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Abstract

Domain shift, which occurs when there is a mismatch
between the distributions of training (source) and testing
(target) datasets, usually results in poor performance of the
trained model on the target domain. Existing algorithms
typically solve this issue by reducing the distribution dis-
crepancy in the input spaces. However, for kernel-based
learning machines, performance highly depends on the sta-
tistical properties of data in reproducing kernel Hilbert
spaces (RKHS). Motivated by these considerations, we pro-
pose a novel strategy for matching distributions in RKHS,
which is done by aligning the RKHS covariance matri-
ces (descriptors) across domains. This strategy is a gen-
eralization of the correlation alignment problem in Eu-
clidean spaces to (potentially) infinite-dimensional feature
spaces. In this paper, we provide two alignment approaches,
for both of which we obtain closed-form expressions via
kernel matrices. Furthermore, our approaches are scal-
able to large datasets since they can naturally handle out-
of-sample instances. We conduct extensive experiments
(248 domain adaptation tasks) to evaluate our approaches.
Experiment results show that our approaches outperform
other state-of-the-art methods in both accuracy and com-
putationally efficiency.

1. Introduction

Standard supervised learning algorithms rely on the as-
sumption that the training data and the testing data are
drawn from an identical distribution. The validity of this
assumption guarantees that the trained model can general-
ize well to the testing set. However, in real world appli-
cations, data are sensed by various types of acquisition de-
vices and in different situations. For example, in computer
vision tasks, images may be taken by cameras with differ-
ent resolutions or under different light conditions. In such
cases, a distribution mismatch or domain shift usually oc-
curs, and consequently traditional statistical learning meth-

ods tend to perform poorly. Therefore, how to handle the
statistical heterogeneity among data becomes a fundamen-
tal problem, called the domain adaptation problem.

A domain adaptation problem usually involves two do-
mains: the source domain and the target domain. The
source domain is composed of labeled data {Xs,~lX} =
{(xi, lxi

)}Ns
i=1, which can be used to train a reliable clas-

sifier. The target domain is composed of unlabeled data
Y t = {yj}Nt

j=1, whose statistical properties are different.
The main objective is to adapt the model (e.g., classifier)
trained on the source domain to the target domain.

Many works have considered this problem. One class of
algorithms [4, 14, 26] reduces the distribution discrepancies
across domains by pointwise re-weighting. Another widely
investigated paradigm finds domain-invariant feature rep-
resentations. Typical algorithms include domain invariant
projection (DIP) [1], transfer component analysis (TCA)
[23], and joint distribution alignment (JDA) [20]. However,
sometimes, the statistical distributions across domains are
very different, and even their supports are significantly mis-
matched. In such cases, it is difficult to find suitable weights
for matching, or to identify domain-invariant features. More
recently, to solve the above issue, another line of algorithms,
which consider “moving” the source data to the target do-
main so as to make their distributions closer, has been pro-
posed. In [7], Courty et al. borrowed a concept from opti-
mal transport theory [28], making use of the optimal trans-
port plan (map) to “transport” source data. But their method
suffers from a drawback: It can be applied only in transduc-
tive settings. That is, when new data are available, one need
to recompute a new optimization problem. In [27], Sun et
al. used a linear map to transform source data to align co-
variance matrices across domains. However, this method
considers only the linear correlation of data, which limits
its applications on datasets with complex nonlinear correla-
tion structures.

All the above works attempt to tackle domain shift in the
input spaces, which is probably not optimal for kernel-based
learning machines. Moreover, there exist various data rep-
resentations, such as strings [19], graphs [18], lattices [5],



manifolds [30], and proteins [3], which are not represented
as vectors in Euclidean spaces. Instead they can be well
characterized by kernel functions. Hence, for such datasets,
it is not straightforward (and sometimes not even possible)
to apply the above algorithms.

Motivated by all these considerations, we propose a
novel and conceptually intuitive framework for domain
adaptation, which is done by aligning infinite-dimensional
covariance matrices (descriptors) across domains. More
specifically, we first map the original features to a RKHS,
and then use a linear operator in the result space to “move”
the source data to the target domain such that the RKHS co-
variance descriptors of the transformed data and target data
are close. Computing the pairwise inner product with the
transformed and target samples, we obtain a new domain-
invariant kernel matrix with the closed-form expression,
which can be used in any kernel-based learning machine.
In this paper, we provide two types of linear transforma-
tions (operators) in RKHS: the kernel whitening-coloring
map and the kernel optimal transport map, each of which
corresponds to a new domain-invariant kernel.

As we will show, our approaches have several advan-
tages: (1) They support various data representations, as long
as the kernel functions are well-defined. (2) They can nat-
urally handle out-of-sample patterns. (3) They can align
distributions with large shifts. (4) Exploiting the princi-
pal eigenstructures of RKHS covariance descriptors, our ap-
proaches are computationally efficient.

Organization. In Section 2, we describe the correlation
alignment problem in Euclidean spaces Rn, and introduce
two solutions. In Section 3, we discuss methods of empiri-
cally estimating covariance descriptors in RKHS. Section 4
and Section 5 form the core of our paper, where we gener-
alize correlation alignment to infinite dimensional settings,
and develop domain-invariant kernel machines. In Section
6, we report our experimental results on cross-domain vi-
sual object recognition and document classification. In the
supplementary material, we provide proofs of all mathemat-
ical results in the paper and more discussion on the experi-
mental results.

2. Correlation alignment in Rn

Given two positive definite covariance matrices Σs and
Σt ∈ Rn×n obtained from source and target samples re-
spectively, we aim at finding a linear transformation T :
Rn → Rn, such that

TΣsT
T = Σt. (1)

Eq (1) corresponds to matching two centered Gaussian dis-
tributions. That is, given a random vector ~x ∼ N(~0,Σs),
we need to ensure that after transformation, the new random
vector ~y = T ~x follows the distribution N(~0,Σt).

There may exist many solutions of (1). In our paper, we
investigate two typical ones and generalize them to infinite-
dimensional settings. One solution is the so-called “frustrat-
ingly easy” whitening-coloring map [27], and the other one
is the optimal transport map between Gaussian distributions
[10]. In the next two subsections, we discuss the mecha-
nism of these two solutions in aligning correlations. Fur-
thermore, we consider the rank-deficient case (i.e., Σs and
Σt are not invertible), providing the modified solutions and
the corresponding sufficient conditions under which “com-
plete matching”, characterized by (1), still holds.

2.1. Whitening-coloring map

Write (1) as (TΣ
1
2
s )(TΣ

1
2
s )T = (Σ

1
2
t )(Σ

1
2
t )T , and set

TΣ
1
2
s = Σ

1
2
t . Then we can obtain an immediate solution

TWC = Σ
1
2
t Σ
− 1

2
s . (2)

The solution TWC can be explained in a two-step procedure:
The source samples are first whitened by Σ

− 1
2

s , and then
recolored by Σ

1
2
t .

However, in practice, the estimated covariance matrices
are usually not invertible, because the dimension of features
may be larger than the sample numbers, and samples may
concentrate on just a low-dimensional subspace. As a result,
the solution TWC is ill-defined. We consider the ad-hoc
modification, i.e.,

T̂WC = Σ
1
2
t (Σ

1
2
s )†, (3)

where “ † ” denotes the Moore-Penrose pseudoinverse. Dif-
ferent from the full-rank situation, the validity of (1) under
the transformation T̂WC depends on the eigenstructures of
the source and target covariance matrices.

Theorem 1 If Im(Σt) ⊆ Im(Σs), then T̂WCΣsT̂
T
WC =

Σt.

Remark 1 Given any matrix A, Im(A) denotes its range
space, i.e., Im(A) = {A~x,~x ∈ Rn}. The condition in
the proposition requires that the source subspace where the
source samples concentrate contains the target subspace.

2.2. Optimal transport map

Given two distributions, µs and µt, there are infinitely
many maps T (including nonlinear ones) that can transform
µs to µt, denoted as T#µs = µt. Monge’s optimal transport
problem [28] is to find the most efficient map, in the sense
of minimizing the total transportation cost. The problem is
formulated as

min
T

∫
Rn

c(~x, T (~x))dµs

s.t. T#µs = µt,

(4)
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Figure 1: (a) The source samples Xs = [~x1, ~x1, ..., ~xN ].
Different colors represent different classes. (b) The target
domain. (c) The results of transforming the source samples
by the whitening-coloring map (i.e., ~xi → TWC(~xi)). (d)
The results of transforming the source samples by the opti-
mal transport map (i.e., ~xi → TOT(~xi)).

where c(~x, ~y) defines the cost of moving unit mass from
location ~x to location ~y, and the cost is usually chosen as
the squared distance function, i.e., c(~x, ~y) = ‖~x− ~y‖22.

If µs and µt are two regular Gaussian distributions, i.e.,
µs = N(~0,Σs), µt = N(~0,Σt), and Σs and Σt are in-
vertible, then the optimizer of (4) is a symmetric and linear
transformation [10], denoted as TOT, and its expression is

TOT = Σ
1
2
t (Σ

1
2
t ΣsΣ

1
2
t )−

1
2 Σ

1
2
t . (5)

Note that in the literature, TOT is often written as TOT =

Σ
− 1

2
s (Σ

1
2
s ΣtΣ

1
2
s )

1
2 Σ
− 1

2
s . In the supplementary material, we

show the equivalence between these two expressions. As
we mentioned before, the transformation between Gaussian
distributions is equivalent to the alignment of covariance
matrices. So the optimal transport map TOT is another so-
lution of (1).
TOT, developed from the optimal transport theory, at-

tempts to avoid long-distance “transportation”. Therefore,
compared with the TWC, TOT can avoid distorting the in-
trinsic structure of data. A toy example for comparing TWC

and TOT is shown in Fig. 1.
Still, if Σs and Σt are non-invertible, we replace the ma-

trix inverse “-” with the pseudoinverse “†”, i.e.,

T̂OT = Σ
1
2
t (Σ

1
2
t ΣsΣ

1
2
t )†

1
2 Σ

1
2
t . (6)

In the next theorem, we provide the sufficient condition for
“complete matching” (1) under the transformation T̂OT.

Theorem 2 If Ker(Σs) ∩ Im(Σt) = {~0}, then we have
T̂OTΣsT̂

T
OT = Σt.

Remark 2 Roughly speaking, because Ker(Σs) ⊥
Im(Σs), the condition in above theorem implies that
there should be substantial overlap between Im(Σs) and
Im(Σt). In addition, this condition is milder than that in
Theorem 1, since Im(Σt) ⊆ Im(Σs) =⇒ Ker(Σs) ∩
Im(Σt) = {~0}.

3. Covariance descriptor estimation in RKHS
In RKHS, covariance descriptors, which are (potentially)

infinite dimensional, are the generalization of covariance
matrices in Rn. Let X be any nonempty set. Let k be
a positive definite kernel on X × X . Let HK be the re-
producing kernel Hilbert space generated by k, and let
φ : X → HK be the corresponding feature map. Given the
samplesX = [x1, x2, ..., xN ], we introduce two covariance
descriptor estimation methods in the following discussion.

3.1. Maximum likelihood estimation (MLE)

Let ΦX = [φ(x1), φ(x2), ..., φ(xN )] be the RKHS data
matrix, then the MLE of the covariance descriptor is

MC = ΦXJNJ
T
NΦTX , (7)

where JN = 1√
N

(IN − 1
N
~1N~1

T
N ) is the centering matrix.

The regularized version is

MC = ΦXJNJNΦTX + ρIHK . (8)

The form (7) is the natural analogy of the MLE of the co-
variance matrix for the Gaussian model in Rn. This form
has been widely applied in kernel ridge regression [17] and
in covariance-descriptor based image classification [24].

3.2. Computationally efficient estimation (CEE)

We assume that the RKHS data ΦX are sampled from
the factor analysis model:

φ(x) = µ+A~z + ε, (9)

where ~z is a d-dimensional latent variable and ~z ∼
N(~0, Id), and ε ∼ N(0HK , ρIHK). Then the covariance
of φ(x) is C = AAT + ρIHK . As shown in [31], the esti-
mation of A is ΦXWX , where

WX = JNVd(Id − ρΛ−1
d )

1
2 (10)

is an N × d matrix, and Vd and Λd store the top d eigen-
pairs of CXX = JTNKXXJN . Now we can obtain a new
estimated covariance descriptor:

EC = ΦXWXW
T
XΦTX + ρIHK . (11)



In the subsequent computation, it will be seen that if the
dimension d of the latent variable is small enough, i.e., d�
N , the total time complexity will be significantly reduced.
Therefore, we say that EC is a computationally efficient
estimator. More discussions on this estimator can be found
in [16, 31].

4. Covariance descriptors alignment in RKHS
With estimated covariance descriptors in HK, we can

generalize correlation alignment to infinite dimensional set-
tings. In this section, we provide computable expressions
of the corresponding whitening-coloring map and the opti-
mal transport map (termed the “kernel whitening-coloring
map” and the “kernel optimal transport map”, respectively)
via kernel matrices. The derivation procedures are provided
in the supplementary material.

Given the source samples Xs = [x1, x2, ..., xNs
]

and the target samples Yt = [y1, y2, ..., yNt
], let

ΦX = [φ(x1), φ(x2), ..., φ(xNs
)] and ΦY =

[φ(y1), φ(y2), ..., φ(yNt
)] be the corresponding RKHS

data matrices, and let KXX , KXY , and KY Y be
the kernel matrices, which are respectively defined by
(KXX)ij = 〈φ(xi), φ(xj)〉, (KXY )ij = 〈φ(xi), φ(yj)〉,
and (KY Y )ij = 〈φ(yi), φ(yj)〉. To satisfy the eigenstruc-
ture conditions proposed in Theorem 1 and 2, we make
use of the regularized covariance descriptor for the source
domain data, which corresponds to the artificial assumption
that the source samples are dispersed in the whole Hilbert
space. That is, for MLE, we have

MCs = (ΦXJNs
)(ΦXJNs

)T + ρIHK (12a)

MCt = (ΦY JNt)(ΦY JNt)
T , (12b)

and for CEE, we have

ECs = (ΦXWX)(ΦXWX)T + ρIHK (13a)

ECt = (ΦYWY )(ΦYWY )T . (13b)

We can see that the expressions of MLE and CEE share the
same structure, which leads to similar subsequent deriva-
tions. Therefore, for brevity, we use (12) for the kernel
whitening-coloring map, and use (13) for the kernel opti-
mal transport map.

4.1. Kernel whitening-coloring map

Proposition 1 With the maximum likelihood estimators
(12), the kernel whitening-coloring map is given by

kT̂WC =(MCt)
1
2 (MCs)

† 12

=ΦY JNtC
† 12
Y Y

[
CY XAJNsΦTX +

1
√
ρ
JNtΦ

T
Y

]
,

(14)

where CY Y = JTNt
KY Y JNt and CY X = JTNt

KY XJNs

are centered kernel matrices, andA =
∑r
k=1

1
λk

( 1√
λk+ρ

−
1√
ρ )~vk~v

T
k , and {λk, ~vk}rk=1 are positive eigenpairs of

CXX .

4.2. Kernel optimal transport map

Proposition 2 With the computationally efficient estima-
tors (13), the kernel optimal transport map is given by

kT̂OT = (ECt)
1
2

[
(ECt)

1
2 (ECs)(ECt)

1
2

]† 12 (ECt)
1
2

= ΦYWY

[
Cw
YXC

w
XY + ρ(ΛY − ρId)

]† 12W T
Y ΦTY ,

(15)
where Cw

YX = W T
Y KY XWX and Cw

XY = (Cw
YX)T , and

ΛY is the diagonal matrix storing the top d eigenvalues of
CY Y .

Note that both (14) and (15) are computable expres-
sions. Take kT̂WC : HK → HK for example,
∀f ∈ HK, we can immediately obtain kT̂WC(f), i.e.,
kT̂WC(f) =

∑Nt

i=1 biφ(yi), where bi are entries of

vector ~b = JNtC
† 12
Y Y

[
CY XAJNs

~FX + 1√
ρJNt

~FY
]
,

and ~FX = [f(x1), f(x2), ..., f(xNs
)]T and ~FY =

[f(y1), f(y2), ..., f(yNt
)]T due to the reproducing property.

5. Algorithms
Now, based on the computable expressions (14) and (15),

we can perform nonlinear correlation alignment in RKHS.
The idea behind our algorithm is rather intuitive: We first
“move” the centered source data Ψs =

√
NsΦXJNs

to the
target domain by kT̂4 (4 = WC or OT ), i.e.,

Ψs → Ψs→t = kT̂4(Ψs), (16)

which guarantees well-matching between the covariance
descriptors of the transformed source samples, Ψs→t, and
the centered target samples, Ψt =

√
NtΦY JNt

. Then
we use the transformed source samples to train a classifier
(model). We sketch the procedure in Fig. 2.

Similar to [29], we obtain a domain-invariant kernel ma-
trix K̃ by computing the pairwise inner product with trans-
formed and target samples:

K̃ =

[
4K̃ss 4K̃T

ts

4K̃ts 4K̃tt

]
=

[
ΨT
s→tΨs→t ΨT

s→tΨt

ΨT
t Ψs→t ΨT

t Ψt

]
.

(17)
Using the kernel whitening-coloring map (14), we get1

Ψs→t = kT̂WC(Ψs) =
√
NsΦY JNt

C
† 12
Y YB

WCK̃ss = NsB
TB

WCK̃ts =
√
NsNtC

1
2

Y YB =
√
NsNtUY Λ

1
2

YU
T
Y B,

(18)
1We provide detailed derivation procedures in the supplementary ma-

terial.
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Figure 2: (a) The labeled dataset (Xs,~lX) in the source
domain and the unlabeled dataset Y t in the target domain.
Dots and stars represent different classes. (b) The centered
source data, Ψs, and centered target data, Ψt, in RKHS. (c)
Transform the source samples by the map kT̂4 (4 = WC

or OT), and the resultant data are Ψs→t = kT̂4(Ψs). (d)
Train a classifier with Ψs→t.

where B = CY X(CXX + ρINt
)−

1
2 , and (UY ,Λ

1
2

Y ) stores
the top d eigenpairs ofCY Y . Note that, in practice, in order
to exploit the principal components and reduce the com-
putational complexity, we artificially select d to be a small
integer, i.e., d� Nt.

Using the kernel optimal transport map (15), we get

Ψs→t = kT̂OT(Ψs) =
√
NsΦYWYD

OTK̃ss = NsD
T (ΛY − ρId)D

OTK̃ts =
√
NsNtJNt

KY YWYD,

(19)

whereD =
[
Cw
YXC

w
XY +ρ(ΛY −ρId)

]† 12W T
Y KY XJNs .

The kernel matrix 4K̃tt of the centered target samples
remains unchanged in both cases, i.e.,

WCK̃tt = OTK̃tt = ΨT
t Ψt = NtCY Y . (20)

5.1. Domain-invariant kernel machine

The new learned kernel (17) after (nonlinear) correlation
alignment can be used in any kernel-based algorithm. For
example, in kernel ridge regression, the predicted labels for
the target dataset Y t is

~lY = (4K̃ts)(4K̃ss + γINs
)−1~lX . (21)

For the kernel support vector machine, after training a clas-
sifier on the source partition (4K̃ss,~lX), we can predict
labels of the target by

~lY = (4K̃ts)(~α� ~lX) + ~b, (22)

where ~α is the Lagrangian multiplier, � is the Hadamard
product, and ~b is the bias.

5.2. Out-of-sample prediction

Our algorithms can naturally generalize to out-of-sample
patterns. That is, when new target data Ȳ t come, we can
directly obtain the inner product matrix between the new
centered samples, ΨȲ , and the transformed source samples,
Ψs→t, that already exist, instead of recomputing the total
model.

5.3. Time complexity

For the case where we use kT̂WC to “move” source data,
it takes O(N3

s ) +NtN
2
s time to computeB, NtN2

s time to
compute WC−K̃ss, and O(dN2

t )2 + dN2
t + dNtNs time

to compute WC−K̃ts.
For the case where we use kT̂OT to “move” source

data, the total time complexity is O(dN2
s ) + O(dN2

s ) +
O(dNsNt) + O(d3). Thanks to the “efficient” estimation
of covariance descriptors that exploits only the principal
eigenstructure, we can avoid large-scale matrix inversion
and multiplication. Hence, although the expressions in (19)
are complicated, the computational time complexity is low.

6. Experiments
In this section, we apply our approaches to two real-

world problems: visual objects recognition and document
classification. We first compare our approaches with other
state-of-the-art domain adaptation algorithms in a transduc-
tive setting, which means that all target samples are used for
estimating covariance descriptors and evaluating the trained
model. We next conduct experiments to measure the ability
of our approaches to deal with out-of-sample patterns.

6.1. Datasets

Four benchmark datasets, i.e., COIL20, Office-Caltech,
20-Newsgroups, and Reuters-21578 are used in the experi-
ments.

The COIL20 [22] dataset contains 1, 440 grayscale im-
ages of 20 classes of objects. The images of each object
were taken at a pose interval of 5 degrees. As a result, each
object has 360o/5o = 72 images. Each image is 32 × 32
pixels with 256 gray levels. We follow the procedure in
[20] to construct two domains. That is, the whole dataset
is partitioned into two subsects, COIL1 and COIL2. The
images taken in the directions [0o, 85o] ∪ [180o, 265o] are
contained in COIL1, and the images taken in the directions
[90o, 175o] ∪ [270o, 355o] are contained in COIL2. The
data distributions in COIL1 and COIL2 should be differ-
ent. There are two domain adaptation tasks, i.e., C1→ C2
and C2→ C1.

2Extracting top d eigenvectors of an Nt×Nt matrix requires O(dN2
t )

time [25].



The Office-Caltech [15] dataset contains the images of
ten classes of objects from four domains: 958 images down-
loaded from the Amazon website, 1, 123 images gathered
from a web image search (Caltech), 157 images taken with a
DSLR camera, and 295 images from Webcams. They form
12 domain adaptation tasks: A→ C, A→ D,...,W→ D.
We consider two types of features: the SURF features [2]
and the DeCAF6 features [9]. The SURF features represent
each image with an 800-bin normalized histogram, which is
subsequently standardized by z−score. The DeCAF6 fea-
tures represent each image with a 4,096-dimensional vector,
which is extracted from the 6th layer of a convolutional neu-
ral network.

The 20-Newsgroups 3 dataset has approximately 20, 000
documents, which are categorized in a hierarchical struc-
ture. The top categories are comp, rec, sci, and talk, each
of which has four subcategories. Data drawn from different
subcategories and under the same top categories are consid-
ered as different but related domains. The task is to predict
the top category to which the sample belongs. Following the
procedures in [8] and [21], we generate the cross-domain
datasets. For each of the two top categories P andQ, we se-
lect two subcategories from each of them to form the source
domain, and use the rest subcategories of P andQ as the tar-
get data. Therefore, given top categories P and Q, we can
construct C2

4C
2
4 = 36 domain adaptation tasks, denoted as

“P vs Q”. There are C2
4 = 6 possible combinations for top

categories. In total, we have 6× 36 = 216 tasks. For every
36 tasks, we report the average performance. More detailed
description is given in [8] and [21]. We adopt the prepro-
cessed version of 20-Newsgroups, which contains 15, 033
documents represented by 25, 804-dimensional features.

The Reuters-215784 dataset has three top categories,
i.e., orgs, places and people, each of which has many
subcategories. Still, samples that belong to different sub-
categories are treated as ones drawn from different do-
mains. Based on this, we can construct 6 cross-domain text
datasets: orgs vs people, people vs orgs, orgs vs places,
places vs orgs, people vs places, and places vs people.
For every pair of datasets, e.g., orgs vs people, people vs
orgs, we report the average performance. We adopt the pre-
processed version of Reuters-21578, which contains 3, 461
documents represented by 4, 771-dimensional features.

In summary, we have constructed 2+12×2+216+6 =
248 domain adaptation tasks.

6.2. Transductive experiments setup

We first design experiments in the transductive setting.
We employ the domain-invariant SVM describe in (22) to
conduct classification. We use “KWC” and “KOT” to de-
note our approaches. We compare our approaches with

3http://qwone.com/ jason/20Newsgroups/
4http://www.daviddlewis.com/resources/testcollections/reuters21578/

many state-of-the-art algorithms5: (1) support vector ma-
chine without adaptation (SVM), (2) transfer component
analysis (TCA) [23], (3) subspace alignment (SA) [12], (4)
surrogate kernel matching (SKM) [29], (5) geodesic flow
kernel (GFK) [13], (6) transfer kernel learning (TKL) [21],
(7) correlation alignment (CORAL) [27], (8) transfer multi-
ple kernel learning (TMKL) [11], and (9) joint distribution
optimal transportation (JDOT) [6]. We use SVM as the final
classifier for all above methods.

On the visual adaptation datasets, we use the radial ba-
sis function (RBF) kernel for all kernel-based algorithms,
i.e., SVM, TCA, SKM TKL, and TMKL. On the document
datasets, we use both the linear kernel and the RBF kernel,
and conduct comparisons in both settings. The width of the
RBF kernel is set to be the mean value of the squared dis-
tances between all training samples.

All the methods mentioned above have hyperparameters.
As in [7, 11, 21, 23, 29], we randomly select a small subset
of target samples as validation sets to tune parameters and
evaluate on the remaining target samples. Note that some
algorithms (e.g., GFK and SA) have heuristic methods to
determine parameters and some (e.g., TKL) have default
parameters, but in some datasets, these parameters perform
rather poorly. In order to fairly compare all the methods,
we consider both the heuristic (or default) and manually se-
lected parameters, and report the best results.

For algorithms requiring dimension d, we select d
from {2, 4, 5, 10, 15, 20, ..., 50}. For algorithms requir-
ing regularization parameter γ, we select γ from R =
{0.01, 0.1, 1, 5, 10, 50, 100}. For TKL, we search for the
damping factor ζ in {1.1, 1.2, ..., 2}. For TMKL and SVM,
we select the tradeoff parameter θ and C from R. For
our method KWC, we search ρ in 1

NsR. For our method
KOT, since (Id − ρΛ−1

d ) (see (10)) should be positive def-
inite, we first write ρ = λminγ, and then search γ in
{0.01, 0.1, 0.2, ..., 0.9}, where λmin = Min{λXd , λYd }, and
λXd and λYd are the dth eigenvalues of CXX and CY Y , re-
spectively.

6.3. Experimental results

The experimental results on these four datasets are re-
ported in Table 1, 2, 3, 4, and 5. The best results are high-
lighted in bold. For almost all the tasks, our approaches
KWC and KOT significantly outperform the standard SVM
classifier. Especially on the document datasets, i.e., 20-
Newsgroups and Reuters-21578, the average performance
improvements are more than 10 percent, which demon-
strates the power of aligning RKHS covariance descriptors
in tackling the domain shift issue. Compared with other
state-of-the-art algorithms, our approaches achieve superior
or comparable results on all the object recognition and doc-
ument classification tasks. For some cross-domain datasets,

5We use the codes published by the corresponding authors.



Table 1: Recognition accuracy (in %) on the COIL20 dataset.
Task SVM TCA GFK SKM SA CORAL TKL KWC KOT

C1→ C2 87.50 82.64 83.75 87.50 84.86 82.22 86.25 88.33 90.42
C2→ C1 86.81 87.50 85.69 90.00 87.22 81.67 88.89 89.03 91.11

Mean 87.16 85.07 84.72 88.75 86.04 81.95 87.57 88.68 90.77

Table 2: Recognition accuracy (in %) on the Office-Caltech dataset with SURF features.
Task SVM TCA GFK SKM SA CORAL DTMKL KWC KOT

A→ C 43.90 43.18 41.49 42.48 41.23 45.1 45.01 45.95 44.88
A→ D 45.22 38.85 36.30 35.03 36.91 39.5 40.85 47.77 43.95
A→W 38.30 41.69 32.20 40.00 40.27 44.4 36.94 41.69 43.73
C→ A 53.34 55.43 55.63 52.19 50.61 52.1 54.33 53.24 52.92
C→ D 48.40 47.13 48.81 47.13 44.68 45.9 44.74 49.68 52.23
C→W 44.75 44.40 42.68 43.39 41.41 46.4 42.04 47.80 45.76
D→ A 30.17 39.14 40.29 37.58 36.43 37.7 34.03 41.65 38.94
D→ C 29.56 34.73 35.00 34.11 35.35 33.8 32.10 39.36 38.02
D→W 62.37 83.05 80.68 83.73 85.42 84.7 81.69 85.76 85.76
W→ A 32.15 38.41 36.64 37.47 36.63 36.0 36.53 39.04 36.85
W→ C 25.65 33.83 28.85 29.83 33.25 33.7 32.50 36.42 34.02
W→ D 84.71 81.53 80.25 84.71 81.34 86.6 88.85 82.80 84.71

Mean 44.88 48.45 46.57 47.30 46.96 48.8 47.47 50.93 50.15

like D→ C in Table 2, Comp vs Sci and Rec vs Sci in Ta-
ble 4, and People vs Places in Table 5, both KWC and KOT
largely outperform the best competitive methods. A possi-
ble explanation is that our strategy of “moving” the source
samples to the target domain allows us to align distributions
with large shifts. Note that although CORAL uses a sim-
ilar strategy, it does not consider high-order (or nonlinear)
correlations. As a result, the performances of CORAL on
COIL20 (see Table 1) and Office-Caltech with the DeCAF6
features (see Table 3) are less competitive.

6.4. Out-of-sample generalization

In this subsection, we measure our approaches’ ability to
generalize out-of-sample patterns. We conduct experiments
on the office-caltech dataset with SURF and DeCAF6 fea-
tures. To train the model, we randomly select half labeled
samples from the source domain and half unlabeled samples
from the target domain. We test the model on the remain-
ing unlabeled samples in the target domain. We repeat the
above procedures 500 times, and report the average accura-
cies and standard errors. We compare our approaches with
SVM, TCA and GFK. In Table 6 and 7, the experimental re-
sults show that our approaches KWC and KOT outperform
the baseline methods with statistical significance.

6.5. Empirical time complexity

In this subsection, we empirically compare the compu-
tational time of our approaches with other algorithms. We
implement all the algorithms using the Matlab on an Intel
i7-5500U, 2.40 GHz CPU. We test them on the Comp vs
Rec dataset of 20-Newsgroups, which contains 36 cross-
domain adaptation tasks. For every task, both the source
and the target domain have approximately 4, 000 samples
of dimension 25, 804. For fair comparison, we set the same

dimension d = 5 for TCA, KWC, and KOT. We report
the average running times in Table 8. It can be seen that
SKM is most expensive, which may be due to the fact that
it does not consider the low-rank approximations. TCA is
relatively time-consuming. Our approach KOT is extremely
efficient, which demonstrates our theoretical analysis of its
time complexity in the Section 5.3.

7. Conclusion and future work
In this paper, we presented a mathematical and com-

putational framework for domain adaptation by aligning
infinite-dimensional covariance matrices in RKHS. We pro-
posed two alignment strategies: the kernel whitening-
coloring map and the kernel optimal transport map, and
derived their closed-form expressions via kernel matrices.
We further obtained two domain-invariant kernel matrices
that can be used in any kernel-based algorithm. Empiri-
cally, we applied our framework to numerous domain adap-
tation tasks, and achieved promising results on both visual
and document datasets. Moreover, our approaches pos-
sess out-of-sample generalizability and computational effi-
ciency, which enable it scale to large datasets.

In the future, we plan to take the geometry of RKHS
data into account, expecting to get further performance im-
provement by jointly aligning statistical distributions and
geometric structures of data across domains.
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