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Abstract

We present a self-calibrating polarising radiometric cal-
ibration method. From a set of images taken from a sin-
gle viewpoint under different unknown polarising angles,
we recover the inverse camera response function and the
polarising angles relative to the first angle. The problem is
solved in an integrated manner, recovering both of the un-
knowns simultaneously. The method exploits the fact that
the intensity of polarised light should vary sinusoidally as
the polarising filter is rotated, provided that the response is
linear. It offers the first solution to demonstrate the possi-
bility of radiometric calibration through polarisation. We
evaluate the accuracy of our proposed method using syn-
thetic data and real world objects captured using different
cameras. The self-calibrated results were found to be com-
parable with those from multiple exposure sequence.

1. Introduction

Shape from polarisation is a technique that recovers the

3D surface of an object by exploiting the polarisation states

of light. A surface normal map can be obtained by tak-

ing multiple images from a single viewpoint under differ-

ent polarising angles. By integrating the surface normal

map, the 3D surface of an object can be reconstructed. Like

shape from shading or photometric stereo, shape from po-

larisation provides the surface normal map in a pixel-wise

manner, encoding much denser 3D information than mul-

tiview stereo. However, shape from polarisation is a pas-

sive approach where no active or controlled light sources

are placed and calibrated.

As shape from polarisation becomes more established,

it provides an avenue for consumers to perform 3D recon-

struction simply with a consumer-grade camera and a po-

lariser due to the low cost in comparison to structured light

scanners. Mobile phones with add-on polariser clips could

enable such a possibility. However, there are two problems
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which hinder such a widespread application. The first is that

most consumer cameras have a nonlinear mapping between

the measured intensity and the irradiance, whose relation-

ship is established by the camera response function (CRF).

Such information is usually not provided by the manufac-

turers, which means that the camera has to be radiometri-

cally calibrated to get polarisation information for 3D re-

construction more accurately. The second problem is due

to the fact that a typical shape from polarisation setup re-

quires professional optical equipment to accurately control

the angle of polarisation, limiting the technique to the labo-

ratory environment. If these two problems can be solved in

a self-calibrating manner, there is great potential to develop

a low-cost shape from polarisation 3D camera for daily use.

This work seeks to enable the shape from polarisation

technique for mass adoption by formulating a framework to

solve for both the inverse camera response function (ICRF)

and the polarising angles of the filter. As there have been

previous works describing radiometric calibration through

various techniques [14, 19, 27, 16], to the best of knowledge

none have attempted radiometric calibration using polarisa-

tion. Our work is specially designed for the shape from po-

larisation problem in a self-calibrating and integrated man-

ner. The main contributions are twofold: 1) We solve for the

inverse CRF using polarisation information solely from in-

put data in a self-calibrating manner; 2) We integrate the

solving of uncalibrated polariser angles with radiometric

calibration as a unified optimisation.

The key insight is that the transmitted radiance sinusoid

(TRS) under a linear response would be distorted should

the CRF be non-linear. By capturing multiple images of the

scene under unknown polarising angles, we analyze how the

CRF and unknown polarising angles affect the TRS and pro-

pose a unified optimisation to undistort the observed TRS,

from which the ICRF and polarising angles can be esti-

mated. An overview of the problem this paper addresses

is illustrated in figure 1.

The rest of the paper is structured as follows. After

reviewing related works in section 2, we provide a back-

ground summary of shape from polarisation in section 3 and
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mathematically formulate the calibration problem in section

4. The experimental details are provided in section 5, and

the results for both synthetic and real world data would be

discussed and analysed in section 6. Finally, we conclude

our discussion in section 7.

2. Related works
Shape from polarisation: Shape from polarisation has

been studied extensively but is less widely used compared to

other photometric 3D modeling approaches such as photo-

metric stereo, due to some inherent ambiguities. However,

it has niche applications such as the reconstruction of trans-

parent surfaces [20, 21] and black specular objects [22, 23].

For shape from polarisation, the surface normal map has an

ambiguity in the phase, which has mainly limited its use

to be combined with other techniques. Atkinson and Han-

cock [1] solved the ambiguity problem by assuming a con-

vex object and propagating the surface normals inwards to

preserve object smoothness. Followed, they used two views

to resolve the ambiguity [2]. Kadambi et al. [11, 6] used

the depth from Kinect time-of-flight sensors to help resolve

the ambiguity. Cui et al. [6] used multiview stereo to first

build up a point cloud, followed by iso-depth contour trac-

ing which bypasses the π-ambiguity. Smith et al. [28] re-

solved the ambiguity by combining with shape from shad-

ing constraints, enabling a passive depth capture for a gen-

eral outdoor scene. More recently, shape recovery through

polarisation has been approached through a differential ap-

proach rather than the previous integral approach, circum-

venting the surface normal ambiguity problem [29, 18].

Radiometric calibration: Radiometric calibration of

cameras has been studied extensively for computer vision

applications. The earliest approach involved the use of a

Macbeth color chart [17], which consists of color patches

with reflectances mimicking natural objects. Mann and Pi-

card [14] calibrated the camera using multiple registered

images of the same scene, fitting to a gamma function. Mit-

sunaga and Nayar [19] used different known exposure times

as well, fitting the inverse response function to a high-order

polynomial. Grossberg and Nayar [9] collected a diverse

database of real-world camera response functions (DoRF)

and applied PCA to derive a basis which is known as the

Empirical Model of Response (EMoR). Other camera cal-

ibration methods without using known exposures include

using the RGB distribution color edges of a single image

[13], using geometric invariants [25], using the noise dis-

tribution [16] and using consistent scene reflectance across

corresponding pixels for internet images [24].

Self-calibration methods: In terms of radiometric self-

calibration aspect, our method shares a similar spirit with

using the linearity of color profiles for photometric stereo

images [27], but we explore the regularity of the transmit-

ted radiance sinusoid of shape from polarisation images. In

terms of polarising angle self-calibration aspect, our method

shares a similar spirit with Schechner’s method [26], but has

the essential difference in that we do not assume a linear

camera, and we use a unified optimisation method.

3. Background
3.1. Degree of polarisation

Shape from polarisation works by assuming that the

light source is unpolarised, which is generally true for most

scenes. When unpolarised light bounces off a smooth sur-

face, it becomes partially polarised as shown by Fresnel re-

flection theory [10, 3]. When a polarising filter is rotated at

angle φpol and placed in front of a camera, the irradiance

varies given by the transmitted radiance sinusoid (TRS):

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos (2(φpol − ψ)).

(1)

By capturing multiple photographs at different polarising

angles, the quantities Imax, Imin and ψ can be found by

fitting a sine curve. The surface normal at a particular point

is controlled by 2 parameters, the azimuth angle ψ and the

zenith angle θ. Due to the factor of 2 in the argument of the

TRS, the periodicity is halved leading to an ambiguity in the

azimuth angle. Note that ψ and ψ + π both give the same

value for equation 1. To find the zenith angle, it is required

to first calculate a related quantity known as the degree of

polarisation (DoP), ρ as

ρ =
Imax − Imin

Imax + Imin
, (2)

which is simply interpreted as the ratio of the amplitude to

the offset of the given sinusoid. Using the Fresnel equa-

tions [10] and equation 2, it is possible to obtain an ana-

lytic expression for ρ in terms of θ. Inverting the expression

would then give a value for the zenith angle. The azimuth

and zenith angles produce a surface normal map, which can

be integrated through an integrator, such as the Frankot-

Chellapa algorithm [8], to produce a 3D surface.

3.2. Radiometric calibration

The image of a camera is formed when photons from the

scene strike the camera sensor array. In a modern camera,

the sensor array is typically a CMOS or CCD, which records

an intensity value proportional to the amount of photons hit-

ting the array. However, for modern cameras, a nonlinear

effect is added between the measured intensity, M , and the

irradiance, I . Consumer cameras typically have image pro-

cessing algorithms, which may be scene-dependent, to max-

imise visual aesthetics [4]. The nonlinear effect can come
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Figure 1: Overview for the proposed problems in polarising radiometric self-calibration. Angle-distorted TRS has been

solved, but CRF-distorted TRS and CRF&angle-distorted is still an open problem. Our goal is to solve for the ICRF and the

polarising angle by undistorting the CRF&angle-distorted TRS.

from several sources, such as demosaicking, JPEG com-

pression, image enhancement and gamut mapping which

cause a distortion in the TRS. Our proposed method takes

into account of the aggregated nonlinear effect of all the

TRS distorting factors, although we cannot tell how much

distortion is brought by each component. The main goal

of radiometric calibration would be to map the relationship

between the measured intensity and the irradiance, which

is also known as the inverse camera response function, g.

We chose to model g with a polynomial function [7], al-

though there are other camera response models such as the

standard gamma function, generalised gamma curve model

[5, 25] and the EMoR [9].

I = g(M) = c1M+c2M
2+...+c5M

5 =

5∑
j=1

cjM
j , (3)

where M is the measured intensity and cj are the co-

efficients to be fitted. We only consider up to the fifth

power which is sufficient to reproduce the inverse camera

response function accurately. c0 is not used because we de-

fine g(0) = 0. We assume, in this paper, that the inverse

camera response function is either concave or convex, ie:
d2g
dM2 ≥ 0 or d2g

dM2 ≤ 0, which holds true for most modern

day cameras.

4. Proposed Method
4.1. Matrix representation

We can rewrite equation 1 for every pixel, and taking into

account the ICRF, we obtain

g(Mk,p) =
[
tp + ap cos 2(φk − ψp)

]
, (4)

where k indexes the polarising angle, and p indexes the pix-

els of the image. In the variables where only a single sub-

script is used, it means the values are invariant with respect

to the change in the other index. Expanding the cosine term

we obtain,

g(Mk,p) =
[
1 cos 2φk sin 2φk

]
⎡
⎣tp
up

vp

⎤
⎦ , (5)

where up = ap cos 2ψk and vp = ap sin 2ψk. Representing

equation 5 in the form of a matrix, we obtain

D = PO, (6)

where

D =

⎡
⎢⎢⎢⎣
g(M1,1) g(M1,2) . . . g(M1,pN

)
g(M2,1) g(M2,2) . . . g(M2,pN

)
...

...
...

g(ML,1) g(ML,2) . . . g(ML,pN
)

⎤
⎥⎥⎥⎦ , (7)



and

P =

⎡
⎢⎢⎢⎣
1 cos 2(φ1) sin 2(φ1)
1 cos 2(φ2) sin 2(φ2)
...

...
...

1 cos 2(φL) sin 2(φL)

⎤
⎥⎥⎥⎦ , (8)

and

O =

⎡
⎣t1 t2 . . . tpN

u1 u2 . . . upN

v1 v2 . . . vpN

⎤
⎦ . (9)

4.2. Optimisation procedure

We solve equation 6 by minimising

||D − PO||2, (10)

using an iterative optimisation procedure described in fur-

ther detail in the following subsections.

4.2.1 Initialisation

As D,P and O all have unknown parameters, they are ini-

tialised prior to the optimisation. The angles in P are ini-

tialised as the actual experimental angle added with a ran-

dom angular error of up to ±15◦. The values of D and O
were not explicitly coded, hence they were initialised ac-

cording to Matlab’s internal method [15].

4.2.2 Finding cj and O

At each step of the iteration, we find cj and O. Using equa-

tion 10, we rewrite it as

{c∗j ,O∗} = argmin
cj ,O

yTJTJy,

s.t.,
5∑

j=1

cj = 1, g(Mint + 0.1) ≥ g(Mint),

d2g

dM2
|M=Mint

≥ 0(or ≤ 0),

(11)

where Mint = 0.1, 0.2, · · · , 0.9, and y is the unknown vec-

tor such that

y =
[
c1 . . . c5 t1 u1 v1 . . . tpN

upN
vpN

]T
,

(12)

and J can be constructed by

J =

⎡
⎢⎣

M1,1 . . . M5
1,1 −P 0

. . . . . . . . .
. . .

ML,pN
. . . M5

L,pN
0 −P

⎤
⎥⎦ . (13)

The above convex quadratic program can be solved using

quadprog in Matlab.

4.2.3 Finding angles φk

Given D and O, we are able to calculate the angle φk, k =
1, 2, · · · , L, independently. Let Dk denote the k-th row of

D, R the first row of O, S the last two rows of O, the

constrained optimization reads

{φ∗
k} = argmin

φk

∥∥∥∥ST

[
cos(2φk)
sin(2φk)

]
− (Dk −R)T

∥∥∥∥
2

2

,

= argmin
φk

[
cos(2φk)
sin(2φk)

]T
A

[
cos(2φk)
sin(2φk)

]
− 2bTk

[
cos(2φk)
sin(2φk)

]
,

s.t., cos2(2φk) + sin2(2φk) = 1,
(14)

where A = SST and bk = S(Dk−R)T . To find its global

minimum, we calculate its first-order optimality condition:

(A− λI)

[
cos(2φk)
sin(2φk)

]
= bk,

s.t., cos2(2φk) + sin2(2φk) = 1,

(15)

where λ is the Lagrange multiplier and I is the 2×2 identity

matrix. By letting x = (A− λI)−2bk, we have x = (A−
λI)−1[(A − λI)−1bk] = (A − λI)−1

[
cos(2φk)
sin(2φk)

]
, which

leads to

[
cos(2φk)
sin(2φk)

]
= (A − λI)x. Since cos2(2φk) +

sin2(2φk) = 1, xT (A − λI)2x = xT bk = 1, implying

bkb
T
k x = bk, we expand (A−λI)2x = bk, such that (λ2I−

2λA + ATA)x = bk. By substituting bk by bkb
T
k x, we

obtain

(λ2I − λ(2A) + (ATA− bkb
T
k ))x = 0. (16)

The above quadratic eigenvalue problem can be solved

using polyeig in Matlab. As the objective value in equa-

tion 14 is proportional to the Lagrange multiplier λ, we get

the global minimum using the minimal real/positive eigen-

value λ∗. x∗ is its corresponding eigenvector and the angle

φk is determined from:

[
cos(2φk) sin(2φk)

]T
= (A− λ∗I)x∗. (17)

4.2.4 Iterations

The steps described in sections 4.2.2 and 4.2.3 were re-

peated alternatively for 300 times. Towards the end of the

optimisation process, we find that the cost function does not

change significantly.

4.3. Additional priors

We fully utilise the properties of the shape from polari-

sation to develop the following two techniques.



Pixel selection. The naive way is to use all pixels in the

captured image. However, the degree of polarisation pro-

vides information as to which pixels are more reliable. For

pixels with a low degree of polarisation, noise from the

camera sensor affects the overall shape of the curve. Ideally,

the pixels selected should cover a wide range of intensities,

have high values of ρ and low noise so that the optimisation

procedure would yield accurate results.

We approximate the values of ρ for each pixel using the

maximum and minimum of the measured intensity across

the different polarising angles with equation 2. We adopt a

threshold filter to randomly select 10 pixels with 0.3 < ρ <
1 and intensity values > 0.2 to filter out the background

dark pixels. The noise level of the pixels was determined

by fitting the measured intensities across different polaris-

ing angles with a 10 order polynomial and measuring the

residue. However, we note that the order of the polynomial

is a parameter that should be tuned to the data size to pre-

vent over-fitting. A threshold value of the residue < 0.02
was used to filter away noisy pixels.

Convexity prior. By plotting the intensity of a pixel

across the different polarising angles as illustrated in figure

1, we obtain the CRF&angle-distorted TRS. The curvature

of the TRS tells an important prior, to improve the robust-

ness of the optimisation method. We note that the curvature

of the actual camera response function affects the distortion

as illustrated in figure 2. The figure was generated from two

of the curves in the DoRF [9]. For instance, if the camera

response function is convex, the width of the trough will

tend to be wider than the width of the peak. The vertical

distance between the maximum value and the mean is also

greater than the vertical distance between the mean and the

minimum value. The properties would be the opposite if the

CRF is concave.

To determine the curvature of the CRF for real data, we

assume that the polariser is rotated in one direction only,

and the distorted sine curve is sufficiently sampled such that

the separation between consecutive angles do not vary too

widely. We determine the curvature of all the selected pixels

by measuring the vertical distances between the peak and

the mean, and the mean and the trough. A count on the

number of pixels which indicate either concave or convex

was maintained. The curvature with the most counts would

be selected as the constraint for the optimisation procedure.

4.4. Well-posedness and reliability of our method

Although there are unknown parameters on both sides of

equation 10, our results in section 6 show that it is indeed

solvable. Starting from rough initialization of φk, our algo-

rithm mostly converges to a solution that is consistent with

the ground truth. There is only an arbitrary global shift in

φk, which can be resolved by using φk − φ1 to find the rel-

Figure 2: Plot of the distorted sine of a convex CRF. The

red line is the mean of the values.

ative angles. Although it should be noted that the angle ini-

tialisation cannot deviate significantly from the ground truth

(< 90◦) as it may at times converge to a wrong result. The

necessary condition is that L×pN ≥ L+3pN +n−2. For

example, given L = 4 angles and n = 5 terms in ICRF, the

number of independent polarised pixels should be pN ≥ 7.

5. Experimental Procedure

Synthetic data. Ten sets of sinusoidal curves with differ-

ent amplitude, D.C. offset, and phase were generated and

sampled at 17 angles of different spacing in a monotonic

manner. White gaussian noise with Signal-to-Noise Ratio

(SNR) of 99 was added to simulate real data. We employed

the DoRF [9] to distort the set of synthetically generated

sine curves and ran it through the optimisation process.

Real-world data. Images were taken with consumer

grade cameras, the Nikon D800E and the Canon EOS M2.

The polarising filter was mounted onto a rotating mount

from Thorlabs to measure the polarising angle. The po-

lariser used was the Hoya HD2 CIR-PL filter with an arrow

indicating the direction of polarisation. The setup is shown

in figure 3. Multiple images at the same polarising angle

were taken and averaged to reduce the noise.

Images were taken for two different objects. The first ob-

ject is that of a ceramic orange tiger, while the second object

is a ceramic green and white lion as shown in figure 5. The

objects were placed in a diffuse light tent with a black back-

ground and illuminated with an LED desk lamp. We chose

ceramic coloured objects for calibration because the degree

of polarisation is generally high for ceramic objects, and the

different colours would provide a greater range of intensi-



Figure 3: Image of the polariser and camera setup

Table 1: Table of results from synthetic data using the DoRF

Average Standard Deviation

RMSE 0.0299 0.0413

Disparity 0.0541 0.0799

Angular RMSE 0.7124 2.50

Angular Disparity 1.27 4.01

Figure 4: Boxplot for the error in ICRF and angular estima-

tions for the DoRF. The red line is the median, the green dot

is the mean, the blue box marking the first and third quar-

tile, the black lines are the maximum and minimum which

are not outliers, and the red crosses are the outliers.

ties sampled. Images were taken at every 5◦ in the interval

[0, 175] with the camera set to manual mode saved in .TIFF

format. Care was taken not to move the camera, object or

light source during the capture process. The captured im-

ages were normalised ranging from [0, 1].

Figure 5: Ceramic tiger (left) and lion (right) captured at

0◦ polarising angle. The blue points are those selected for

optimisation for the Nikon D800E while the red points are

those for the Canon EOS M2.

6. Results and Discussion
6.1. Synthetic data

Of the 201 curves in the DoRF, our method has identified

9 concave ICRF. The other 192 curves either have a convex

ICRF or a change in curvature. Doing a manual count on

the DoRF, we have identified 10 concave ICRF, which is

similar to our result. The statistics for the ICRF and the an-

gular estimations over the entire set of DoRF are presented

in table 1 and figure 4. The disparity is calculated by finding

the largest difference between the recovered ICRF and the

ground truth. The RMSE is calculated across all sampled

points in the ICRF. Our method can be seen to be accurate,

as the average disparity and RMSE are reasonably low, and

the angular errors are approximately within ±1◦. The es-

timated angles are all measured relative to the first angle.

From figure 4, it is observed that the median lies towards

the lower end of the blue bounding box for both the ICRF

and the angular estimation. This would imply that the errors

are in general small for most of the CRF, but the errors are

skewed higher due to a few CRF which give larger errors.

This is expected because our proposed method assumes ei-

ther a concave or convex curvature in the CRF, whereas

there exists a few CRFs with varying curvature in the DoRF.

6.2. Real-world data

The images of the objects are shown in figure 5. The

dots in the figures represent the points selected for use in

the optimisation process for each camera. The recovered

ICRF and estimated angles for the Nikon D800E are shown

in figure 6 for both the tiger and lion objects. The ground

truth, which is assumed to be correct, was found by using

a multi-exposure rank minimization method as described in

[12]. The camera was found to have a convex ICRF for



Figure 6: Recovered ICRF and angle estimation for the tiger

(left) and the lion (right) captured using the Nikon D800E

Figure 7: Recovered ICRF and angle estimation for the tiger

(left) and the lion (right) captured using the Canon EOS M2

both methods, justifying the validity of our ICRF convexity

prior. The recovered ICRF follows closely with that from

the rank minimization method with low values of disparity

and RMSE, and is comparable to the errors reflected by the

Figure 8: Top-left: CRF&angle-distorted TRS for points of

high ρ (Green) and low ρ (Red). Top-right: CRF&angle-

distorted TRS for points of low ρ (Red). Bottom-left:

CRF&angle-distorted TRS for points of high ρ. Bottom-

right: Corresponding undistorted TRS for points of high ρ.

synthetic data. The angle estimation error varies between

the different objects and cameras, with the disparity as low

as ±1◦ to ±4◦. The ground truth angles here refer to the

reading of the scale on the rotating mount marked every 2◦.

Hence, it should be noted that the ground truth would also

be susceptible to experimental human error of ±1◦. The in-

crease in angular error compared to the synthetic data could

be attributed to noise from the camera. However, the recov-

ered ICRF from the two objects have small error values and

are consistent with each other, demonstrating the robustness

of our method against different objects.

The points selected for the Canon EOS M2 are different

from that of the Nikon D800E due to the random pixel se-

lection process. The recovered ICRF and estimated angles

of the Canon EOS M2 for both objects are shown in figure

7. The RMSE and disparity of the ICRF are both small and

comparable to the Nikon D800E and the synthetic results.

Figure 8 shows the real data taken from the lion object

captured by the Nikon D800E. From the given CRF&angle-

distorted TRS, the values of ρ are approximated. Points

with sufficiently high ρ are selected, as shown by the green

curves, while those with low ρ, depicted by the red curves,

are discarded. We undistort the CRF&angle-distorted TRS

in the bottom-left figure to obtain the undistorted TRS

shown in the bottom right figure. It can be seen that the

CRF&angle-distorted TRS curves are more noisy than the

undistorted TRS. It is also observed that after the undis-

tortion, the widths of the peak and the trough appear more



Figure 9: Average ICRF with standard deviation and the

angle estimates for the lion captured by the Nikon D800E.

Figure 10: Angular comparison using synthetic data with

white gaussian noise. Top: SNR = 50, Bottom: SNR = 30

symmetric and resembles closer to an actual sinusoid. We

note that the TRS of different pixels have different phases

due to having different surface normals.

Robustness of pixel selection. The robustness of the

method was tested against different sets of pixels selected

for the Nikon D800E lion dataset. We ran the random pixel

selection and the optimisation for 10 times and plotted the

results in figure 9. The error bars represent the standard de-

viation of the 10 sets of data. The average of the ICRF lies

close to the ground truth with low values of disparity and

RMSE. The RMSE and disparity of the average angular es-

timation values compared to the ground truth are also small.

Table 2: Comparing [26] and our method

Using [26] Ours

Lion

Nikon D800E

Angular Disparity 1.3 1.02

Angular RMSE 0.471 0.446

Tiger

Nikon D800E

Angular Disparity 3.9 3.85

Angular RMSE 2.28 2.11

Experiments have been done using more pixels within the

optimisation, but with limited improvements.

6.3. Comparison of angular estimation with [26]

Synthetic data described in section 5 was generated and

ran through our method and [26]. We used a linear CRF

to enable a fair comparison for both methods as shown in

figure 10 and table 2. Our method shows a slightly bet-

ter performance for lower SNR. As for real-world data, we

linearised the images using the ICRF obtained from our

method before passing it through the code by [26]. Our

method is seen to be comparable to that of [26].

7. Conclusion
We have recovered the ICRF for two scenes which are

close to the ground truth, demonstrating the robustness of

our proposed method against different scenes and different

cameras. The angular estimations are seen to converge to-

wards the ground truth with disparity values reaching as low

as ±1◦, validating our integrated optimisation approach.

One drawback of the method is that multiple images of a

static scene must be captured, which prevents real-time ap-

plications. Should shape from polarisation become widely

adopted, our approach would aid in obtaining a more accu-

rate shape. We hope that our work would enable the usage

of polarisation in more computer vision applications.
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