by an RGB-D
sensor. The input of our method is an RGB-D video se-
quence, and the output is a 3D reconstruction model with
high quality texture. We introduce a global optimization
step to adjust texture positions, and design a local opti-
mization to further refine texture boundaries. The experi-
ments show that our method can produce high fidelity tex-
ture models in even challenging scenes. In the future, we
would like to import the visual saliency information [24]
into our framework for more detailed texture recovery.

Acknowledgments This work was partly supported by
The National Key Research and Development Program of
China (2017YFB1002600), the NSFC (No. 61472288,
61672390), Foundation of Key Research Institute of Hu-
manities and Social Science at Universities (16JJD870002),
Chinese Ministry of Education, Wuhan Science and Tech-
nology Plan Project (No. 2017010201010109). Chunxia
Xiao is the corresponding author.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

E. Aganj, P. Monasse, and R. Keriven. Multi-view texturing
of imprecise mesh. In Asian Conference on Computer Vision,
pages 468-476, 2009.

C. Allene, J. P. Pons, and R. Keriven. Seamless image-based
texture atlases using multi-band blending. In International
Conference on Pattern Recognition, pages 1-4, 2008.

F. Bernardini, I. M. Martin, and H. Rushmeier. High-quality
texture reconstruction from multiple scans. Visualization &
Computer Graphics IEEE Transactions on, 7(4):318-332,
2001.

S. Bi, N. K. Kalantari, and R. Ramamoorthi. Patch-based
optimization for image-based texture mapping. ACM Trans-
actions on Graphics, 36(4), 2017.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate ener-
gy minimization via graph cuts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23:2001, 2001.

P. J. Burt and E. H. Adelson. A multiresolution spline
with application to image mosaics. ACM Trans. Graph.,
2(4):217-236, 1983.

E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-
time camera tracking and 3d reconstruction using signed dis-
tance functions. In Robotics: Science and Systems, 2013.
M. Callieri, P. Cignoni, M. Corsini, and R. Scopigno.
Masked photo blending: Mapping dense photographic da-
ta set on high-resolution sampled 3d models. Computers &
Graphics, 32(4):464-473, 2008.

F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas. The blur
effect: perception and estimation with a new no-reference
perceptual blur metric. In Electronic Imaging, pages 649201—
649201-11, 2007.

A. Dai, S. Izadi, and C. Theobalt. Bundlefusion: real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. Acm Transactions on Graphics, 36(4):76a,
2017.

L. Do, L. Ma, E. Bondarev, and P. H. N. D. With. On multi-
view texture mapping of indoor environments using kinect
depth sensors. In International Conference on Computer Vi-
sion Theory and Applications, pages 739-745, 2015.

M. Eisemann, B. D. Decker, M. Magnor, P. Bekaert, E. D.
Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Floating
textures. Computer Graphics Forum, 27(2):409C418, 2008.
N. Fioraio, J. Taylor, A. Fitzgibbon, and L. D. Stefano.
Large-scale and drift-free surface reconstruction using on-
line subvolume registration. In CVPR, 2015.

R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or.
Seamless montage for texturing models. Eurographics 2010,
29/2, May 2010.

M. Gangnet and A. Blake. Poisson image editing. In ACM
SIGGRAPH, pages 313-318, 2003.

L. Grammatikopoulos, I. Kalisperakis, G. Karras, and E. Pet-
sa. Automatic multi-view texture mapping of 3d surface pro-
jections. pages 12—13, 2007.

M. Halber and T. Funkhouser. Fine-to-coarse global regis-
tration of rgb-d scans. In CVPR, 2017.

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, and A. Davison.
Kinectfusion:real-time 3d reconstruction and interaction us-
ing a moving depth camera. In ACM Symposium on User
Interface Software and Technology, Santa Barbara, Ca, Usa,
October, pages 559-568, 2011.

S. Izadi and M. Stamminger. Real-time 3d reconstruction at
scale using voxel hashing. Acm Transactions on Graphics,
32(6):169, 2013.

W. Kehl, N. Navab, and S. Ilic. Coloured signed distance
fields for full 3d object reconstruction. In Proceedings of the
British Machine Vision Conference. BMVA Press, 2014.

V. Lempitsky and D. Ivanov. Seamless mosaicing of image-
based texture maps. In CVPR, pages 1-6, 2007.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and
A. Fitzgibbon. Kinectfusion: Real-time dense surface map-
ping and tracking. In IEEE International Symposium on
Mixed and Augmented Reality, pages 127-136, 2011.

M. Waechter, N. Moehrle, and M. Goesele. Let there be col-
or! large-scale texturing of 3d reconstructions. In European
Conference on Computer Vision, pages 836-850, 2014.

W. Wang, J. Shen, and L. Shao. Consistent video saliency
using local gradient flow optimization and global refinement.
IEEE Transactions on Image Processing, 24(11):4185-4196,
2015.

T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J.
Leonard, and J. Mcdonald. Real-time large-scale dense rgb-
d slam with volumetric fusion. International Journal of
Robotics Research, 34(4-5):598-626, 2015.

T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and
A. Davison. Elasticfusion: Dense slam without a pose graph.
In Robotics: Science and Systems, 2015.

Q. Yan, L. Yang, L. Zhang, and C. Xiao. Distinguishing
the indistinguishable: Exploring structural ambiguities via
geodesic context. In CVPR, pages 3836-3844, 2017.

L. Yang, Q. Yan, Y. Fu, and C. Xiao. Surface reconstruction
via fusing sparse-sequence of depth images. IEEE Transac-
tions on Visualization and Computer Graphics, 2017.

L. Yang, Q. Yan, and C. Xiao. Shape-controllable geometry
completion for point cloud models. The Visual Computer,
33(3):385-398, 2017.

Q. Y. Zhou and V. Koltun. Color map optimization for 3d
reconstruction with consumer depth cameras. Acm Transac-
tions on Graphics, 33(4):1-10, 2014.

