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Abstract

Human motion modeling is a classic problem in com-

puter vision and graphics. Challenges in modeling human

motion include high dimensional prediction as well as ex-

tremely complicated dynamics.We present a novel approach

to human motion modeling based on convolutional neural

networks (CNN). The hierarchical structure of CNN makes

it capable of capturing both spatial and temporal correla-

tions effectively. In our proposed approach, a convolutional

long-term encoder is used to encode the whole given motion

sequence into a long-term hidden variable, which is used

with a decoder to predict the remainder of the sequence.

The decoder itself also has an encoder-decoder structure, in

which the short-term encoder encodes a shorter sequence to

a short-term hidden variable, and the spatial decoder maps

the long and short-term hidden variable to motion predic-

tions. By using such a model, we are able to capture both

invariant and dynamic information of human motion, which

results in more accurate predictions. Experiments show that

our algorithm outperforms the state-of-the-art methods on

the Human3.6M and CMU Motion Capture datasets. Our

code is available at the project website1.

1. Introduction

Understanding human motion is extremely important for

various applications in computer vision and robotics, partic-

ularly for applications that require interaction with humans.

For example, an unmanned vehicle must have the ability to

predict human motion in order to avoid potential collision in

a crowded street. Besides, applications such as sports anal-

ysis and medical diagnosis may also benefit from human

motion modeling.

The biomechanical dynamics of human motion is ex-

tremely complicated. Although several analytic models

have been proposed, they are limited to few simple actions

∗Considered as equal contribution.
1https://github.com/chaneyddtt/Convolutional-

Sequence-to-Sequence-Model-for-Human-Dynamics
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Figure 1. Frames on the left are the observations fed into our net-

work. The middle part is the short-term prediction results for RNN

(on the top) and our model (in the bottom). The right part is the

long-term prediction results, in which RNN converge to a mean

pose, while our model can predict future frames which are similar

to the ground truth (in the middle).

such as standing and walking [18]. For more complicated

actions, data-driven methods are required to attain accept-

able accuracy [3, 14, 18]. In this paper, we focus on the

human motion prediction task, using learning based meth-

ods from motion capture data.

Recently, along with the success of deep learning in vari-

ous areas of computer vision and machine learning, deep re-

current neural network based models have been introduced

in human motion prediction [5, 7, 10, 14]. In earlier works

[5, 10], it is often observed that there is a significant dis-

continuity between the first predicted frame of motion and

the last frame of the true observed motion. Martinez et al.

[14] solved the problem by adding a residual unit in the re-

current network. However, their residual unit based model

often converges to an undesired mean pose in the long-term

predictions, i.e., the predictor gives static predictions simi-

lar to the mean of the ground truth of future sequences (see

Figure 1). We believe that the mean pose problem is caused

by the fact that it is difficult for recurrent models to learn

to keep track of long-term information; the mean pose be-

comes a good prediction of the future pose when the model

loses track of information from the distant past. For a chain-

structured RNN model, it takes n steps for two elements that
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are n time steps apart to interact with each other; this may

make it difficult for an RNN to learn a structure that is able

to exploit long-term correlations [6].

The current state-of-the-art for human motion modeling

[14] is based on the sequence-to-sequence model, which is

first proposed for machine translation [16]. The sequence-

to-sequence model consists of an encoder and a decoder, in

which the encoder maps a given seed sequence to a hidden

variable, and the decoder maps the hidden variable to the

target sequence. A major difference between human motion

prediction and other sequence-to-sequence tasks is that hu-

man motion is a highly constrained system by environment

properties, human body properties and Newton’s Laws. As

a result, the encoder needs to learn these constraints from

a relative long seed sequence. However, RNN may not be

able to learn these constraints accurately, and the accumu-

lation of these errors in decoder may result in larger error in

long-term prediction.

Furthermore, the human body is often not static stable

during motion, and our central neural system must make

multiple parts of our body coordinate with each other to sta-

bilize the motion under gravity and other loads [20]. Thus

joints from different limbs have both temporal and spatial

correlations. A typical example is human walking. During

walking, most people tend to move left arm forward while

moving right leg forward. However, RNN based methods

have difficulties learning to capture this kind of spatial cor-

relations well, and thus may generate some unrealistic pre-

dictions. Despite these limitations, the RNN based method

[14] is considered to be the current state-of-the-art as its

performance is superior to other human motion prediction

methods in terms of accuracy.

In this paper, we build a convolutional sequence-to-

sequence model for the human motion prediction problem.

Unlike previous chain-structured RNN models, the hierar-

chical structure of convolutional neural networks allows it

to naturally model and learn both spatial dependencies as

well as long-term temporal dependencies [6]. We evalu-

ate the proposed method on the Human3.6M and the CMU

Motion Capture datasets. Experimental results show that

our method can better avoid the long-term mean pose prob-

lem, and give more realistic predictions. The quantitative

results also show that our algorithm outperforms state-of-

the-art methods in terms of accuracy.

2. Related Works

The main task of this work is human motion prediction

via convolutional models, while previous works[3, 5, 14]

mainly focus on RNN based models. We briefly review the

literature as follows.

Modeling of human motion Data driven methods in hu-

man motion modeling face a series of difficulties including

high-dimensionality, complicated non-linear dynamics and

the uncertainty of human movement. Previously, Hidden

Markov Model [2], linear dynamics system [15], Gaussian

Process latent variable models [19] etc. have been applied

to model human motion. Due to limited computational re-

source, all these models have some trade-off between model

capacity and inference complexity. Conditional Restricted

Boltzmann Machine (CRBM) based method has also been

applied to human motion modeling [17]. However, CRBM

requires a more complicated training process and it also re-

quires sampling for approximate inference.

RNN based human motion prediction Due to the suc-

cess of recurrent models in sequence-to-sequence learn-

ing, a series of recurrent neural network based meth-

ods are proposed for the human motion prediction task

[5, 10, 14]. Most of these works have a recurrent network

based encoder-decoder structure, where the encoder accepts

a given motion frames or sequence and propagates an en-

coded hidden variable to the decoder, which then generates

the future motion frame or series. The main differences

in these works lie in their different encoder and decoder

structures. For example, in the Encoder-Recurrent-Decoder

(ERD) model [5], additional non-recurrent spatial encoder

and decoder are are added to its recurrent part, which cap-

tures the temporal dependencies [16]. In Structural-RNN

[10], several RNNs are stacked together according to a

hand-crafted spatial-temporal graph. Martinez et al. [14]

proposed a residual based model, which predicts the gradi-

ent of human motion rather than human motion directly, and

used a standard sequence-to -sequence learning model with

(GRU) [4] cell as the encoder and decoder. In these RNN

based models, fully-connected layers are used to learn a rep-

resentation of human action, and the recurrent middle layers

are applied to model the temporal dynamics. In contrast to

previous RNN based models, we use a convolutional model

to learn the spatial and the temporal dynamics at the same

time and we show that this outperforms the state-of-the-art

methods in human motion prediction.

Convolutional sequence-to-sequence model The task of

a sequence-to-sequence model is to generate a target se-

quence from a given seed sequence. Most sequence-to-

sequence models consist of two parts, an encoder which

encodes the seed sequence into a hidden variable and a de-

coder which generates the target sequence from the hidden

variable. Although RNNs seem to be a natural choice for se-

quential data, convolutional models have also been adopted

to sequence-to-sequence tasks such as machine translation.

Kalchbrenner and Blunsom [11] proposed the Recurrent

Continuous Translation Model (RCTM) which uses a con-

volutional model as encoder to generate hidden variables

and a RNN as decoder to generate target sequences, while



later methods [1, 6, 12] are fully convolutional sequence-

to-sequence model. However, unlike machine translation,

where only temporal correlations exist, there exist compli-

cated spatial-temporal dynamics in human motion. Thus we

design a convolutional sequence-to-sequence model that is

suitable for complicated spatial-temporal dynamics.

3. Network Architecture

We adapt a multi-layer convolutional architecture, which

has the advantage of expressing input sequences hierarchi-

cally. In particular, when we apply convolution to the in-

put skeleton sequences, lower layers will capture dependen-

cies between nearby frames and higher layers will capture

dependencies between distant frames. Unlike the chain-

structured RNN, the hierarchical structure of a multi-layer

convolutional architecture is designed to capture long-term

dependencies. Figure 2 shows an illustration of the architec-

ture of our network, where the convolutional encoding mod-

ule (CEM) plays the central role. We use the CEM module

as long and short-term encoder. The long-term encoder is

used to memorize a given motion sequence as the long-term

hidden variable z
e
l , and the short-term encoder is used to

map a shorter sequence to the short-term hidden variable

z
e
s. Finally the hidden variables zel and z

e
s are concatenated

together and propagated to the decoder to give a prediction

of next frame. The short-term encoder and decoder are ap-

plied recursively to produce the whole predicted sequence.

We use convolutional layers with stride two in the CEM,

thus two elements with distance n are able to interact with

each other in O(log n) operations. Furthermore, we use a

rectangle convolution kernel to get a larger perception range

in the spatial domain.

3.1. Convolutional sequence­to­sequence model

Similar to previous works [3, 14], we also use an

encoder-decoder model as a predictor to generate future

motion sequences. However unlike previous works, we

adapt a convolutional model for this sequence-to-sequence

modeling task. Specifically, both the encoder and the de-

coder consist of similar convolutional structure, which com-

putes a hidden variable based on a fixed number of in-

puts. There have been several convolutional sequence-to-

sequence models [1, 6, 12] that have been shown to give bet-

ter performance than RNN based models in machine trans-

lation. However, these models mainly use convolution in

the temporal domain to capture correlations, while in hu-

man motion there are also complicated spatial correlations

between different body parts.

We first formalize the human motion prediction problem

before giving more details of our convolutional model. As-

sume that we are given a series of seed human motion poses

X1:t = [x1,x2, . . . ,xt], where each xi ∈ R
L is a param-

eterization of human pose. The goal of human motion pre-

diction is to generate a target prediction X̂(t+1):(t+T ) for

the next T frame poses.

We aim to capture the long-term information, such as

categories of actions, human body properties (e.g. step

length, step pace etc.), environmental constraints etc. from

the seed human motion poses. To this end, a convolutional

long-term encoder is used in our model. It maps the whole

sequence X1:t = [x1,x2, . . . ,xt] to a hidden variable

z
e
l = he

l (X1:t |w
e
l ), (1)

where w
e
l is the parameter of the long-term encoder he

l .

Our decoder has an encoder-decoder structure, which

consists of a short-term encoder and a spatial decoder. The

short-term encoder

z
e
s = he

s(Xt−C+1:t |w
e
s), (2)

where w
e
s is the parameter. It maps a shorter sequence

Xt−C+1:t, which consists of C neighboring frames of the

current frame, to a hidden variable. Note that our short-term

encoder is a sliding window of size C, it only encodes the

most recent C frames. Finally, the long-term and short-term

hidden variables zel and z
e
e are concatenated together as a in-

put of the spatial decoder, which predicts the next pose x̂t+1

as

x̂t+1 = hd([z
e
l , z

e
s]|wd), (3)

where wd is the parameter of the spatial decoder hd. To pre-

dict a sequence, the short-term encoder will slide one frame

forward once a new frame is generated, thus the short-term

encoder and decoder are applied recursively as

z
e
s(k) = he

s(X̄t−C+k:t+k−1|w
e
s),

x̂t+k = hd([z
e
l , z

e
s(k)]|wd), (4)

where

X̄t−C+k:t+k−1 = [xt−C+k,xt−C+k, . . . ,xt,

x̂t+1, . . . , x̂t+k−1]. (5)

In our model, the long-term encoder and short-term en-

coder have the similar structure, i.e. the CEM, which in-

cludes 3 convolutional layers and 1 fully connected layers.

The number of output channels for each convolutional layer

is 64, 128 and 128, and the output number of the fully con-

nected layer is 512. As discussed earlier, the CEM needs

to capture long-term correlations in order to improve the

prediction accuracy. Thus the stride of every convolutional

layer is set to 2. With such convolutional layers, two ele-

ments of distance n are able to interact with each other with

a path length O(log(n)), while O(n) steps are required in a

conventional RNN.
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Figure 2. An illustration of our network architecture.

Furthermore, the perception range of the CEM in the

spatial domain should be large enough to capture the spa-

tial correlations of joints from different limbs. Hence, we

use a rectangle 2 × 7 convolutional kernel (2 along tem-

poral domain, and 7 along spatial domain) to enlarge the

perception domain in the spatial domain. We use a sim-

ple two layer fully-connected neural network for the spatial

decoder. The first layer maps a 1024 dimensional hidden

variable to 512 dimensions and uses a leaky ReLU as the

activation function. The second layer maps the hidden vari-

able to one frame of human poses, and does not include an

activation function. We also use a residual link in our net-

work as suggested by previous works [8, 14]. This means

that out decoder actually predicts the residual value rather

than directly generates the next frame. Consequently, the

output of our network consists of two parts:

x̂t+k = hd([z
e
l , z

e
s(k)]|wd) + x̂t+k−1. (6)

hd and wd denote the decoder and its parameters.

Comparison to RNN In recurrent neural network based

models (e.g. [5, 14, 16]), the encoded hidden variable often

serves as the initial state of the decoding RNN. Thus during

the long propagation path in RNN, the encoded information

may vanish. However, our proposed model does not have

this problem because the encoded hidden variable z
e
l is al-

ways maintained. In recurrent neural networks, the model

captures short-term dynamical information through varia-

tion of hidden states. In our model, the short-term dynami-

cal information is captured by the short-term encoder from a

short sequence. By using such a structure, our model is able

to capture long-term invariant information and short-term

dynamical information, and thus resulting in better perfor-

mance in both long-term and short-term predictions.

3.2. Optimization

During training, we use the mean squared error of the

predicted poses as the loss function:

ℓmodel(X̂(t+1):(t+T ),X(t+1):(t+T ))

=
1

T

T∑

t′=1

‖x̂t+t′ − xt+t′ ‖
2
2. (7)

Three different types of regularizing technique are used to

prevent overfitting - dropout, ℓ2 regularizer and adversar-

ial regularizer. We added a dropout layer between the last

convolutional and first fully-connected layers in our CEM

module. In our decoder, we added a dropout layer between

the two fully-connected layer. The dropout probability in

both dropout layers is set to 0.5.

Motivated by the generative adversarial network (GAN),

we apply an adversarial regularizer for the proposed model,

which mainly improves the qualitative performance. We

train an additional discriminator to classify the generated

and real sequences as follows

min
wD

−
∑

X1:t+T

logD(X1:t+T |wD) (8)

−
∑

[X1:t,X̂t+1:t+T ]

log(1−D([X1:t, X̂t+1:t+T ]|wD)).

The discriminator D is then used to encourage the genera-

tion of realistic sequences.

Finally, the objective becomes

min
we

l
,we

s
,wd

∑

X1:t+T

ℓmodel(X̂(t+1):(t+T ),X(t+1):(t+T ))

+ λ2[‖w
e
l ‖

2
2 + ‖we

s ‖
2
2 + ‖wd ‖

2
2] (9)

− λadv log(D([X1:t, X̂t+1:t+T ]|wD)),

where the weights λ2 and λadv are set to 0.001 and 0.01, re-

spectively. In the optimization procedure, we used stochas-

tic gradient descent based optimizer to run iteratively opti-

mizing over (9) and (8).



Remarks There are multiple choices of X̄t−C+k:t+k−1

in (5), which may have different effects on the training re-

sults. In previous works, the corresponding part is often set

to ground truth, or ground truth with noise [5]. Besides set-

ting X̄t−C+k:t+k−1 as (5), it can also be set to

X̄t−C+k:t+k−1 = [xt−C+k,xt−C+k+1, . . . ,xt, (10)

ηx̂t+1 + (1− η)xt+1, . . . , ηx̂t+k−1 + (1− η)xt+k−1],

where η ∈ [0, 1] is a manually specified parameter.

Note that the window size of the short-term encoder C

may also affect the results. The model may not capture

enough short-term information when C is too small. On

the other hand, it may be a waste of computation when C

is too large since we already have the long-term encoder.

Hence, the value of C should be a trade-off between accu-

racy and computation. The effect of different window sizes

are explored in our experiments.

4. Experiments

In this section, we apply the proposed convolutional

model on several human motion prediction tasks. The pro-

posed method is compared with several recent and state-of-

the-art matching algorithms:

• The Encoder-Recurrent-Decoder (ERD) method [5];

• An three layer LSTM with linear encoder and decoder

(LSTM-3LR) [5];

• Stuctural Recurrent Neural Networks (SRNN) [10];

• Residual Recurrent Neural Networks (RRNN) [14];

• An three layer LSTM with an denoising auto encoder

(LSTM-AE) [7].

Our model is implemented in tensorflow, and we used

the ADAM [13] optimizer to optimize over our model. The

batch size is set to 64 and the learning rate is 0.0002. For

more optimizing details, please refer to Section 3.2. Fol-

lowing the setting of previous works[5, 10], the length of

seed pose sequence is set to 50, and the length of target se-

quence is set to 25. We trained RRNN [14] model based

on the public available implementation2. We quote the re-

sults from [14] for ERD, LSTM-3LR, SRNN, and [7] for

LSTM-AE.

Action specific model v.s.general model ERD [5],

LSTM-3LR [5] and SRNN [10] are action specific mod-

els, where they train a specific model for each action. On

the other hand, the RRNN model [14] considers the more

challenging task of training a general model for multiple

actions. In our experiments, we also train a single model

for multiple actions.

2https://github.com/una-dinosauria/human-

motion-prediction

4.1. Dataset and Preprosessing

In the experiments, we consider two datasets: the Human

3.6M dataset [9] and the CMU Motion Capture dataset 3.

The Human 3.6M dataset is currently the largest avail-

able video pose dataset, which provides accurate 3D body

joint locations recorded by a Vicon motion capture system.

It is regarded as one of the most challenging datasets be-

cause of the large pose variations performed by different

actors. There are 15 activity scenarios in total. Each ac-

tion scenario includes 12 trials lasting between 3000 to 5000

frames. The 12 trials are categorized as 6 subjects, where

each subject includes 2 trials. Each 3D pose consists of 32

joints plus a root orientation and displacement represented

as an exponential map.

During the experiments, each pose would subtract to the

mean pose over all trials and gets divided by the standard

deviation. We eliminate the joint angle dimensions with

constant standard deviation, which corresponds to joints

with less than three degrees of freedom. Furthermore, the

global rotation and translation are set to zero since our mod-

els are not trained with this information. Finally, the dimen-

sion of the input vector is set to 54. Similar to [5, 10, 14],

we treat the two sequences in subject 5 as the test set and

all others as the training set. For evaluation, we calculate

the Euclidean error in terms of Euler angle. Specifically,

we measure the Euclidean distance between our predictions

and the ground truth in terms of Euler angle for each action,

followed by calculating the mean value over all sequences

which are randomly selected from the test set.

We also apply our model to the CMU Motion Capture

dataset in order to test its generalization ability. There are

five main categories in the dataset - “human interaction”,

“interaction with environment”, “locomotion”, “physical

activities & sports” and “situations & scenarios”. We

choose some of the actions for our experiments based on

some criteria. Firstly, we do not use data from the “hu-

man interaction” category since multiple subjects motion

prediction is out of the scope of this paper. Secondly, ac-

tion categories which include less than six trials are ex-

cluded on the consideration that we need enough data for

each action to train our model. Lastly, some action cate-

gories in the dataset are actually combinations of other ac-

tions, e.g. actions in the subcategory “playground” consist

of jump, climb and other actions which already exist in the

dataset. We do not chose these action categories to avoid

repetition. Finally, eight actions are selected for our exper-

iments - running, walking and jumping from category “lo-

comotion”, basketball and soccer from category “physical

activities & sports”, wash windows from category “com-

mon behaviours and expressions”, traffic direction and bas-

ketball signals from category “communication gestures and

3Available at http://mocap.cs.cmu.edu

https://github.com/una-dinosauria/human-motion-prediction
https://github.com/una-dinosauria/human-motion-prediction
http://mocap.cs.cmu.edu


Table 1. Motion prediction error in terms of Euler angle error for walking, eating, smoking and discussion in the Human3.6M dataset for

short-term of 80, 160, 320, 400, and long-term of 1000ms (best result in bold).

Walking Eating Smoking Discussion

ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

ERD[5] 0.93 1.18 1.59 1.78 N/A 1.27 1.45 1.66 1.80 N/A 1.66 1.95 2.35 2.42 N/A 2.27 2.47 2.68 2.76 N/A

LSTM-3LR[5] 0.77 1.00 1.29 1.47 N/A 0.89 1.09 1.35 1.46 N/A 1.45 1.68 1.94 2.08 N/A 1.88 2.12 2.25 2.23 N/A

SRNN [10] 0.81 0.94 1.16 1.30 N/A 0.97 1.14 1.35 1.46 N/A 1.45 1.68 1.94 2.08 N/A 1.22 1.49 1.83 1.93 N/A

RRNN [14] 0.33 0.56 0.78 0.85 1.14 0.26 0.43 0.66 0.81 1.34 0.35 0.64 1.03 1.15 1.83 0.37 0.77 1.06 1.10 1.79

LSTM-AE[7] 1.00 1.11 1.39 N/A 1.39 1.31 1.49 1.86 N/A 2.01 0.92 1.03 1.15 N/A 1.77 1.11 1.20 1.38 N/A 1.73

Ours 0.33 0.54 0.68 0.73 0.92 0.22 0.36 0.58 0.71 1.24 0.26 0.49 0.96 0.92 1.62 0.32 0.67 0.94 1.01 1.86

Table 2. Motion prediction error in terms of Euler angle error for the rest actions in the Human3.6M dataset for short-term of 80, 160, 320,

400, and long-term of 1000ms (best result in bold).

Directions Greeting Phoning Posing

ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN [14] 0.44 0.70 0.86 0.97 1.59 0.55 0.90 1.34 1.51 2.03 0.62 1.10 1.54 1.70 1.89 0.40 0.76 1.37 1.62 2.56

Ours 0.39 0.60 0.80 0.91 1.45 0.51 0.82 1.21 1.38 1.72 0.59 1.13 1.51 1.65 1.81 0.29 0.60 1.12 1.37 2.65

Purchases Sitting Sittingdown Takingphoto

ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN [14] 0.59 0.83 1.22 1.30 2.30 0.47 0.80 1.30 1.53 2.14 0.50 0.96 1.50 1.72 2.72 0.32 0.63 0.98 1.12 1.51

Ours 0.63 0.91 1.19 1.29 2.52 0.39 0.61 1.02 1.18 1.67 0.41 0.78 1.16 1.31 2.06 0.23 0.49 0.88 1.06 1.40

Waiting Walkingdog Walkingtogether Average

ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RNN [14] 0.35 0.68 1.14 1.34 2.34 0.55 0.91 1.23 1.35 1.86 0.29 0.59 0.86 0.92 1.42 0.43 0.75 1.12 1.27 1.90

Ours 0.30 0.62 1.09 1.30 2.50 0.59 1.00 1.32 1.44 1.92 0.27 0.52 0.71 0.74 1.28 0.38 0.68 1.01 1.13 1.77

signals”. We pre-process the data and evaluate the results in

the same way as we did on the Human 3.6M dataset.

4.2. Evaluation on Human3.6M and CMU Datasets

We first report our results on all actions in the Human

3.6M dataset for both short-term prediction of 80 ms, 160

ms, 320 ms, 400 ms and long-term prediction of 1000 ms.

Among the 15 actions in the dataset, the four actions “walk-

ing”, “eating”, “smoking” and “discussion” are commonly

used in comparison of action specific human motion predic-

tion methods. Thus we compare the accuracy of our method

against four action specific methods ERD [5], LSTM-3LR

[5], Structural RNN (SRNN) [10] and LSTM-AE [7], as

well as one general motion prediction method RRNN[14] in

Table 1. From the results, we can see that our method out-

performs the others in most cases. We also provide the qual-

itative comparison results with the state-of-the-art RRNN

method in Figure 3. Both RRNN and our model achieve

good result on “walking” because of its periodic property,

which makes the action easier to model. But for other ape-

riodic classes like “eating”, “smoking” and “discussion”,

RRNN quickly converges to a mean pose – the predicted

figure could not put its hands down in “eating” and raise its

hand up in “discussion”.

Rather than maintaining a gesture in which one leg

should be put on the other one in the action “smoking”,

RRNN generates an implausible motion in real life that

would cause the subject to go off balance. This further

shows that it is very important to take the correlation be-

tween different body parts into consideration so that the pre-

dicted pose is more realistic. In comparison, our model pre-

dicts plausible motions for both “eating” and “smoking”.

Furthermore, it is observed in the highly aperiodic action

“discussion” that our model can still predict the correct mo-

tion trend, i.e. raising the hands while talking, even though

this motion is not exactly the same as the ground truth. We

compare our algorithm with the general human prediction

model RRNN [14] for the other 11 actions. The quantitative

comparison results are provided in Table 2, which suggest

that our algorithm outperforms RRNN in most cases. Addi-

tionally, our method outperforms RRNN on the average in

both long and short-term predictions. The out-performance

of our method becomes more significant for longer term

predictions.

We only consider the more challenging task of training

a general motion prediction model for all actions using the

CMU Motion Caption dataset. Hence, we only show com-

parison results with the state-of-the-art RRNN method. For

a fair comparison, both our model and RRNN are trained us-

ing the same settings on the Human3.6M dataset. The test-

ing error of each action is given in Table 3 and the average

testing error is given in Table 4. In the quantitative compar-

ison, our method outperforms the RRNN method in several

challenging actions such as jumping and running. The qual-

itative comparisons of running and jumping are also shown

in Figure 5. In the qualitative comparisons, we can see that



Figure 3. Qualitative results on for long-term prediction based on the Human3.6M dataset. Starting from the left top clockwisely the

four actions are “walking”, “sitting”, “smoking” and “discussion”. For each action, the top, middle and bottom sequences correspond to

RRNN, our model and ground truth respectively. The first four frames are the last four frames of conditional seed frames and the next ones

are predicted frames. The RRNN converges to mean pose for eating and discussion, and generates a prediction which is not realistic for

smoking. Our model suffers less from the mean pose problem and predicts more realistic future.

200 400 600 800 1000

Milliseconds

0

0.5

1

1.5

2

2.5

E
u

le
r 

a
n

g
le

 e
rr

o
r

200 400 600 800 1000

Milliseconds

0

0.5

1

1.5

2

E
u

le
r 

a
n

g
le

 e
rr

o
r

200 400 600 800 1000

Milliseconds

0

0.5

1

1.5

2

E
u

le
r 

a
n

g
le

 e
rr

o
r

Figure 4. Left: Prediction error vs time for the model. For the model with LSTM as encoder (LSTM ENC), the error accumulates much

faster than the original model, which means that our model performs better especially for long-term prediction. Middle: Comparison of

testing error with different window length C for training, namely 5, 10, 20. The long-term error decreases when window size increases

from 5 to 10, while the improvement is not obvious when further increase from 10 to 20. Right : Compare the testing error of our model

with and without adversarial regularizer, it shows that adversarial regularizer helps to train a model with better performance in long-term.

RRNN converges to mean pose for both running and jump-

ing. On the other hand, our prediction for running is very

close to the realistic one. For jumping, our model also pre-

dicts the correct motion trend, i.e. squatting followed by

jumping, and the main error comes from the duration of

squatting.

4.3. Ablation Study

The role of long-term encoder The long-term encoder in

our model is used to capture long-term dependencies. We

verify its effectiveness by removing it from our model. The

results in Table 5 suggest that the average error gets larger

without the long-term encoder, especially for long-term pre-

diction of 1000 ms.

Rectangular kernel over spatial axis We use a rectangular

kernel over the spatial axis (2 × 7 kernel) in our CEM in

order to better capture the dependencies between different

body parts. We also verify the effectiveness by comparing

it with square kernel (4 × 4 kernel) and rectangular kernel

over the temporal axis (7× 2 kernel). The results in Table 6

indicate that the 2× 7 kernel is the best choice.

Adversarial regularizer We use an adversarial regularizer

in our model to help generate more plausible motion. In

order to explore the role of the adversarial regularizer, we

compare the performance of our model with and without the

regularizer. The result in Figure 4 suggests that the adver-

sarial regularizer helps to improve the performance of our

model even though marginally. Moreover, since the adver-

sarial regularizer is only used during training, it does not

add complexity to our model during inference.

Different window size C In our decoder, different window

sizes C result in different perception range. Intuitively, en-

larging the window size may enlarge the perception range

and results in better performance, but also requires more



Table 3. Motion prediction error in terms of Euler angle error for eight actions in the CMU Motion capture dataset for short-term of 80,

160, 320, 400, and long-term of 1000ms (best results in bold).

Basketball Basketball Signal Directing Traffic Jumping

ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN [14] 0.50 0.80 1.27 1.45 1.78 0.41 0.76 1.32 1.54 2.15 0.33 0.59 0.93 1.10 2.05 0.56 0.88 1.77 2.02 2.40

Ours 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04 0.39 0.60 1.36 1.56 2.01

Running Soccer Walking Washwindow

ms 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

RRNN [14] 0.33 0.50 0.66 0.75 1.00 0.29 0.51 0.88 0.99 1.72 0.35 0.47 0.60 0.65 0.88 0.30 0.46 0.72 0.91 1.36

Ours 0.28 0.41 0.52 0.57 0.67 0.26 0.44 0.75 0.87 1.56 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39

Figure 5. Qualitative result on the CMU Motion Capture dataset. Top: “Running” action; Bottom: “Jumping” action. For each action,

the top, middle are the results of RRNN and our model, and the ground truth is given in the bottom. The first four frames are the last four

frames of the conditional seed frames and the next are the predicted ones.

Table 4. Average testing error on the CMU Motion Capture dataset

in terms of Euler angle error.

ms 80 160 320 400 1000

RRNN [14] 0.38 0.62 1.02 1.17 1.67

Ours 0.31 0.52 0.86 0.99 1.55

Table 5. Our model w/wo long-term Encoder on Human3.6M.

ms 80 160 320 400 1000

With long-term Encoder 0.38 0.68 1.01 1.13 1.77

Without long-term Encoder 0.41 0.72 1.05 1.17 1.88

computation resources. We thus train three different models

with window size C = 5 10 and 20. In the right plot of Fig-

ure 4, we show average testing error over all 15 actions. The

result suggests that there is not much improvement when the

window size is larger than 10. Consequently, we set C = 20
for our model in view of the trade-off between accuracy and

computational accuracy.

5. Conclusion

In this work, we proposed a convolutional sequence-to-

sequence model for human motion prediction. We adopted

Table 6. Comparison of different kernels on Human3.6M.

ms 80 160 320 400 1000

4 × 4 kernel 0.41 0.72 1.05 1.16 1.80

7 × 2 kernel 0.40 0.71 1.05 1.17 1.79

2 × 7 kernel 0.38 0.68 1.01 1.13 1.77

two types of convolutional encoders in our model, namely

the long-term encoder and short-term encoder, so that both

distant and nearby temporal motion information can be used

for future prediction. We demonstrated that our model per-

forms better than existing state-of-the-art RNN based mod-

els, especially for long-term prediction tasks. Moreover,

we show that our model can generate better predictions for

complex actions due to the use of hierarchical convolutional

structure for modeling complicated spatial-temporal corre-

lations.
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