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Abstract

This paper presents a prior-less method for tracking
and clustering an unknown number of human faces and
maintaining their individual identities in unconstrained
videos. The key challenge is to accurately track faces
with partial occlusion and drastic appearance changes
in multiple shots resulting from significant variations of
makeup, facial expression, head pose and illumination.
To address this challenge, we propose a new multi-face
tracking and re-identification algorithm, which provides
high accuracy in face association in the entire video
with automatic cluster number generation, and is robust
to outliers. We develop a co-occurrence model of
multiple body parts to seamlessly create face tracklets,
and recursively link tracklets to construct a graph for
extracting clusters. A Gaussian Process model is introduced
to compensate the deep feature insufficiency, and is further
used to refine the linking results. The advantages of the
proposed algorithm are demonstrated using a variety of
challenging music videos and newly introduced body-worn
camera videos. The proposed method obtains significant
improvements over the state of the art [51], while relying
less on handling video-specific prior information to achieve
high performance.

1. Introduction
The task of Multiple Object Tracking (MOT) or Multiple

Target Tracking (MTT) is to recover the trajectories of a
varying number of individual targets while the status of
targets is estimated at different time steps. Multi-face
tracking is one of the important domains enabling high-
level video content analysis and understanding, e.g., crowd
analysis, semantic analysis, and event detection.

In this paper, our goal is to track an unknown number of
human faces and maintain their identities in unconstrained
videos (e.g., movies, TV series, music videos [51], body-
worn camera videos). Our method does not assume any
extra prior knowledge about the videos or require manual
efforts (e.g., input underlying number of clusters in videos).
Despite having different methods proposed to address this

Figure 1: An example of multi-face tracking in unconstrained
videos. The Bruno Mars music video shows the task is challenging
due to partial occlusion and significant variations of lighting
condition, camera angle, expression, and head pose across shots.

topic, this problem remains challenging due to the inherent
unconstrained settings in videos. The videos might contain
multiple shots captured by one or multiple moving cameras,
irregular camera motion and object movement, arbitrary
camera setting and object appearance, and people may
move in-and-out camera field of view multiple times. The
appearance of faces change drastically owing to significant
variations of lighting condition, camera angle, expression,
and head pose. Commonly, partial occlusions are caused by
accessories and other body parts, such as glasses and hair,
as well as hand gestures.

This is a difficult task and has a different focus from
tracking in constrained videos (e.g., surveillance videos
captured by steady or slowly-moving cameras), where the
main challenge is to deal with different viewpoints, lighting
conditions, and crowded pedestrian crossings. Many
methods have been proposed [1, 3, 30, 41, 47, 49, 54]. In
those papers, three popular datasets, MOT Challenge [29],
PETS [16] and KITTI [17], are usually used to evaluate the
performance of MOT methods. The videos, however, do
not include multiple shot changes and appearance changes.
These MOT methods attempt to solve different challenges
and cannot be easily applied to unconstrained videos with
large camera movement or multiple abrupt shot changes.

Due to the fast-growing popularity of unconstrained
videos, especially on the Web, solutions to this problem
are in high demand and have attracted great interest from
researchers. The recently proposed methods [22, 23] enable
users to track persons in unconstrained videos. These
methods focus on the tracking accuracy within each shot,
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but the scope does not include persons association across
shots: they assign a new ID when a person reappears in the
videos.

Figure 1 gives some sample frames from datasets used
in this paper. We test our algorithm on two distinct types of
challenging unconstrained video datasets. The first dataset,
provided by [51], contains eight edited music videos with
significant variation in expression, scale, pose, expression,
and illumination in multiple shots. The second dataset is
newly introduced in this paper. It includes four highly
challenging unedited videos captured by people using body-
worn cameras. The videos depict complex events but
have limited quality control, and therefore, include severe
illumination changes, camera motion, poor lighting, and
heavy occlusion. In both datasets, persons are in-and-out
of camera fields of view multiple times, and the proposed
method is designed to track the faces across shots while
maintaining the assigned identities, as shown in Figure 1.

Our framework incorporates three major components to
achieve high accuracy face tracking, and it is robust to
substantial face rotations, from frontal to profile. First, we
develop a co-occurrence model of multiple body parts to
create longer face tracklets. We then develop a recursive
algorithm to link tracklets with strong associations. Finally,
a Gaussian process model is designed to refine the
clustering results by detecting and reassigning outliers. The
main contributions can be summarized as follows:

1. We propose a prior-less framework that is capable
of tracking multiple faces with unified handling of
complex unconstrained videos.

2. The proposed method provides a data-driven
estimation of the cluster number in an automatic
fashion. This is in contrast to existing works that
assume face tracklets are given or require manual
entry of the underlying cluster number in advance.

3. Our proposed co-occurrence model can continue
tracking multiple faces that are only partially visible.
Even with information loss, such as with head
turning, or when faces are occluded, the proposed
algorithm can determine with whose body the partial
observation should be matched and continue to track
faces throughout.

4. We introduce a new dataset of four highly challenging,
realistic, unedited, body-worn camera videos captured
by police officers in different incidents. The dataset
introduces new challenges to MOT in unconstrained
videos.

2. Related Work
Multiple person tracking. There has been extensive
research related to multiple person tracking. Many
efforts have explored this problem using data association

approaches [26, 50], such as Markov decision process
[47], event aggregation [20], greedy algorithm [38],
and attentional correlation filter [7]. However, these
works either explicitly or implicitly assume continuous
appearances, positions, and motions. They are thus
ineffective for solving shot change problems. Several
existing methods [3, 45, 28, 33] explore appearance features
to find tracklet associations, which can link tracklets across
shots. These methods employ discriminative appearance-
based affinity models to help associate persons in tracking
tracklets, but they are not directly applicable to videos with
significant variations in facial appearance.
CNN-based representation learning. Many areas
have gained performance improvement from advances
in deep learning. Several CNN-based models for face
recognition provide biometrics-solutions: VGG-Face [37],
DeepFace[42], and FaceNet[40]. The datasets that are
used to train these CNN models are generally chosen from
good conditions, e.g., high image resolution, frontal faces,
rectified faces, and full faces. However, in an unconstrained
video, a face could be profiled, occluded, cropped, or blurry.
In these cases, measuring the similarity with extracted deep
face features might yield inferior performance.

Person re-identification [18, 19, 52, 32, 31] also
gains performance boost using deep learning techniques.
Methods include dual mutual learning, deep transfer
learning, multi-loss classification, and triplet loss, etc.
These papers focus on searching different perspective
views of the same person. The subjects are required
to be in the same outfit. Our problem has a unique
characteristic that distinguishes it from re-identification
modeling. The videos used in our problem are more
unstructured because persons’ appearances and cameras’
movements are unconstrained. These changing parameters
along with different shot changes allow for more ambiguous
conditions.
Unconstrained face tracking. Tracking has been
extensively developed in scenarios with multiple faces [9,
10, 15, 36, 24]. Many multi-face tracking works exist for
constrained videos with limited camera motion, e.g., web-
cam, surveillance. Current studies focus on the analysis
of more unstructured, unconstrained videos. Among them,
there have been significant efforts at analyzing the fast-
growing popularity of internet videos.

Wu et al. [46] propose a multi-face tracking method to
handle clustering and tracklet linking simultaneously using
hidden Markov random field model in a TV series video
(Big Bang Theory, BBT). Their method uses appearance
affinity and HSV information to measure the similarity of
faces. As a result, the approach is constrained to good
quality of frontal faces. Another line of work [48, 53]
propose methods to learn the appearance representation to
cluster the faces tracklets on TV series and movie videos



Figure 2: Illustration of three core algorithmic components of the proposed method. (Best viewed in color)

(Buffy, Notting-Hill, and Harry Potter). They assumes face
tracklets and the number of clusters are given. In studies
[8, 43, 46, 48], the tracklets of false positives are manually
removed. Different from face clustering studies starting
the problem from given face tracklets, multi-face tracking
problem take raw videos as input to perform detection,
generate tracklets and link tracklets.
State-of-the-art. Recently, Zhang et al. [51]
propose a CNN-based approach of learning video-specific
facial discriminative features for multi-face tracking and
demonstrate state-of-the-art performance. The main
limitation of this method is that it has difficulty in handling
videos where many shots contain only one single person. In
these cases, the method cannot generate sufficient negative
face pairs to train the network, thus different persons might
be incorrectly identified as the same person across shots.
Additionally, the method requires prior knowledge of the
videos to provide actual number of clusters in advance. In
reality, the correct and optimal choice of cluster numbers
is often ambiguous in application to some videos of minor
characters. If cluster numbers are ill-initialized, clustering
purity would degrade. Further, an essential prerequisite of
this method is to apply an effective shot change detection
technique to partition each input video into non-overlapping
shots.

In contrast, we propose an algorithm to analyze raw
video data and generate final tracking and clustering results
automatically in a data-driven fashion. The proposed
method seeks to eliminate the sensitivities of handling
video-specific prior information.

3. Algorithm

To achieve better tracking results, longer tracklets of
each person are desired. The longer the tracklets are, the
greater the number of possible facial variations of each
person could be captured. However, longer tracklets usually
contain more noise, and thus might incur more tracklet
linking errors. Considering the pros and cons, we propose
a framework, as illustrated in Figure 2, that includes three
core algorithmic components: (1) Create tracklets. We

develop a co-occurrence model of multiple body parts to
create longer face tracklets. A face is temporarily missing
when a person turns his/her head, or the view of their face is
blocked by another object (e.g., hand, or others’ head). The
model is designed to prevent tracks from being terminated
when an image of a face temporarily disappears (Section
3.1). (2) Link tracklets. We recursively link tracklets
with strong associations. The recursively linked tracklets
construct a constrained graph for extracting clusters, and
generating initial clustering results (Section 3.2). (3)
Detect and reassign outlier tracklets. We design a
Gaussian Process model to capture the richness of data and
compensate the deep feature insufficiency. Our model will
detect and re-assign outlier tracklets (Section 3.3).

3.1. Tracking by Co-occurrence Model

Typically, the performance of detectors is greatly
affected by pose, occlusion, rotation, size and image
resolution. For example, when a person turns his/her head
away from the camera or the face is occluded, the face might
not be detected. However, the head belonging to that person
could be still detected and tracked. We build on an idea
that using multiple body parts simultaneously could create
longer tracklets. To this end, we developed a co-occurrence
model which obtains information of multiple body parts to
help continue the tracker during moments when faces are
not captured by the camera or not detected by the detector,
but the person remains in the video frames.

Our starting point is the multiple body parts detections
estimated by off-the-shelf body-part detector [5]. Note
that the detection method could be replaced by other
sophisticated body-part detectors [6, 39]. For each video
frame, we extract localization of face, head, torso, and
whole body. We denote {vtk,γ} a discrete set of outputs
of body-part detections in a frame t where vtk,γ =

[ctx,k, c
t
y,k, w

t
k, h

t
k], k is the index of the detection; c, w, h

are center, width and height of a bounding box; γ denotes
the type of body part, such as torso, γ ∈ Γ = {1, ..., N}.

For each body part detection, two thresholds are applied
[21]: (1) detection results filtered by a high threshold are



used to create new tracklets; (2) detection results filtered by
a low threshold are used to track objects.

We formulate the multi-person tracking problem as a
graph structure G = (v, ε) with two types of edges, εs
and εt, as shown in Figure 2 (1a). Spatial edges εs
denote the connections of different body parts of a candidate
within a frame. The spatial edges εs are used to generate
hypothesized states of a candidate. Temporal edges εt
denote the connections of the same body parts over adjacent
frames. The state of each individual person in different
frames are estimated using temporal edges.

εs = {〈vtk,γ , vtk′,γ′〉 : γ 6= γ′}, εt = {〈vtk,γ , vt−1n,γ 〉}. (1)

The spatial edges εs are defined as:

〈vtk,γ , vtk′,γ′〉 = δ · φ(vtk,γ , v
t
k′,γ′), (2)

where φ(vtk,γ , v
t
k′,γ′) and δ are indicator functions.

φ(vtk,γ , v
t
k′,γ′) = 1 when the overlapping area is larger

than a threshold ζ. δ = 1 when there is an exclusive
connection between two types of body parts in one frame.
This constraint ensures that two body parts are associated to
the same person only if the connection is not considered as
ambiguous, such as two different face detections connected
to the same head.

After all the εs are built, the connected components are
used to generate Gt,ip as a hypothesis of a person ξi at
frame t. Ideally, Gt,ip consists of all detected body parts
that belong to the same person ξi.

Consider estimation of the current state of a person ξti
given the observations Zt from frame 0 to t. The problem
can be formulated as maximization of the likelihood
function given the previous state of the person ξt−1i :

p(ξti |Zt) = max
j
f(Gt,jp |ξt−1i ), (3)

The likelihood f(Gt,jp |ξt−1i ) can be viewed as a method
to evaluate how well a candidate hypothesis matches the
previous state. We define the likelihood f(Gt,jp |ξt−1i )

as the probability of a candidate hypothesis Gt,jp given
the previous state ξt−1i , where its value is given by the
maximum transition probability from one of the body parts
among Gt,jp :

f(Gt,jp |ξt−1i ) = p(Gt,jp |Gt−1,ip )

= max{p(vt,jγ |vt−1,iγ ), ∀γ ∈ Gt,jp }. (4)

The body-part transition probability p(vt,jγ |vt−1,iγ ) is
defined as: p(vt,jγ |vt−1,iγ ) = η(vt,jγ , vt−1,iγ ), where
the potential function η(vt,jγ , vt−1,iγ ) is defined as the
overlapping ratio of the bounding boxes.

If a body part gives higher likelihood than the likelihood
of another body part, then it has better representation of
the candidate. Equations 3 and 4 ensure that if a face is

temporally missing, then the body part which collects the
most information of a candidate person is still used to track.

When no corresponding body parts coexist, we use KLT
[44] and the sum of absolute difference (SAD) to predict the
hypotheses of each body parts. After obtaining the current
state of a person, we build temporal edges εt by connecting
the same type of body part among Gt,ip and Gt−1,ip . Next,
we generate face tracklets using face bounding boxes from
each individual person’s tracklets and extract facial features
for clustering in the next session.

3.2. Recursive Constrained Tracklet Linking

After face tracklets are generated, each face tracklet
is taken as a node Ti, which includes various face poses
of a person with extracted feature {f ik}

ni

k=1 and frame
indexes {tik}

ni

k=1. We aim to infer the underlying pairwise
similarity between nodes to construct meaningful affinity
graphs for face clustering. Specifically, we use the VGG-
face descriptors [37] to extract features. In contrast to
[51], we do not fine-tune the feature extraction network
for any video as it brings high computational cost. We
design a unified and generalized linking framework based
on how the VGG-face network was trained to avoid less
informative features by measuring between-node proximity.
We further construct similarity graphs that better express the
underlying face features in clusters.

We first use face bounding boxes of every tracklet to
obtain face images and extract 4096-dimension VGG-face
features from the FC7 layer. The extracted deep facial
features are normalized for comparisons. Given that the
VGG-face network is trained with high-resolution images
by triplet loss objective function, our key idea is that
higher resolution images and relative distance between
nodes would provide more meaningful information in a
model exploiting extracted VGG-face features. We build
two types of links: {Ll} and {Lc}. {Ll} and {Lc} are built
by the properties of image resolution and relative distance
between tracklets respectively.

Figure 2(b) shows 2D tSNE [34] visualizations of
extracted VGG features on the T-ara video. It shows that,
compared to all features (b1), features of large images (b2)
are more discriminative. Thus, we start to build the linkages
{Ll} using tracklets with higher image resolutions as they
could construct strong associations.

We measure the pairwise similarity between two
tracklets to build linkings. Mll(Ti, Tj) is used to measure
the similarity between tracklets Ti and Tj , taking account
of appearance affinity and resolution constraint.

Mll(Ti, Tj) = Λa(Ti, Tj)Λ
s(Ti)Λ

s(Tj), (5)

where Λa(Ti, Tj) is to evaluate the appearance similarity
using the distance between tracklets D(Ti, Tj).



Λa(Ti, Tj) =

{
1−D(Ti, Tj), if D(Ti, Tj) < ϕ
0, otherwise, (6)

where D(Ti, Tj) is measured by the distance between
VGG-face features d(fk, fh). All linkages are built when
D(Ti, Tj) is smaller than a threshold ϕ.

D(Ti, Tj) = min
fk∈Ti,fh∈Tj

d(fk, fh), (7)

where d(fk, fh) is the Euclidean distance between fk and
fh.

Λs(Ti) enforces the resolution constraint and builds
linkages among tracklets that have larger image size. We
defined Λs(Ti) as:

Λs(Ti) =

{
1, if Ti ∈ ΨL

0, otherwise. (8)

We apply k-means method to separate all tracklets based
on the average image size of each tracklet and obtain group
ΨL, which consists of tracklets with larger image size.

Another type of linkage {Lc}, is built by the relative
distances among coexisting tracklets. First, we search all
sets of coexisting tracklets that have overlapping frame
indexes. Given their existence in the overlapping frame
indexes, the tracklets should be mutually exclusive at any
given time. No person can have more than one existence.
Thus, the coexisting tracklets should not be linked. We
use relative distance properties to build constrained linkages
among all pairs of coexisting tracklets by the procedures
described in Algorithm 1 . For each tracklet in {TAi },
we search the corresponding nearest neighbor tracklet in
{TBj } and build a linkage between them using the similarity
measurement Mlc(T

A
i , T

B
j ), which takes into account for

appearance affinity and relative distance constraints.

Mlc(T
A
i , T

B
j ) = Λa(TAi , T

B
j )Λr(TAi )Λr(TBj ), (9)

where Λa(TAi , T
B
j ) is the same as Equation 6. Λr(TAi )

is used to impose relative distance constraints. Because
coexisting tracklets should be exclusive, the connection
between a tracklet in {TAi } and a tracklet in {TBj } should
be one or none. We use this property to prevent false
connections. When the relative distance between two
tracklets (TAi , T

A
j ) is smaller than ϑ or multiple tracklets in

one set are connected to the same tracklet in the other set,
the tracklets are very similar and hard to distinguish from
each other. In this case, the linkages are disconnected. We
define Λr(TAi ) as:

Λr(TAi )

{
1, otherwise
0, if D(TAi , T

A
j ) < ϑ, ∀TAj 6= TAi ∈ {TAi }.

This process is performed recursively until all pairs of sets
of coexisting nodes have been evaluated.

After obtaining {Ll} and {Lc}, all the linkages form a
graph, GT . The connected components in GT are extracted
and used to generate initial clusters.

Algorithm 1 Linking Coexisting Tracklets
Find all sets of coexisting nodes
for Every pair of sets of coexisting nodes: {TA

i }, {TB
j } do

Find maximum Mlc(T
A
i , TB

j ) using Equation 9
Built linkages between the pair of tracklets if
maxMlc(T

A
i , TB

j ) > 0
end for

3.3. Refinement Based on Gaussian Process (GP)

Empirical studies [25, 14] show CNN-based models
are very sensitive to image blur and noise because the
networks are generally trained on high quality images.
Considering our recursive linking framework is initialized
from CNN-based features to obtain better representations
of the underlying face clusters, there would intrinsically
exist some tracklets incorrectly linked to other tracklets. In
order to find the incorrect association tracklets, we design a
Gaussian process model to compensate for the deep feature
limitations and to capture the richness of data. We apply the
GP model to detect outliers, disconnect the linkages among
outliers and other tracklets, and then reassign the outliers to
refined clusters formed after the outliers are disconnected,
thus yielding high-quality clusters.

3.3.1 Dimension Reduction Using GP

Gaussian process (GP) models, also known as kriging, are
commonly used in many applications including machine
learning and geostatistics [11]. Different from CNN-
based approaches, GP models provide a flexible parametric
approach to capture the nonlinearity and spatial-temporal
correlation of the underlying system. Therefore, it is
an attractive tool to be combined with the CNN-based
approach to further reduce the dimension without losing
complex, and important spatial-temporal information.
Here, we illustrate the idea of reducing the dimension by
fitting a GP model for each color channel with the spatial
information. Three GP models are constructed obtained and
the dimension is reduced to 18 parameters captured by the
GP models. Note, the reduced dimension is not restricted to
18 and may be flexibly determined by changing the number
of parameters in the GP models.

A Gaussian process model can be written as

y(x) = µ(x) + Z(x), (10)

where y ∈ R is the intensity of a color and x ∈ Rp is the
input. In this research, x represents the spatial information,
so p = 2. The mean function µ(x) is assumed to be a
function of x with unknown parameters β, say, µ(x) =
x>β = β0 +β1x1 +β2x2. In addition, Z(x) is a Gaussian
process with mean 0 and Cov(xi,xj) = σ2φ(xi,xj ;θ),
where φ(xi,xj ;θ) is the correlation function and θ is
a vector of unknown correlation parameters. There are



various correlation functions discussed in the literature.
Here we focus on a commonly used product form of power
exponential functions:

φ(xi,xj ;θ) =

p∏
k=1

Rk(|xik − xjk|) (11)

=

p∏
k=1

exp(−θk|xik − xjk|α), (12)

where 0 < α ≤ 2 is a tuning parameter and θ = (θ1, θ2)
with θk ≥ 0 for i = 1, 2. Because the correlation
parameters, θk’s, are not constrained to be equal, the model
can handle different signals in each input dimension which
makes Equation (11) particularly attractive to the analysis
of complex underlying system.

Given n realizations of a particular color channel y =
(y1, ..., yn)> and the corresponding spatial information
X = (x>1 , ...,x

>
n )>, the joint log-likelihood function for

(10) can be written as

l(β,θ, σ) =− 1

2σ2
(y −Xβ)>Σ−1(θ)(y −Xβ)

− 1

2
log |Σ(θ)| − n

2
log(σ2),

where Σ(θ) is the n × n correlation matrix with the ijth

element equal to φ(xi,xj;θ). The maximum likelihood
estimates (MLEs) of β and σ can be obtained by

β̂ = (X>Σ−1(θ)X)−1X>Σ−1(θ)y, (13)

σ̂2 = (y −Xβ̂)>Σ−1(θ)(y −Xβ̂)/n. (14)

By maximizing the logarithm of the profile likelihood, the
MLE of θ can be obtained by

θ̂ = arg max
θ
{n log(σ̂2) + log |Σ−1(θ)|}. (15)

For the estimation of correlation parameters θ, there are
some likelihood-based alternatives. These alternatives
include the restricted maximum likelihood (REML) and
penalized likelihood approaches. In this paper, we focus on
the study of MLEs, but the results can be further extended
to the likelihood-based alternatives.

According to Equation (13, 14, 15), there are six
parameters (β̂, σ̂2, θ̂) obtained for each color channel,
therefore a total of 18 parameters are obtained to capture
the underlying information of a given face image.

3.3.2 Outlier Detection and Reassignment by GP

We introduce the outlier detection and reassignment scheme
in this section. Our idea is to measure how isolated
a tracklet is when compared to the spatial surrounding
neighborhood. More precisely, by comparing the local
density of a tracklet to the local densities of its neighbors,

we can identify tracklets that have a substantially lower
density than their neighbors, as shown in Figure 2 (c2).
These tracklets are considered outliers, and may belong
to other clusters. We detect these outlier tracklets and
reconnect them to one of the clusters by extracted GP
features r ∈ R18. For each cluster, we use a simple
unsupervised outlier detection method, Local Outlier
Factor (LOF) estimator [4], to compute the local density
deviation of a given tracklet with respect to its neighbors.
After detecting outliers, we refine the original clusters
by disconnecting the linkages among outliers and other
tracklets as there might be incorrect association among
those linkages.

We further use extracted GP features to link all isolated
tracklets to the refined clusters. We evaluate the appearance
similarity between an isolated tracklet and every refined
cluster. For any given isolated tracklet, we evaluate all
pairwise distances between the isolated tracklet and every
tracklet in one cluster and use the shortest distance as the
similarity measure between the isolated tracklet and the
cluster. We also enforce a temporal constraint to prevent
multiple tracklets with overlapping frame indexes in the
same cluster. Next, we determine the cluster that has the
shortest distance to the given isolated tracklet and assign
the tracklet into that cluster.

After all tracklets have been connected into one of the
clusters, we obtain final clusters. Finally, we assign a
specific identity to each cluster and generate final tracking.

4. Experiments
We empirically demonstrate the effectiveness of our

proposed method on two distinct types of challenging
unconstrained video datasets and compare with state-of-the-
art methods, especially with variants in [51].

4.1. Details

Dataset: Experiments are conducted on two datasets: (1)
Edited High-quality Music Video Dataset. The dataset
made available by [51] contains 8 edited music videos.
The videos contain dramatic facial appearance changes,
frequent camera view and shot changes, and rapid camera
motion. (2) Unedited Body-worn Camera Video Dataset.
We introduce a new highly-challenging dataset of 4 realistic
and unedited body-worn camera videos. All videos were
captured by police officers in different incidents, and thus
have limited quality control. The videos in this dataset have
very severe camera movement and heavy occlusion. There
is a large number of dark scenes and many tracks with non-
frontal faces.
Experiment settings: All parameters have the same
settings and remain unchanged for all videos: high
detection threshold for creating new track is 0.8, low
detection threshold for tracking is 0.1. ϕ is 0.5; ζ is 0.9;



ϑ is 0.7; α is 2. Note that, in contrast to [51], our method
does not apply shot change detection and does not assume
that the total cluster number is known a priori.
Evaluation metrics: (1) Clustering. We use Weighted
Clustering Purity (WCP) [51] to evaluate the extent to
which faces can be clustered automatically according to
their identities. WCP is given as WCP = 1

N

∑
c∈C nc · pc

where N is the total number of faces in the video, nc is the
number of faces in the cluster c ∈ C, and its purity, pc,
is measured as the fraction of the largest number of faces
from the same person to nc, and C is the total number of
clusters. (2) Tracking. We report tracking results based on
the most widely accepted evaluation metrics, the CLEAR
MOT [35], including Recall, Precision, F1, FAF, MT, IDS,
Frag, MOTA, and MOTP.

4.2. Experiments on Edited High-quality Music
Video Dataset

Clustering. We report the clustering accuracy of our
method and other competitors, HOG[12], AlexNet[27],
VGG-face[37], and variants in [51] in Table 1. Table 1
shows that our method achieves substantial improvement
compared to the best competitor (e.g., from 0.56 to 0.86
in Westlife), demonstrating the superiority of our method.
Furthermore, we analyze the effectiveness of our outlier
reassignment scheme. The third to last row reports the
performance of our method without outlier reassignment,
which achieves performance comparable to the state-of-the-
art methods. But, as showed in the second to last row,
our integrated framework can compensate the deep feature
insufficiency and bring the full potential of the proposed
method. The last row presents the number of clusters
estimated automatically by our method versus the ground-
truth number of clusters. It shows that our method does
not suffer from the basis ambiguity difficulty, but is able to
generate number of clusters automatically and reliably.
Face Tracking. We report the face tracking results
in Table 2. Our method is compared with ADMM[2],
IHTLS[13] and variants in [51]. Table 2 shows the proposed
method improves tracking performance against the existing
methods for most metrics. Overall, we achieve better
performance in terms of Recall, Precision, F1, MOTA
and MOTP. Specifically, our method noticeably increases
most tracked (MT), and reduces the number of identity
switching (IDS) and track fragments (Frag). This implies
our co-occurrence tracker can robustly construct longer
trajectories, and face IDs are correctly maintained by our
recursive linking framework.
Qualitative Results. Figure 3 shows sample tracking
results of our algorithm. In some frames, we can see
that different persons have very similar face appearance,
multiple main singers appear in a cluttered background
filled with audiences, or some faces have heavy occlusions

Table 1: Clustering purity comparisons with the state-of-the-art
methods on 8 music videos. The best results are highlighted with
the bold.

MUSIC VIDEO DATASET

Method T-ara Dolls
Pussycat

Mars
Bruno

Bubble
Hello Darling Apink Westlife Aloud

Girls

HOG[12] 0.22 0.28 0.36 0.35 0.19 0.20 0.27 0.29
AlexNet[27] 0.25 0.31 0.36 0.31 0.18 0.22 0.37 0.30

VGG-face[37] 0.23 0.46 0.44 0.29 0.20 0.24 0.27 0.29
Pre-trained[51] 0.31 0.31 0.50 0.34 0.24 0.29 0.37 0.33

Siamese[51] 0.69 0.77 0.88 0.54 0.46 0.48 0.54 0.67
Triplet[51] 0.68 0.77 0.83 0.60 0.49 0.60 0.52 0.67

SymTriplet[51] 0.69 0.78 0.90 0.64 0.70 0.72 0.56 0.69
W/o GP outlier reassign. 0.87 0.77 0.78 0.63 0.68 0.64 0.70 0.61
The proposed framework 0.89 0.79 0.85 0.70 0.73 0.92 0.86 0.92
Estimated / GT cluster no. 6/6 6/6 11/11 4/4 7/8 6/6 4/4 5/5

Table 2: Quantitative comparisons with the state-of-the-art
tracking methods on music video dataset.

MUSIC VIDEO DATASET
Method Recall↑Precision↑F1↑ FAF↓MT↑ IDS↓ Frag↓MOTA↑MOTP↑

ADMM[2] 75.5 61.8 68.0 0.50 23 2382 2959 51.7 63.7
IHTLS[13] 75.5 68.0 71.6 0.41 23 2013 2880 56.2 63.7

Pre-Trained[51] 60.1 88.8 71.7 0.17 5 931 2140 51.5 79.5
mTLD[51] 69.1 88.1 77.4 0.21 14 1914 2786 57.7 80.1

Siamese[51] 71.5 89.4 79.5 0.19 18 986 2512 62.3 64.0
Triplet[51] 71.8 88.8 79.4 0.20 19 902 2546 61.8 64.2

SymTriplet[51] 71.8 89.7 79.8 0.19 19 699 2563 62.8 64.3
Ours 81.7 90.2 85.3 0.27 32 624 1645 69.2 86.0

by other cast members. As shown, the proposed algorithm
is capable of generating invariant face identities and
tracking them reliably across different shots in the entire
unconstrained video.
Speed. We have measured execution speed of the proposed
method on music videos that typically have several faces
to be tracked in each frame. In one 5-minutes music
video, there are 21,747 face observations over a sequence of
5,000 frames, our implementation takes about 25 minutes
after feeding the detection results. The running time
is implemented with unoptimized C++ and Matlab code,
single thread execution on a Mac with Intel 2.5 GHz i7 CPU
and 16 GB memory.

4.3. Experiments on Unedited Realistic Body-worn
Camera Dataset

To further test the capability of our method, we conduct
experiments on unedited realistic body-worn camera dataset
and compare the results with variants in [51].
Clustering. We compare the clustering results with
HOG[12], AlexNet[27], VGG-face[37], pre-trained,
Siamese and SymTriplet in [51]. Table 3 shows our
method outperforms other methods with noticeable margin
on all videos in the body-worn camera dataset. This
problem is particularly challenging. For example, in
Foot Chase video, our method achieves weighted purity
of 0.73. But even for the best-performing feature in
[51], SymTriplet, it only achieves purity of 0.45. HOG,
AlexNet, VGG-face also perform poorly. The possible
reason is that 3 body-worn camera videos (Foot Chase,
TS1 and TS3) only have 640x480 resolution, and these



Figure 3: Sample tracking results of the proposed algorithm. The first two rows are Westlife and Hello Bubble from music video dataset.
The bottom row is Foot Chase from body-worn camera dataset. The ID number and color of face bounding box for each person are kept.
(Refer to the supplementary material for more results.)

Table 3: Clustering purity comparisons on 4 body-worn camera
videos.

BODY-WORN CAMERA DATASET

Method Chase
Foot TS1 TS3 DVHD2

HOG[12] 0.40 0.52 0.58 0.50
AlexNet[27] 0.40 0.54 0.58 0.59

VGG-face[37] 0.43 0.46 0.72 0.72
Pre-trained[51] 0.42 0.54 0.61 0.74

Siamese[51] 0.41 0.54 0.68 0.56
SymTriplet[51] 0.45 0.55 0.69 0.77

W/o GP outlier reassign. 0.64 0.74 0.77 0.75
The proposed framework 0.73 0.80 0.80 0.81
Estimated / GT cluster no. 4/5 3/3 2/2 3/3

Table 4: Quantitative comparisons with the state-of-the-art
tracking method [51] on body-worn camera dataset.

BODY-WORN CAMERA DATASET
Method Recall↑Precision↑F1↑ FAF↓MT↑IDS↓Frag↓MOTA↑MOTP↑

mTLD[51] 75.1 79.2 75.8 0.14 7 70 400 52.7 93.5
Pre-Trained[51] 75.1 79.2 75.8 0.14 7 61 404 52.9 93.5

Siamese[51] 75.1 79.2 75.9 0.14 7 55 404 52.8 93.5
SymTriplet[51] 75.1 79.8 75.9 0.13 7 52 390 53.9 93.5

Ours 78.6 93.8 85.4 0.07 11 39 188 69.8 93.6

methods cannot cope with such low resolution. In addition,
SymTriplet [51] requires sufficient negative pairs generated
from tracklets that co-occur in the same shot. But in
body-worn camera videos, many shots contain only a
single person. Consequently, they are unable to train
their network and fine-tune features well. However, these
problems are addressed by our proposed method. We
believe the significant performance difference lies in our
GP model is designed to compensate the insufficiency of
the CNN-based initialized linking framework and capture
the false positive tracklet associations. Again, the last row
shows the proposed method is able to generate the number
of clusters automatically and reliably.
Face Tracking. We report the face tracking results on
body-worn camera videos in Table 4. Our method is
compared with 4 variants in [51]. The body-worn camera
videos are captured with limited quality control; thus, they
usually contain undesirable motion blur caused by camera
shake. Video quality degradation yields more false positive

detections, which increases the tracking difficulty. Table
4 shows the proposed method produces overall superior
performance for all metrics. This implies the proposed
method can overcome the difficulty and handle lower
quality videos better.
Qualitative Results. Figure 3 shows that the proposed
algorithm is able to robustly track multiple faces with
their correct identities in the shaking and low resolution
unconstrained videos. More qualitative results are available
in the supplementary material.

5. Conclusions

We have introduced a prior-less algorithm for reliably
tracking multiple faces in unconstrained videos, where
extensive motion and variations exist and affect the way
by which many heretofore existing methods perform.
Experiments on two distinct video datasets demonstrated
the superiority of the proposed method when compared to
the state-of-the-art methods that require intensive training
to fine-tune the networks or manual video analysis to obtain
the number of clusters. In the future, we intend to explore
modeling the similarity of other body parts to extend our
framework’s capability.
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