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Abstract
In this paper, we study the problem of learning image

classification models with label noise. Existing approaches
depending on human supervision are generally not scal-
able as manually identifying correct or incorrect labels is
time-consuming, whereas approaches not relying on hu-
man supervision are scalable but less effective. To reduce
the amount of human supervision for label noise cleaning,
we introduce CleanNet, a joint neural embedding network,
which only requires a fraction of the classes being manu-
ally verified to provide the knowledge of label noise that
can be transferred to other classes. We further integrate
CleanNet and conventional convolutional neural network
classifier into one framework for image classification learn-
ing. We demonstrate the effectiveness of the proposed al-
gorithm on both of the label noise detection task and the
image classification on noisy data task on several large-
scale datasets. Experimental results show that CleanNet
can reduce label noise detection error rate on held-out
classes where no human supervision available by 41.5%
compared to current weakly supervised methods. It also
achieves 47% of the performance gain of verifying all im-
ages with only 3.2% images verified on an image classifi-
cation task. Source code and dataset will be available at
kuanghuei.github.io/CleanNetProject.

1. Introduction
One of the key factors that drive recent advances in large-

scale image recognition is massive collections of labeled
images like ImageNet [5] and COCO [15]. However, it
is normally expensive and time-consuming to collect large-
scale manually labeled datasets. In practice, for fast de-
velopment of new image recognition tasks, a widely used
surrogate is to automatically collect noisy labeled data from
Internet [6, 11, 25]. Yet many studies have shown that label
noise can affect accuracy of the induced classifiers signifi-
cantly [7, 19, 22, 27], making it desirable to develop algo-
rithms for learning in presence of label noise.
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Learning with label noise can be categorized by type of
supervision: methods that rely on human supervision and
methods that do not. For instance, some of the large-scale
training data were constructed using classifiers trained on
manually verified seed images to remove label noise (e.g.
LSUN [37] and Places [38]). Some studies for learning con-
volutional neural networks (CNNs) with noise also rely on
manual labeling to estimate label confusion [20, 35]. The
methods using human supervision exhibit a disadvantage in
scalability as they require labeling effort for every class. For
classification tasks with millions of classes [4, 8], it is in-
feasible to have even one manual annotation per class. In
contrast, methods without human supervision (e.g. model
predictions-based filtering [7] and unsupervised outliers re-
moval [17, 24, 34]) are scalable but often less effective and
more heuristic. Going with any of the existing approaches,
either all the classes or none need to be manually verified.
It is difficult to have both scalability and effectiveness.

In this work, we strive to reconcile this gap. We ob-
serve that one of the key ideas for learning from noisy data
is finding “class prototypes” to effectively represent classes.
Methods learn from manually verified seed images like [37]
and methods assume majority correctness like [1] belong to
this category. Inspired by this observation, we develop an
attention mechanism that learns how to select representa-
tive seed images in a reference image set collected for each
class with supervised information, and transfer the learned
knowledge to other classes without explicit human super-
vision through transfer learning. This effectively addresses
the scalability problem of the methods that rely on human
supervision.

Thus, we introduce “label cleaning network” (Clean-
Net), a novel neural architecture designed for this setting.
First, we develop a reference set encoder with the atten-
tion mechanism to encode a set of reference images of a
class to an embedding vector that represents that class. Sec-
ond, in parallel to reference set embedding, we also build
a query embedding vector for each individual image and
impose a matching constraint in training to require a query
embedding to be similar to its class embedding if the query
is relevant to its class. In other words, the model can tell
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Figure 1. CleanNet architecture for learning a class embedding
vector φs

c and a query embedding vector φq with a similarity
matching constraint. There exists one class embedding for each
of the L classes. Details of component g(·) are depicted in Fig. 2.

whether an image is mislabeled by comparing its query em-
bedding with its class embedding. Since class embeddings
generated from different reference sets represents different
classes where we wish the model to adapt to, CleanNet can
generalize to classes without explicit human supervision.
Fig. 1 illustrates the end-to-end differentiable model.

As the first step of this work, we demonstrate that Clean-
Net is an effective tool for label noise detection. Simple
thresholding based on the similarity between the reference
set and the query image lead to good results compared with
existing methods. Label noise detection not only is useful
for training image classifiers with noisy data, but also has
important values in applications like image search result fil-
tering and linking images to knowledge graph entities.

CleanNet predicts the relevance of an image to its noisy
class label. Therefore, we propose to use CleanNet to assign
weights to image samples according to the image-to-label
relevance to guide training of the image classifier. On the
other hand, as a better classifier provides more discrimina-
tive convolutional image features for learning CleanNet, we
refresh the CleanNet using the newly trained classifier. We
introduce a unified learning scheme to train the CleanNet
and image classifier jointly.

To summarize, our contributions include a novel neural
architecture CleanNet that is designed to make label noise
detection and learning from noisy data with human super-
vision scalable through transfer learning. We also propose
a unified scheme for training CleanNet and the image clas-
sifier with noisy data. We carried out comprehensive ex-

perimentation to evaluate our method for label noise detec-
tion and image classification on three large datasets with
real-world label noise: Clothing1M [35], WebVision [13],
and Food-101N. Food-101N contains 310K images we col-
lected from Internet with the Food-101 taxonomy [2], and
we added “verification label” that verifies whether a noisy
class label is correct for an image1. Experimental results
show that CleanNet can reduce label noise detection er-
ror rate on held-out classes where no human supervision
available by 41.5% compared to current weakly supervised
methods. It also achieves 47% of the performance gain of
verifying all images with only 3.2% images verified on an
image classification task.

2. Related Work

Label noise reduction. Our method belongs to the cat-
egory of approaches that address label noise by demoting
or removing mislabeled instances in training data. One of
the popular approaches is unsupervised outlier removal (e.g.
One-Class SVM [24], UOCL [17], and DRAE [34]). Using
this approach for label noise detection relies on an assump-
tion that outliers are mislabeled. However, outliers are often
not well defined, and therefore removing them presents a
challenge [7]. Another approach that also needs no human
supervision is weakly supervised label noise reduction [7].
For example, Thongkam et al. [29] proposed a classification
filtering method that learns an SVM from noisy data and
removes instances misclassified by the SVM. Weakly su-
pervised methods are often heuristic, and we are not aware
of any large dataset actually built with these methods. On
the other hand, label noise reduction using human supervi-
sion has been widely studied for dataset constructions. For
instance, Yu et al. [37] proposed manually labeling seed im-
ages and then training multilayer perceptrons (MLPs) to re-
move mislabeled images. Similarly, the Places dataset [38]
was constructed using an AlexNet [12] trained on manu-
ally verified seed images. However, methods using human
supervision exhibit a disadvantage in scalability as they re-
quire human supervision for every class to be cleansed.
Direct neural network learning with label noise. Some
methods were developed for directly learning neural net-
work with label noise [1, 3, 14, 20, 22, 27, 32, 35, 41].
Azadi et al. [1] developed a regularization method to ac-
tively select image features for training, but it depends on
features pre-trained for other tasks and hence is less effec-
tive. Zhuang et al. [41] proposed attention in random sam-
ple groups but did not compare with standard CNN classi-
fiers, and thus is less practical. Methods proposed by Xiao
et al. [35] and Patrini et al. [20] rely on manual labeling to
estimate label confusion for real-world label noise. How-
ever, such labeling is required for all classes and much more

1Food-101N will be available at kuanghuei.github.io/CleanNetProject.



expensive than simply verifying whether the noisy class la-
bels are correct. Veit et al. [32] proposed an architecture
that learns from human verification to clean noisy labels,
but their approach does not generalize to classes that are
not manually verified as opposed to our method. Chen et al.
[3], which relies on specific data sources, and Li et al. [14],
which uses knowledge graph, could be difficult to general-
ize and thus are beyond the scope of this paper.
Transfer learning with neural network. There is a large
body on literature of learning neural joint embeddings for
transfer learning [8, 23, 26, 30, 33]. Tsai et al. [30] trained
visual-semantic embeddings with supervised and unsuper-
vised objectives using labeled and unlabeled data to im-
prove robustness of embeddings for transfer learning. Re-
cently Liu et al. [16] and Tzeng et al. [31] exploited adver-
sarial objectives for domain adaptation. Inspired by [30],
we also incorporate unsupervised objectives in this work.

3. Scalable Learning with Label Noise

We focus on learning an image classifier from a set of
images with label noise using transfer learning. Specif-
ically, assume we have a dataset of n images, i.e., X =
{(x1, y1), ..., (xn, yn)}, where xi is the i-th image and yi ∈
{1, ..., L} is its class label, where L is the total number of
classes. Note that the class labels are noisy, means some of
the images’ labels are incorrect.

In this section, we present the CleanNet, a joint neural
embedding network, which only requires a fraction of the
classes being manually verified to provide the knowledge of
label noise that can be transferred to other classes. We then
integrate CleanNet and conventional convolutional neural
network (CNN) into one system for image classifier training
with label noise. Specifically, we introduce the designs and
properties of CleanNet in Section 3.1. In Section 3.3 we
integrate CleanNet and the CNN into one framework for
image classifier learning from noisy data.

3.1. CleanNet

The overall architecture of CleanNet is shown in Fig. 1.
It consists of two parts: a reference set encoder and a query
encoder. The reference set encoder fs(·) learns to focus on
representative features in a noisy reference image set, which
is collected for a specific class, and outputs a class-level em-
bedding vector. Since using all the images in the reference
set is computationally expensive, we first create a represen-
tative subset, and extract one visual feature vector from each
image in that subset to form a representative feature vector
set, i.e., let V s

c denotes the representative reference feature
vector set for class c (reference feature set).

We explored two pragmatic approaches to select V s
c . The

first one is random sampling a subset from all images in
class c and extract features using a pre-trained CNN fv(·)

!"($)

Attention

Projection

Feature
Extraction

ℎ'

('

)

(* (+

ℎ* ℎ+

,-.

/ $

!"($) !"($)

ℎ

0-,' 0-,* 0-,+

2-,'. 2-,*. 2-,+.

Figure 2. Reference set encoder fs(·)

as shown in Fig. 1. The second approach is running K-
means on the extracted features of all images in class c to
find K cluster centroids and use them as V s

c . The K-means
step is ignored in the figures. Since the K-means approach
shows slightly better result on a held-out set, we choose it
for experiments hereafter. We select 50 feature vectors to
form V s

c .
In parallel to reference set encoder, we also develop a

query encoder fq(·). Let q denote a query image labeled
as class c. The query encoder fq(·) maps the query image
feature vq = fv(q) to a query embedding φq = fq(v

q). We
impose a matching constraint such that the query embed-
ding φq is similar to its class embedding φsc = fs(V

s
c ) if the

query q is relevant to its class label c. In other words, we de-
cide whether a query is mislabeled by comparing its query
embedding vector with its class embedding vector. Since
the class labels are noisy, we can further mark up a query
image and its class label by a manual “verification label”.
The verification label for each image is defined as

l =


1 if the image is relevant to its noisy class label
0 if the image is mislabeled
−1 if verification label not available

(1)

Note that, to reduce human labeling effort, most of the ver-
ification labels are -1, means no human verification avail-
able.

The model learns the matching constraint from the su-
pervision given by the verification labels, such that a query
embedding is similar to its class embedding if the query im-
age q truly belongs to its class label, and transfer to differ-
ent classes where no human verification available. In the
following, we present how we build the reference set en-
coder, query encoder, and objectives for learning the match-
ing constraint.
Reference set encoder. The architecture of the reference
set encoder is depicted in Fig. 2. It maps a reference feature
set V s

c for class c to a class embedding vector φsc. First,
a two-layer MLP projects each image feature to a hidden
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Figure 3. Examples that received the most and the least attention
in a reference set for ”cup cakes”. αi is defined in Eq. (3).

representation hi. Next, we learn an attention mechanism
to encode representative features to a fixed-length hidden
representation as class prototype:

ui = tanh(Whi + b) (2)

αi =
exp(uTi u)∑
i exp(u

T
i u)

(3)

h =
∑
i

αihi (4)

As shown in Eq. (4), the importance of each hi is mea-
sured by the similarity between ui and a context vector u.
Similar to [36], the context vector u is learned during train-
ing. Driven by the matching constraint, this attention mech-
anism learns how to pay attention on the most representa-
tive features for classes. This model learns from supervised
information, i.e., the manual verification label, and adapts
to other classes without explicit supervision. An example
of this attention mechanism is shown in Fig. 3. Finally, a
one-layer MLP maps the hidden representation to the class
embedding φsc.
Query encoder. As illustrated in Fig. 1, we adopt a 5-
layer autoencoder [10] as the query encoder and incorpo-
rate autoencoder reconstruction error into learning objec-
tives. Taking this strategy, as proposed in [30], forces the
query embedding to preserve semantic information of all
the classes including those classes without verification la-
bels, because images without verification label can now be
used in training with this unsupervised objective. It has
been proven effective for improving domain adaptation per-
formance.

Given a query image feature vector vq , the autoencoder
maps vq to a hidden representation φq and seek to recon-
struct vq from φq . The reconstruction error is defined as

Lr(v
q) = ||vq − r(vq)||2 (5)

where r(vq) is the reconstructed representation.
Learning objectives based on matching constraint. With
the supervision from human verification labels, the similar-
ity between class embedding φsc and query embedding φq is
maximized if a query is relevant to its class label (l = 1);
otherwise the similarity is minimized (l = 0). We adopt the

cosine similarity loss with margin to impose this constraint:

Lcos(φ
q, φs

c, l) =


1− cos(φq, φs

c) if l = 1

ω(max(0, cos(φq, φs
c)− ρ)) if l = 0

0 if l = −1
(6)

where cos(·) is the normalized cosine similarity, ω is nega-
tive sample weight for balancing positive and negative sam-
ples, and ρ is the margin set to 0.1 in this work. The case
l = −1 is ignored in the loss function since this supervised
objective only utilizes query images with verification label.

On the other hand, images without verification label can
also be utilized to learn the matching constraint. Similar to
[30], we introduce an unsupervised self-reinforcing strategy
that applies pseudo-verification to images without verifica-
tion label. To be specific, a query is treated as relevant if
cos(φq, φsc) is larger than the margin ρ:

Lunsup
cos (φq, φs

c) =

{
1− cos(φq, φs

c) if lsudo = 1

0 if lsudo = 0
(7)

lsudo =

{
1 if cos(φq, φs

c) ≥ ρ
0 otherwise

(8)

where ρ is the same margin as in Eq. (6). From Eq. (7)
and Eq. (8), we can see that for queries that are initially
treated as relevant, the model learns to further push up the
similarity between queries and reference sets; for queries
that are initially treated as irrelevant, they are ignored.
Total loss. To summarize the training objectives, our model
is learned by minimizing a total loss combining both super-
vised and unsupervised objectives:

Ltotal = Lcos + βLr + tγLunsup
cos (9)

t =

{
1 if l = −1
0 if l ∈ {0, 1}

(10)

where β and γ are selected through hyper-parameter search,
and t indicates whether a query image has verification label.
β and γ are set to 0.1 in this work. During training, we ran-
domly sample images without verification label as queries
for a fraction of a mini-batch (usually 1/2).

Note that the parameters of the attentional reference set
encoder and the query encoder are tied across all classes
so the information learned from classes that have human
verification labels can be transferred to other classes that
have no human verification label.

3.2. CleanNet for Label Noise Detection.

From a relevance perspective, CleanNet can be used to
rank all the images with label noise for a class by cosine
similarity cos(φq, φsc). We can simply perform thresholding
for label noise detection:

l̂ =

{
1 if cos(φq, φsc) ≥ δ
0 otherwise

(11)



where δ is a threshold selected through cross-validation. We
observe that the threshold is not very sensitive to different
classes in most cases, and therefore we usually select an
uniform threshold for all classes so that verification labels
are not required for all classes for cross-validation.

3.3. CleanNet for Learning Classifiers

CleanNet predicts the relevance of an image to its noisy
class label by comparing the query embedding of the im-
age to its class embedding that represents the class. That
is, the distance between two embeddings can be used to de-
cide how much attention we should pay to a data sample in
training the image classifier. Specifically, we assign atten-
tion weights on data samples based on the cosine similarity:

wsoft(x, y = c, V s
c ) = max(0, cos(fq(fv(x)), fs(V

s
c ))) (12)

where V s
c is the reference image feature set that represents

the prototype of class y = c. Eq. (12) defines a soft weight-
ing on an image x with noisy class label y = c. Similarly,
we also define a hard weighting as

whard(x, y = c, V s
c ) =

{
1 if cos(fq(fv(x)), fs(V

s
c )) ≥ δ

0 otherwise

(13)
where δ is a threshold as in Eq. (11). In essence, hard
weighting is equivalent to explicit label noise removal. With
wsoft or whard, we define the weighted classification learn-
ing objective as

Lweighted(x, y = c, V s
c ) = wsoft|hard(x, y, V

s
c )H(x, y = c)

(14)
where H(x, y = c) is negative log likelihood:

H(x, y = c) = −
L∑

c=0

p(y = c|x)logp̂(y = c|x) (15)

Integrating CleanNet and the image classifier. Learning
the image classifier relies on CleanNet to assign proper at-
tention weights to data samples. On the other hand, bet-
ter classifier provides more discriminative features which
are critical for CleanNet learning. Therefore, we inte-
grate CleanNet and the CNN-based image classifier into one
framework for end-to-end learning of image classifiers with
label noise. The overall architecture of this framework is
illustrated in Fig. 4. The structure of a CNN-based image
classifier is split into fully-connected layer(s) and convolu-
tional layers fcl that can be used for feature extraction.
Alternating training. We adopt an alternative training
scheme to learn the proposed classification system. At step
1, we first train a classifier from noisy data with all sam-
ple weights set to 1. At step 2, parameters of convolutional
layers fcl are copied to feature extractor fv and a Clean-
Net is trained to convergence. At step 3, the classifier are
fine-tuned using the sample weights proposed by CleanNet.
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Figure 4. Illustration of integrating CleanNet for training the CNN-
based image classifier with label noise.

dataset #class #images #v-labels
Food-101N 101 310k/ - /25k 55k/5k
Clothing1M 14 1M/14k/10k 25k/7k
WebVision 1000 2.4M/50k/ - 25k/ -

Table 1. Datasets. #images shows the numbers of images in
train/val/test sets for classification (the train set is noisy labeled).
#v-labels shows the numbers of validation labels in train/val sets.

A similar alternating process can continue till the classifier
stops improving. For more iterations of learning classifier,
we fix the convolutional layers and only fine-tune the fully-
connected layers.

4. Experiments

4.1. Datasets

Table 1 lists the statistics of the datasets.
Food-101N: We collect 310k images from Google, Bing,
Yelp, and TripAdvisor using the Food-101 [2] taxonomy,
and avoid foodspotting.com where the original Food-101
was collected. The estimated noisy class label accuracy is
80%. We manually add 55k verification label for training
and 5k for testing label noise detection. Image classifica-
tion is evaluated on Food-101 test set.
Clothing1M [35]: Clothing1M is a public large-scale
dataset designed for learning from noisy data with human
supervision. It consists of 1M images with noisy class la-
bels from 14 fashion classes. The estimated accuracy of
class labels is 61.54%. There are also three sets of images,
with the size of 50k, 14k, 10k, respectively, which have cor-



rect class labels provided by human labelers – we call them
clean sets. There are some images overlap between the three
clean sets and the noisy set. For those overlapped images,
we can then verify whether the noisy class label (as in the
noisy set) is correct given the human labels on these im-
ages, and hence obtain verification labels for these images.
Through this process, we obtain 25k and 7k verification la-
bels for training and validation, respectively. The state of
the art result of image classification on Clothing1M is re-
ported in [20].
WebVision[13]: WebVision contains 2.4M noisy labeled
images crawled from Flickr and Google using the ILSVRC
taxonomy [5]. We conveniently verify noisy class labels
using the Inception-ResNet-V2 model [28] pre-trained on
ILSVRC. Noisy class label of an image is verified as rel-
evant if it falls in top-5 predictions. Otherwise, the noisy
class label is marked as mislabeled. We randomly obtain
250 “pseudo-verification labels” for each class for training.
For evaluating image classification, we use 50k WebVision
validation set and 50k ILSVRC 2012 validation set.

4.2. Label Noise Detection

We first evaluate CleanNet for the task of label noise de-
tection. The label noise detection problem can be viewed
as a binary classification problem for each class, and hence
the results and comparisons are reported in average error
rate over all the classes. We compare with the following
categories of existing baseline methods:

• Supervised: Supervised methods learn a binary clas-
sification from verification labels for each class. We
consider neural networks (2-layer MLP, used in [37]
for data construction), kNN, SVM, label prop [40], and
label spread [39]. We also explored MLPs of more lay-
ers but 2-layer shows the best results.

• Unsupervised: We consider DRAE [34], the state of
the art unsupervised outlier removal. Empirically,
DRAE shows better results than one-class SVM [24].

• Weakly supervised: Like unsupervised method,
weakly supervised methods do not require verification
labels. We compare with a widely used classification
filtering method: we train a CNN model on noisy data
and predict top-K classes for each training image. An
image is classified as relevant to its class label if the
class is in top-K predictions. Otherwise, it is classified
as mislabeled. K is selected on the validation set.

We provide two additional baselines: naive baseline that
treats all class labels as correct, and average baseline that
simply averages reference features as a class embedding
vector and use query feature as a query embedding vector.

CleanNet and all the baselines depend on a CNN to ex-
tract image features. We fine-tune the ImageNet pre-trained

average error rate
method Food-101N Clothing1M
naive baseline 19.66 38.46

supervised baselines
MLP 10.42 16.09
kNN 13.28 17.58
SVM 11.21 16.75
label prop [40] 13.24 17.81
label spread [39] 12.03 17.71

weakly supervised baselines
classification filtering 16.60 23.55

unsupervised baselines
DRAE [34] 18.70 38.95
average baseline 16.20 30.56

CleanNet (full supervision)
CleanNet 9.61 15.91
CleanNet* 6.99 15.77

Table 2. Label noise detection in terms of average error rate over
all the classes (%). CleanNet* denotes the results using image
features extracted from the classifiers retrained with data cleansed
by CleanNet.

ResNet-50 models [9] on noisy data, same as step 1 in
the alternating training scheme, and extract the pool5 layer
as image features. Implementations of kNN, SVM, label
prop, and label spread are from scikit-learn [21]. We re-
implemented DRAE and MLP in our experimentation.

In the following, we will evaluate CleanNet for label
noise detection under two scenarios: Full supervision:
verification labels in all classes are available for learning
CleanNet; Transfer learning: only a fraction of classes
contains verification labels for learning CleanNet.
Full supervision. In Table 2, we report the label noise de-
tection results in terms of average error rate over all the
classes. CleanNet gives error rate of 9.61% on Food-101N
and 15.91% on Clothing1M. Comparing to MLP at 10.42%
on Food-101N and 16.09% on Clothing1M, we validate that
CleanNet performs similar to the best supervised baseline.
Comparing to classification filtering at 16.60% on Food-
101N and 23.55% on Clothing1M, the results demonstrate
effectiveness of adding verification labels for human super-
vision for label noise detection. CleanNet* denotes the re-
sults of CleanNet using image features extracted from the
classifiers retrained with data cleansed by CleanNet, and
shows improvements (6.99% on Food-101N and 15.77%
on Clothing1M). However, improvements become negligi-
ble with more iterations.
Transfer learning. We choose Food-101N to demonstrate
label noise detection with CleanNet under the setting of
transfer learning, where verification labels in n classes are
held out for CleanNet (Lists of the held-out classes are
available in the Food-101N dataset.). Here we also consider
MLP that uses all verification labels and classification filter-
ing that needs no verification labels. We ONLY evaluate the



Figure 5. Label noise detection on Food-101N with transfer learn-
ing. Verification labels in n/101 classes are held out for learning
CleanNet, whereas MLP still uses all verification labels. Note that
average error rate (%) are ONLY evaluated on n classes held out
for CleanNet (so the numbers for MLP and classification filtering
fluctuate for different n).

method data top-1 accuracy
None Food-101 81.67
None Food-101N 81.44
CleanNet, whard Food-101N 83.47
CleanNet, wsoft Food-101N 83.95

Table 3. Image classification on Food-101N in terms of top-1 ac-
curacy (%). Verification labels in all classes are available. “None”
denotes classifier without any method for label noise.

results on n held-out classes to demonstrate the results on
classes without explicit human supervision. The results are
shown in Fig. 5. First, we observe that CleanNet can reduce
label noise detection error rate on held-out classes where no
human supervision available by 41.5% relatively (n = 10)
compared to classification filtering. CleanNet consistently
outperforms classification filtering, the weakly-supervised
baseline. We also observe that the result of CleanNet with
50/101 classes held out (11.02%) is still comparable to
the result of MLP which is based on supervised learning
(10.12%).

4.3. Learning Classifiers with Label Noise

In this subsection, we present experiments for learning
image classification models with label noise using the pro-
posed CleanNet-based learning framework. Experimenta-
tion in this section is based on ResNet-50.
Experiments on Food-101N. Table 3 lists the results on
Food-101N using verification labels in all classes. We ob-
serve that the performance of smooth soft weighting (wsoft)
(83.95%) without need for thresholding outperforms hard
weighting (whard) (83.47%). Fig. 6 presents the results

Figure 6. Image classification on Food-101N in terms of top-1 ac-
curacy (%). Red line shows the results when verification labels
in n/101 classes are held out for CleanNet. The blue dashed line
shows the baseline without using CleanNet.
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Garlic Bread 1 Garlic Bread 0 Garlic Bread 0

T-shirt 1

F:0.7119F:0.9201 F:0.4574 F:-0.2260

T-shirt 1 T-shirt 0 T-shirt 0

Figure 7. Selected examples of CleanNet results on Food-101N
and Clothing1M. “F” denotes cosine similarity predicted by model
using verification labels in all classes. “D” denotes cosine similar-
ity under transfer learning (50/101 classes are excluded for Food-
101N, including ramen and garlic bread). Class names and verifi-
cation labels are shown at bottom-left.

of image classification using the proposed CleanNet-based
method when verification labels in n classes are held out.
For these n held-out classes, the information needed for
cleaning up the noisy class labels are transferred from other
classes through CleanNet. It is observed that there are still
2.1% and 1.75% accuracy gain when 50/101 and 70/101
classes are held out. This validates that labeling effort on a
small fraction of classes can still lead to significant gains.

Fig. 7 shows examples of predictions by CleanNet. The
cosine similarity score between the image and the reference
set of its class is shown for each example. Because of trans-
fer learning, CleanNet can assign reasonable scores to im-
ages from classes where no training images belonging to it
are manually verified.
Experiments on Clothing1M. For Clothing1M, we con-
sider the state of the art result reported in [20], which also



# method data pretrained top-1
1 None [20] 1M noisy ImageNet 68.94
2 None [20] 50k clean ImageNet 75.19
3 loss correct. [20] 1M noisy ImageNet 69.84
4 None [20] 50k clean #3 model 80.38†

5 CleanNet,whard 1M noisy ImageNet 74.15
6 CleanNet,wsoft 1M noisy ImageNet 74.69
7 None 50k clean #6 model 79.90

Table 4. Image classification on Clothing1M in terms of top-1 ac-
curacy (top-1)(%). “None” denotes classifier without any method
for label noise. †: the result is not directly comparable to ours (See
Sec. 4.3 for more details).

verification definition
every-image verification labels for every image
all-1000 all 1000 classes
semantic-308 308 classes selected from each group of

classes that share a common second-level
hypernym in WordNet [18]

random-308 random selected 308 classes
random-118 random selected 118 classes
dogs-118 118 dog classes

Table 5. Verification conditions: selecting different classes for
adding verification labels. Other than every-image, all other con-
ditions have only 250 verification labels in each class.

used ResNet-50. [20] used the part of data in Clothing1M
that has both noisy and correct class labels to estimate con-
fusion among classes and modeled this information in loss
function. Since we only compare the noisy class label to the
correct class label for an image to verify whether the noisy
class label is correct, we lose the label confusion informa-
tion, and thus these numbers are not directly comparable.
However, labeling the correct classes like Clothing1M (only
14 classes) is not scalable in number of classes because hav-
ing labeling workers select from a large number of classes
is time-consuming and unlikely to be accurate.

Table 4 lists the results of image classification using ver-
ification labels in all classes. Using CleanNet significantly
improves the accuracy from 68.94% (#1) to 74.69% (#6) on
1M noisy training data. We also follow [20] to fine-tune the
best model trained on 1M noisy set on the 50k clean train-
ing set. Our proposed method achieves 79.90%, which is
comparable to the state of the art 80.38% reported in [20]
which benefits from the extra label confusion information.
Experiments on WebVision. As opposed to Food-101N
and Clothing1M which are fine-grained tasks, WebVision
experiments sheds light on general image classification at
very large scale. As mentioned in Sec. 4.1, the pseudo-
verification labels are model-based so that we can obtain
for all images. This property allows us to explore how to
select classes for adding verification labels and compare to
the upper bound scenario where all noisy class labels are

val acc top-1(top-5)
method verification WebVision ILSVRC
baseline - 67.76(85.75) 58.88(79.76)
upper bnd every-image 70.31(87.77) 63.42(84.59)
CleanNet all-1000 69.14(86.73) 61.03(82.01)
CleanNet semantic-308 68.96(86.64) 60.48(81.40)
CleanNet random-308 68.89(86.61) 60.27(81.27)
CleanNet random-118 68.50(86.51) 60.16(81.05)
CleanNet dogs-118 68.33(86.04) 59.43(80.22)

Table 6. Image classification on WebVision in terms of top-1 and
top-5 accuracy (%). The models are trained WebVision training
set and tested on WebVision and ILSVRC validation sets under
various verification conditions.

verified without any cost. We define how to add verification
labels as “verification conditions”, listed in Table 5. Table
6 shows the experimental results using CleanNet and soft
weighting (wsoft). We observe that verifying every image
(every-image) improves the top-1 accuracy from 67.76% to
70.31% on the WebVision validation set. With only 3.20%
and 1.2% images verified, semantic-308 and random-118
give 47% and 29% of the performance gain of every-image
on the WebVision validation set respectively. Note that we
only include 250 verification labels for each class for all
experiments using CleanNet. The results again confirm that
labeling on a fraction of classes is effective because of trans-
fer learning by CleanNet.

5. Conclusion

In this work, we highlighted the difficulties of having
both scalability and effectiveness of human supervision for
label noise detection and classification learning from noisy
data. We introduced CleanNet as a transfer learning ap-
proach to reconcile the issue by transferring supervised in-
formation of transferring the correctness of labels to classes
without explicit human supervision. We empirically evalu-
ate our proposed methods on both general and fine-grained
image classification datasets. The results show that Clean-
Net outperforms methods using no human supervision by a
large margin when small fraction of classes is manually ver-
ified. It also matches existing methods that require exten-
sive human supervision when sufficient classes are manu-
ally verified. We believe this work creates a novel paradigm
that efficiently utilizes human supervision to better address
label noise in large-scale image classification tasks.
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