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Abstract

Identifying small size images or small objects is a noto-
riously challenging problem, as discriminative representa-
tions are difficult to learn from the limited information con-
tained in them with poor-quality appearance and unclear
object structure. Existing research works usually increase
the resolution of low-resolution image in the pixel space in
order to provide better visual quality for human viewing.
However, the improved performance of such methods is usu-
ally limited or even trivial in the case of very small image
size (we will show it in this paper explicitly).

In this paper, different from image super-resolution (IS-
R), we propose a novel super-resolution technique called
feature super-resolution (FSR), which aims at enhancing
the discriminatory power of small size image in order to
provide high recognition precision for machine. To achieve
this goal, we propose a new Feature Super-Resolution Gen-
erative Adversarial Network (FSR-GAN) model that trans-
forms the raw poor features of small size images to highly
discriminative ones by performing super-resolution in the
feature space. Our FSR-GAN consists of two subnetwork-
s: a feature generator network G and a feature discrim-
inator network D. By training the G and the D networks
in an alternative manner, we encourage the G network to
discover the latent distribution correlations between small
size and large size images and then use G to improve the
representations of small images. Extensive experiment re-
sults on Oxford5K, Paris, Holidays, and Flick100k datasets
demonstrate that the proposed FSR approach can effective-
ly enhance the discriminatory ability of features. Even when
the resolution of query images is reduced greatly, e.g., 1/64
original size, the query feature enhanced by our FSR ap-
proach achieves surprisingly high retrieval performance at
different image resolutions and increases the retrieval pre-
cision by 25% compared to the raw query feature.

*This work was supported by NSFC (Grant No.:
61772137).
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Figure 1. Feature super-resolution (FSR) versus image super-
resolution (ISR). (a) We propose a novel super-resolution tech-
nique called feature super-resolution (FSR), which aims at enhanc-
ing the discriminatory power of a given representation (extract-
ed from low-resolution images or small objects) in order to pro-
viding high recognition precision for machine. (b) Image super-
resolution as a popular technique aims at increasing the resolution
of a given image in order to providing better visual quality for hu-
man viewing.

1. Introduction

The powerful deep learning framework makes numer-
ous great classification models presented, such as VGG16
[18], GoogLeNet [19], ResNet [7], SeNet [8], etc. These
models achieve an amazing recognition accuracy on Ima-
genet dataset [2], even better than human beings do. Actu-
ally, they indeed work well on large size images with good-
quality appearance and rich object structure. However, they
usually fail to identify very small size images since discrim-
inative representations are difficult to learn from their low-
resolution and noise representation. Small size images or
objects are very common in many real-world scenarios such
as small pedestrians in surveillance video, small faces in the
crowd, traffic signs, small objects, etc. Small size image
recognition is much more challenging than normal image
recognition and there are rare good solutions so far.

Current research works such as image super-resolution
(ISR) focus on increasing the resolution of a given image.
Its most common application is to provide better visual
quality after resizing a digital image for human viewing,
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Figure 2. We explore the impact of different low-resolutions on deep representations, which is evaluated on Oxford5K [14] dataset. The
Sh, and S, denote the height and width down-sampling ratios, respectively. We set S}, equals S,,. (a) decreasing image size seriously
impacts the deep representation. When the down-sample scale is smaller than 1/20, the feature distance between low-resolution images
and high-resolution ones is greater than the distance of similar images. (b) image retrieval results of searching Oxford5K dataset. (c)
large-scale image retrieval results of searching Oxford5K plus Flick100k. (b) and (c) show that with the decrease of the resolution of query

images, the retrieval precision is decreased rapidly.

as shown in Fig. 1(b). In recent years, numerous image
super-resolution approaches have been proposed to restore
high frequency information in order to generate high quali-
ty images with rich details, and have achieved great success
[21, 3, 10, 11, 12, 5, 20]. This process is referred to pixel-
space field enhancement in the literature. Those ISR based
approaches are able to recover the object details in small
size image and can improve the identification accuracy in
some extent. In the experiment, we will compare ISR based
approaches with our FSR algorithm and demonstrate their
limitations. Intuitively, as shown in Fig. 1, if we perform
super-resolution for machine recognition instead of human
viewing, the paradigm should change accordingly. There-
fore, for machine recognition, we propose feature super-
resolution for improving the discriminative ability of fea-
tures, as illustrated in Fig. 1(a).

In order to practically explore the necessity and feasibil-
ity of feature super-resolution, we conduct several experi-
ments to understand the impact of low-resolution image on
deep representations. For these experiments, we evaluate
the effect of down-scaling operation on the deep represen-
tations extracted by using the popular VGG16 model [18]
on Oxford5K dataset [14]. The Oxford5K dataset contains
5,063 images and 55 query images. For convenience, the
deep representations mentioned below refers to the neural
activations in the 36" layer of VGGnet model [18] if there
is no special notification.

Firstly, we summarize the experimental results of mean
Euclidean distance between the deep features extracted
from high-resolution images and their corresponding low-
resolution ones. The low-resolution images are obtained
by performing uniform down-sampling operation with d-
ifferent scaling ratios. Figure. 2(a) shows the change of
deep feature with the decrease of image resolution. From
Fig. 2(a) we observe that with the decrease of image res-
olution, the difference between the deep features extract-
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ed from low-resolution images and high-resolution ones
is growing wider. This result implies that decreasing im-
age resolution is capable of impacting deep representation,
though the powerful VGG16 model [18] is carefully trained
on the large-scale Imagenet dataset [2] and adds some use-
ful training tricks.

Furthermore, we conduct image retrieval experimen-
t to understand how low-resolution images affect match-
ing/retrieval accuracy when using deep features. We sum-
marize the experimental results of the mean average preci-
sion (mAP) as a function of the down-scaling ratio in Fig.
2(b) and Fig. 2(c). The results demonstrate that with the
decrease of the resolution of the image, the retrieval preci-
sion is decreased rapidly. This phenomenon is reasonable
because the low-resolution image has lost many detail in-
formation, which results in failing to extract discriminative
features even using the powerful very deep convolutional
neural network.

From Fig. 2(a) to Fig. 2(c) we have known that the
low-resolution images not only impact the extracted deep
features, but also seriously decrease the matching/retrieval
accuracy. To find a solution to the problem, we conduct the
third experiment to further understand the relationship be-
tween the deep features extracted from different resolution
images. Specifically, we calculate the variance of Euclidean
distance for the same down-scaling ratio. Table 1 sum-
marizes the experiment result, which reports that the vari-
ances of Euclidean distance across different down-scaling
ratios are very small. This result means that the extracted
deep features are changed regularly with down-scaling ra-
tios, i.e., the change of deep features mainly depends on the
amount of information lost instead of specific image con-
tent. This key observation provides an important basis for
our FSR approach to solve the problem mentioned above.

Based on the key observation mentioned above, we pro-
pose a novel Feature Super-Resolution Generative Adver-



Table 1. Variances of Euclidean distance across different down-scaling ratios. We conduct this experiment to further understand the
relationship between the deep features extracted from different resolution images. The result reports that the extracted deep features are

changed regularly with down-scaling ratios.

Down-scaling ratio 1/4 1/9

1/16

1/25 1/36 1/49 1/64 Average

Variance of Euclidean distance | 0.0070  0.0103

0.0107

0.0101  0.0091 0.0078  0.0068 | 0.0088

sarial Network (FSR-GAN) model to enhance the discrim-
inatory ability of the representation of small size images,
achieving similar attributes as images with clear appearance
and thus more discriminative for better identification. Our
FSR-GAN consists of two subnetworks: a feature generator
network G and a feature discriminator network D. The G
is a simple convolution neural network which maps the raw
poor representations of small size images to highly discrim-
inative ones by discovering the latent distribution correla-
tions between small size and large size images, achieving
“super-resolution” on the feature space. The D estimates the
probability that a representation comes from the real data or
the fake data generated by G. It actually provides guidance
for updating G. Note that different from traditional Genera-
tive Adversarial Network (GAN), our proposed FSR-GAN
includes a new focal loss tailored for scale-invariant feature
enhancement.

In this paper, we propose the FSR concept using the
framework of GAN to form a local loss function for rep-
resentation enhancement. The main contributions of this
work are:

e Based on the key observation, we propose a novel con-
cept of feature super-resolution that is different from
the image super resolution. This technique is expect-
ed to make a breakthrough in the challenging task of

identifying small size images or objects.

We are the first to successfully introduce the FSR
concept into the GAN framework, called FSR- GAN,
achieving large improvement comparing with existing
approaches.

We introduce a new focal loss for generative network,
making it put more effort into hard examples with large
downscales and preventing it from being affected by
easy examples with small downscales, thus the optimal
solution can be obtained.

Several successful applications explicitly show that
our FSR-GAN is far superior to the comparison ap-
proaches.

2. Related Work
2.1. Image Super-Resolution

Image super-resolution (ISR) approaches aim to esti-
mate a high-resolution image from low-resolution images.
Recently, convolutional neural network (CNN) based ISR
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methods have shown excellent performance. In Wang et al.
[21] the authors propose to combine the merits of deep C-
NN and sparse coding for ISR, because they observe that
domain expertise represented by the sparse coding model
is still valuable and can be effectively implemented with
a LISTA network [21]. Dong et al. [3] propose to train
an end-to-end deep fully convolutional network with three
layers for ISR. This work enables the network to learn the
upscaling filters directly, which is helpful in increasing the
performance in terms of speed and accuracy. Following this
strategy, numerous works have proposed more deep and
complex networks for improving the performance of ISR
[10, 11, 12,5, 20].

2.2. Generative Adversarial Network

Goodfellow et al. [6] propose an interesting framework
named generative adversarial network (GAN) for generat-
ing plausible-looking images. The GAN framework con-
sists of two models: a generative model G and a discrimi-
native model D. The model G captures the data distribution.
The model D estimates the probability that a sample came
from the training data rather than G. There two models will
be trained simultaneously for estimating generative model.
Unfortunately, the preliminary GAN is not stable in train-
ing [6]. To improve it, Arjovsky et al. [1] propose Wasser-
stein GAN (WGAN) by modifying loss function and net-
work design. Our approach benefits from WGAN. GAN has
been used in variety of applications such as image super-
resolution [12], unsupervised representation learning [16],
image super-resolution [12], text to image synthesis [17],
dialogue generation [13], machine translation [23], etc.

3. Our Proposed FSR-GAN
3.1. Overview

In FSR, the aim is to estimate a highly discriminative
feature F*°F from a low-resolution input image I°*. Cor-
respondingly, we use FZ% to denote the high-resolution
image. I™" is obtained by performing down-sampling op-
eration with different downscaling factors. Figure. 3 shows
the architecture of our proposed FSR-GAN. It consists three
blocks, 7.e., general feature extraction model, feature gener-
ative network, and feature discriminative network. The first
block is to extract good representations for input images of
I™% and TH . Note that this block can be a traditional fea-
ture extraction model or a powerful deep neural network.
In this work, we employ the trained VGG16 model [18] as
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Figure 3. Overview of our FSR-GAN for implementing the proposed FSR approach. It consists three blocks, i.e., general feature extraction
model, feature generative network, and feature discriminative network. The first block is to extract good representations for input images
of I*® and I™®. After extracting representations, the feature generative network G transforms the raw poor features F“™ of input low-
resolution images to highly discriminative ones, called super representations F'*%. Finally, the feature discriminative network serves as a
supervisor to distinguish the currently generated super representations "> for the small size images and the original representations 7 %

from the large size images.

the feature extraction model to represent input images. We
use F'LF and FHR to denote the extracted representations
of I“" and IR respectively. It can formally be written as:

FLR — F(ILR)

(D
2

where F' denotes the general feature extraction model. Ob-
viously, FLE and FHR are different in the discrimination
ability.

After extracting representations, the feature generative
network G transforms the raw poor features F' of input
low-resolution images to highly discriminative ones, called
super representations F32. It is defined as:

F5F = G(FM) (3)

Then, the feature discriminative network serves as a su-
pervisor to distinguish the currently generated super repre-
sentations F'** for the small size images and the original
representations 7 from the large size images. Our ulti-
mate goal is to train a generative network G that learns to
transfer the poor representations of low-resolution images
to super representations similar to those of high-resolution
images. To achieve it, we propose a focal loss for training G
network by considering the distribution of down sampling
scales and the imbalance of examples, which is significantly
different from the generative network of preliminary GAN
[6, 1]. The focal loss function is described in more detail in
Section 3.2.

3.2. Focal Loss Function

Goodfellow et al. [6] propose a great and interesting
idea to generate examples by unsupervised learning the in-
put data distribution. By training the G and D networks in
an adversarial way, the network G can successfully learn
the distribution of input data.
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The loss functions of the generative network and the dis-
criminative network can formally be written as:

L(G) = Ez~p,[1 — logD(z)] 4)
L(D) = —Ey~p,[logD(x)] — Ez~p,[1 — logD(x)] (5)

The problem of preliminary GAN [6] is that the better
the classifier, the more serious the generator gradient dis-
appears. This problem easily results in unsatisfied training
result. In order to improve the stability of GAN training, Ar-
jovsky et al. [1] propose WGAN by modifying loss func-
tion and network design. The loss functions of the genera-
tive network and the discriminative network are defined as
follows:

(6)

L(D) = Eynp,[D(2)] = Ex~p, [D(2)] ©)

These two functions can guide the training process of G
and D networks. The smaller the loss function, the smaller
the Wasserstein distance between the real distribution and
the generative distribution, i.e., the better the GAN training.

Naively, we can use WGAN to implement our proposed
idea of representation enhancement. However, in the exper-
iment, we find that directly using WGAN can not enhance
the imputed poor representation. The possible reason is that
the constraints on the generative network are too loose. Ac-
tually, some works demonstrate that by adding a stronger
constraint to the generative network, it can help guide G to
converge better. Therefore, we add a mean squared error
(MSE) term to the Eq. (6). The Eq. (6) can be rewritten as:

L(G) = —Eqznp, [D(z)] +

1 m
S ISR R @)
i=1
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Figure 4. Demonstration of the distance between the enhanced representations and the original ones from large size images using different
loss functions on Oxford5K [14], Paris [9], and INRIA Holidays [9] datasets. The S}, and S,, denote the height and width down-sampling
ratios, respectively. We set Sj, equals S,,. The results consistently show that by incorporating the focal loss in GAN can improve the
performance of feature super-resolution. When the parameter r of focal loss in Eq. (9) equals to 2, we obtain the best results.

where m represents the number of examples.

At this point, Eq. (8) does not take into account the im-
balance of examples with different down sampling scales.
Inspired by the work [14] using focal cross entropy loss for
dense object detection, we propose a new focal loss for rep-
resentation enhancement. By incorporating the focal loss in
Eq. (8), which can be rewritten as:

m

Y (SR = FER )
i=1
)

1

L(G) = ~Eunp, [D(@)] + —

where 7 denotes the weight of focal loss. The larger the
value of 7, the greater the weight of hard examples.

Figure. 4 shows the enhanced results using different loss
functions on three datasets. “CNN-Baseline” denotes that
only the feature generative network is used, i.e., the fea-
ture discriminative network is not used. Besides, it employs
the standard MSE as loss function. “GAN-MSE-focal-2”
means that the parameter » in Eq. (9) equals to 2. To
demonstrate the performance of different loss functions, we
calculate the distance between the enhanced representation-
s produced by G network and the original ones from large
size images. From Fig. 4 we observe, the GAN plus MSE
loss function in Eq. (8) obtains the worst performance, even
worse than “CNN-Baseline”. However, by incorporating
the focal loss in GAN, the performance is significantly im-
proved, even better than “CNN-Baseline”. When the pa-
rameter r of focal loss in Eq. (9) equals to 2, we obtain the
best results. Finally, in the experiment, we employ Eq.(7)
and Eq.(9) as loss functions for our discriminative network
and generative network, respectively.

3.3. Implementation Details

Architecture of feature generative network: The fea-
ture generative network aims to generate super representa-

4325

Table 2. Architecture of feature generative network

[ type [ kernel size [ stride [ channel [ output size ]
convolution 8 x 8 1 4 64 x 64 x 4
convolution 5x5 2 8 32 x32x8
convolution 5x5 1 16 32 x 32 x 16
convolution 5x5 2 32 16 x 16 x 32
convolution 5x5 1 64 16 x 16 x 64
convolution 5x5 2 128 8 X 8 x 128

dropout(70%) 1 x 64 x 128
linear 1 x 4096

Table 3. Architecture of feature discriminative network

type | kernel size [ stride | channel [ outputsize |
convolution 5x5 2 8 32x32x%x8
convolution 5x5 2 16 16 x 16 x 16
convolution 3 x3 2 32 8 X 8 x 32
convolution 3x3 1 64 8 X 8 X 64
linear 1

tions for small size images to improve identification accura-
cy. To achieve this goal, we design the generator as a deep
CNN learning network. As shown in Table 2, our feature
generative network is a normal convolutional neural net-
work, which consists of 6 convolutional layers, 1 dropout
layer, and 1 fully connected layer. The first layer has 8 x 8
kernel, 4 channels, and 1 stride. Note that we employ a
large kernel in the first convolution layer in order to fully
exploit the latent information in the input representations.
All layers employ Leaky ReL.U activation function [22].
Architecture of feature discriminative network: The
feature discriminative network is to differentiate between
the generated super representation for small size image and
the original one from the real large size image. To achieve
this purpose, we design a simple deep CNN network. As
shown in Table 3, our feature generative network is a convo-
lutional neural network, which consists of 4 convolutional
layers and 1 fully connected layer. All these layers employ
Leaky ReLU activation function [22] except for the final
layer. Following Arjovsky et al. [1], the final layer is a ful-
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Figure 5. Comparison of Euclidean distance on three datasets: Oxford5K [14], Paris [9], and INRIA Holidays [9]. Here, the Euclidean
distance measures the difference between the enhanced representations produced by different approaches and the highly discriminative
ones from high-resolution images. This satisfying results prove that the idea of representation enhancement is feasible, which is a good

news for small size images or objects identification researchers.

ly connected layer with no activation function and outputs a
value for predicting real or fake.

Parameter Settings: The loss functions of Eq.(7) and
Eq.(9) are optimized using Adam algorithm with an ini-
tial learning rate of 0.0008. The parameter r of focal loss
in Eq. (9) is set to 2. Typically, our FSR-GAN takes
6 epochs for training, and is capable of producing high-
discriminative features. We implement our model using the
tensorflow framework. We train the network using an N-
vidia GPU Quadro M4000 on subsets of Oxford5K, Holi-
days, and Paris datasets.

4. Experimental Results

In this section, we evaluate the enhancing ability of our
FSR-GAN when trained on the subsets of Oxford5SK [14],
Paris [9], and Holidays [9] datasets. The new ISR meth-
ods including SRCNN [4] and VDSR [10] are compared
with our approach. We choose these two ISR approaches to
compare because they report excellent performance in many
datasets. We use S, and S, to denote the height and width
down-sampling ratios, respectively. We set Sj, equals Sy,
e.g., Sp = Sw = 1/2. Note that we only have results of this
method in 1/4, 1/9, and 1/16 down-sampling ratios. There-
fore, In the following experiments, we show the results of
SRCNN method at these three ratios.

4.1. Experimental Setup

For our experiments we evaluate the effect of using FSR
on the following datasets: Oxford5K [14], Paris [9], INRIA
Holidays [9], and Flickr 100k [14]. These datasets cover a
wide variety of scene types, which is helpful to comprehen-
sively evaluate the performance of the proposed algorithm.

Oxford5K dataset [14]: consists of 5,062 high-
resolution (1024 x 768) images and 55 query images (11
landmarks). This dataset is collected by searching Flickr.

Holidays dataset [9]: is a set of images which mainly
contains holidays photos. This dataset contains 1,491 im-
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ages, 500 queries, and 991 corresponding relevant images.
It includes a very large variety of scene types.

Paris dataset [9]: consists of 6,412 images collected
from Flickr by searching for particular Paris landmarks.
Similar to OxfordSK, it contains 55 query images. Each
query corresponds to a landmark in Paris.

Flickr 100k dataset [14]: consists of 100,071 im-
ages collected from Flickr by searching for popular Flickr
tags [14]. This dataset is used as a distractor dataset.

In our experiments, the officially provided train/test split
is used for experiments. For Oxford5K dataset [14], 4,500
images are randomly selected for training and 562 images
for evaluating. For Holidays dataset, we use the provided
500 queries to form the test set, and the rest as training set.
For Paris dataset [9], we randomly sample 612 images to
form the test query set, and use the rest as training set.

4.2. The Effectiveness of Super Representations by
FSR-GAN

We calculate the Euclidean distance between the en-
hanced representations generated by mentioned approaches
and the ones from large size images, for example, the Eu-
clidean distance between the enhanced representations by
our approach and the ones from large size images are de-
noted as FSR-GAN in Fig. 5. The Euclidean distances of
similar images and non-similar images in original dataset
are also demonstrated in Fig. 5.

We find that the proposed FSR-GAN approach can sig-
nificantly reduce the gap between the representation of low-
resolution images and high-resolution ones. This implies
that the enhanced representations are more close to the high
discriminative features extracted from high-resolution im-
ages. The discriminative ability of representation is largely
enhanced by our FSR-GAN approach. Further, we observe
that even the image resolution has been down-scaled to 1/64
original size, we still achieve about 0.62 distance, which is
much smaller than the distance of similar images. The ISR
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Figure 6. Comparison of image retrieval performance on three datasets: Oxford5K [14], Paris [9], and INRIA Holidays [9].

approaches such as SRCNN [4] and VDSR [10] try to in-
crease the discriminative ability of representation from low-
resolution images by applying enhancement in pixel space.
These approaches only obtain good performance at relative-
ly large size image, e.g., 1/4 scale, but it fails at other small
size image, e.g., 1/16, 1/25, 1/36, etc.

5. Applications

The surprising results on three widely used datasets
[14, 9] in Section 4 have shown the effectiveness of FSR-
GAN. Here, we show that the enhanced representations
learned by our FSR-GAN approach also perform well in
image retrieval applications. The focus in this section is
to show the retrieval performance of extending FSR-GAN
approach to retrieval application. Specifically, we employ
three applications to evaluate FSR-GAN performance: (i)
Content Based Image Retrieval, (ii) Large-Scale Image Re-
trieval, (iii) Low Bit-Rate Mobile Visual Search. The goal
is to measure the quality of enhanced features when we use
them as query to search images in a database. Actually,
these applications can further verify the potentiality and ro-
bustness of our FSR-GAN.

5.1. Experimental Setup

In the experiment, we use three benchmark datasets in-
cluding Oxford5K [14], Paris [9], and INRIA Holidays [9]
mentioned in Section 4.1. We compare it with the raw fea-
tures from low-resolution images. For evaluation criterion,
we use the mean Average Precision (mAP) metric as a func-
tion of down-scaling ratio, and the mAP as a function of
query bits for evaluating low bit-rate retrieval performance.
The mAP score is a common used measure, which sum-
marizes rankings from multiple queries by averaging mean-
precisions.

5.2. Content based Image Retrieval

In this section, we use content-based image retrieval to
evaluate the retrieval performance of our FSR-GAN ap-
proach, looking at the retrieval precision as well as the
down-scaling ratio. Specifically, the resolution of query
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images in Oxford5K [14], Holidays, and Paris [15] are
first reduced to different low-resolutions by using uniform
down-sample method. Then, these low-resolution queries
are upsampled to 224 x 224 using bicubic interpolation
method in order to satisfy the input size of VGG16. Fi-
nally, we extract deep features (36" layer in VGG16) from
these upsampled images.

Figure. 6 demonstrates mAP as a function of the down-
sample ratio for Oxford5K [14], Holidays [9], and Paris [9]
datasets, respectively. From Fig. 6, we observe that
our FSR-GAN outperforms “Raw representation” and ISR
methods by large margins in most cases. The “Raw repre-
sentation” denotes the bicubic interpolation approach. Sur-
prisingly, even when the query images have been down-
sampled to 1/64 original size, our FSR approach stil-
1 achieves considerable retrieval accuracy and significant-
ly outperforms Raw representation. Interestingly, we find
that although the resolution of query images is drastical-
ly changed, the retrieval performance of FSR-GAN is rela-
tively stable. For Holidays dataset in Fig. 6, the strange phe-
nomenon is that the retrieval accuracy increases slowly with
the decrease of resolution. This phenomenon is caused by
the characteristic of Holidays dataset. In Holidays dataset,
the number of images associated with each query is small
(about 4 images), which easily results in the fluctuation of
retrieval accuracy. Overall, the results well imply that our
FSR-GAN is capable of enhancing the discriminatory pow-
er of features extracted from low-resolution images.

5.3. Large-Scale Image Retrieval

In order to evaluate the robustness of FSR-GAN ap-
proach, we conduct large-scale image retrieval experimen-
t by mixing Flick100k dataset [14] as distractor with Ox-
ford5K, Holidays, and Paris datasets. We summarize the
experimental results on these three datasets in Fig. 7. From
this figure we observe that our approach significantly out-
performs Raw representation and ISR methods. At the sim-
ilar down-sample ratio, our approach is capable of provid-
ing higher retrieval precision than raw feature. Moreover,
our FSR-GAN still shows stable retrieval performance even
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Figure 8. Demonstration of low bit-rate image retrieval performance on OxfordSK [14], Paris [9], and INRIA Holidays [9] datasets. Our
FSR-GAN approach shows surprising potential performance at low query bit.

when the resolution of original queries changes dramatical-
ly. Interestingly, we still observe that the retrieval accuracy
increases slowly with the decrease of resolution at Holidays
dataset. This phenomenon is caused by the characteristic
of Holidays dataset as mentioned in Section 5.2. The ex-
perimental result well demonstrates the significant improve-
ment achieved by our approach. We believe this is a signif-
icant progress in low bit-rate large-scale image retrieval.

5.4. Low Bit-Rate Mobile Visual Search

Camera equipped mobile devices, such as mobile phones
are becoming ubiquitous platforms for deployment of visual
search and augmented reality applications. With relatively
slow wireless links, the response time of the retrieval system
critically depends on how much information must be trans-
ferred. Therefore, reducing the upstream query data is an
essential requirement for typical client-server visual search
architectures. We can extend the FSR-GAN approach to
the application of low bit-rate image retrieval. The user-
end only requires down-sampling the query image to a s-
mall size. The cloud-end firstly exploits our FSR-GAN ap-
proach to recover the discriminatory ability for the uploaded
small size image. Then, it uses the enhanced representation
to search database and returns retrieval results to the user-
end. Thus, the user-end only performs a surprisingly sim-
ple operation of down-sampling to reduce the bits of query,
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and can enjoy low latency and high precision mobile-visual-
search (i.e., has better user experience).

To demonstrate this goal, we have done more experi-
ments to verify it. Fig. 8 shows the mAP as a function
of query bits on three retrieval datasets. Note that in or-
der to eliminate the influence of image coding, all resized
query images are saved in PNG format. From Fig. 8 we ob-
serve that our FSR-GAN approach demonstrates surprising
potential performance at low query bit.

6. Conclusion

We have presented a novel feature super-resolution tech-
nique for improving the discriminatory power of represen-
tations extracted from low-resolution images. By analyzing
the impact of down-scaling operation on the deep features,
we have two key conclusions. One is that low-resolution
images not only impact the extracted deep features, but al-
so seriously decrease the retrieval accuracy. The other is
that deep features extracted from low-resolution images are
changed regularly with down-scaling ratios, which inspires
us to develop a feature super-resolution model to learn the
mapping relationship between low-discriminative features
and high-discriminative features. Extensive experiment re-
sults suggest that our proposed FSR-GAN approach is not
only an effective solution for enhancing features, but also
shows its great potential in many applications.
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