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Abstract

Generating a novel image by manipulating two input im-
ages is an interesting research problem in the study of gen-
erative adversarial networks (GANs). We propose a new
GAN-based network that generates a fusion image with the
identity of input image x and the shape of input image y.
Our network can simultaneously train on more than two
image datasets in an unsupervised manner. We define an
identity loss LI to catch the identity of image x and a shape
loss LS to get the shape of y. In addition, we propose a
novel training method called Min-Patch training to focus
the generator on crucial parts of an image, rather than its
entirety. We show qualitative results on the VGG Youtube
Pose dataset, Eye dataset (MPIIGaze and UnityEyes), and
the Photo–Sketch–Cartoon dataset.

1. Introduction

Transforming an object or person to a desired shape is a
well-used technique in real world. For example, computer
graphics have made it possible to display scenes on screen
that would be difficult to implement physically, like mak-
ing a person pose in a posture that was not actually taken.
The approach we use in this study aims to produce a fu-
sion image that combines one image’s identity with another
image’s shape, a task that is demonstrated in Figure 1.

In machine learning, generative models such as varia-
tional autoencoders (VAEs) [9] and restricted boltzmann
machine (RBM) [20] have been able to generate new images
that follow the input data distribution. Furthermore, the de-
velopment of generative adversarial networks (GANs) [6]
has led to revival of generative models. GANs have pro-
duced realistic images of human face, furniture, or scene
that are difficult to distinguish from real images [14]. Con-
sequently, GANs have been used to create target images in
various fields such as text-to-image conversion, face com-
pletion, and super-resolution imaging [10, 12, 15, 24]. Es-
pecially, image to image translation, which changes the
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Figure 1. Task of our network. There are two input images x and
y. Generated output G(x, y) is combined image which has x’s
identity and y’s shape.

characteristics of an image to those the user wants, suc-
ceeded in translating the images [7]. Such translation has
produced reasonable results from both paired and unpaired
data in tasks including transforming an apple to an orange,
a photo to a painting, and a winter scene to a summer
scene [26]. Our task is also a kind of image to image trans-
lation. We can change the identity of an image within a
desired shape. However, since existing image translation
learns the mapping function from one set to the other with-
out explicit loss functions for shape matching, there is a
possibility that shape may not remain the same. Therefore,
we need another framework to deal with both identity and
shape effectively.

In this paper, we propose a framework for creating a re-
sult image that follows the shape of one input image and
possesses the identity of another image. Having a label for
a result image, (i.e., in a supervised setting) can make it eas-
ier to generate a corresponding image. However, since such
ground truth label images for new combinations of identi-
ties and shapes are usually unavailable, we need to create
our result images without the label images.

We demonstrate that FusionGAN achieves our goal by
showing result images that follow the identity of one in-
put image and the shape of another. From YouTube Pose
dataset [4], we generate an image with one person’s iden-
tity and another person’s pose. We generate realistic eye
images that follow the shape of synthetic eye images in the
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Figure 2. Architecture of our work: Input images x and y come into the generator together. Then, the discriminator distinguishes between
real image pair and fake pair that consists of a generated image and a real image. At the final layer of the discriminator, we use Min-Patch
training to focus on more important parts of an image.

Eye dataset. Finally, we transform a person’s face into a
different style using Photo–Sketch–Cartoon sets.

2. Related Work

GANs proposed by Goodfellow et al. [6], generated a
more realistic image than the previous studies. It contains
two components: a discriminator, which distinguishes real
images from fake ones, competes with a generator, which
generates the fake images that look like real. In their ad-
versarial training procedure, the generator generates out-
puts whose distribution gets closer to the real data distri-
bution. GANs have been applied to various tasks, such as
text-to-image conversion, super-resolution, or data augmen-
tation [10, 15, 19].

Isola et al. [7] successfully performed image transla-
tion on varied datasets by using the GAN-based “pix2pix”
framework, which allows a generator to learn the mapping
function between two paired images. In their framework,
the fake pair consists of the input and the generated output.
And the discriminator tries to distinguish between the real
and fake pairs. However, pix2pix framework needs paired
data, which is difficult to obtain. CycleGAN [26] enabled
unpaired image to image translation, using the idea of cy-
cle consistency. For two sets of images, X and Y , they
trained two translators G : X → Y and F : Y → X so
that F (G(x)) becomes the same as original image x. How-
ever, CycleGAN requires more than one model to deal with
multiple sets.

There have also been many attempts to change an im-
age’s attributes, rather than the whole image. InfoGAN [5]
sets the loss to maximize mutual information between code
vector c and generated outputs, leading to a network that
can learn image attributes. The DiscoGAN [8] framework
is similar to that of CycleGAN, but its target task is to
manipulate attributes of image such as hair color or sun-
glasses. Deep feature interpolation (DFI) [22] achieved
high-resolution semantic transformations by linear interpo-

lation of features obtained from a pre-trained convolutional
neural networks.

The goal of PG2 [13] and visual analogy making is sim-
ilar to ours, in that they transform a query image to a desired
appearance. PG2 manipulated a reference image of a per-
son to a guided pose using human body keypoints. They
annotated the keypoints with existing pose estimation tech-
niques and used them in training. Reed et al. [16] proposed
a method for visual analogy making whose task is to change
a query image to a target that constitutes a related pair of
images.

3. Methods
The goal of our work is to learn a mapping function that

generates a fusion image from two input images given from
multiple unlabeled sets. By getting the identity from the first
input image x and the shape from the second input image
y, we can generate a combined output image. We express
image x, with identity Ix and shape Sx, as x = (Ix, Sx).
When our network has two input images x = (Ix, Sx) and
y = (Iy, Sy), our goal is to generate the following new
fusion image:

G(x = (Ix, Sx), y = (Iy, Sy)) = (Ix, Sy) (1)

Thus, the output is a fusion image that has the same iden-
tity as x, and the same shape as y. When two inputs are
given, generator G can automatically get the identity from
x, and shape from y (Figure 1). Our network is not limited
to the transition between two image sets, but can be used
for multiple unlabeled image sets, unlike previous works
CycleGAN [26] and DiscoGAN [8]. The identity and shape
we mention here can be any characteristics, depending on
the image sets and task. In general, identity can be seen as a
set-level characteristic which all images in a set share, and
shape can be seen as an instance-level characteristic that
can distinguish every single image within the set. For ex-
ample, in the case of the VGG YouTube Pose dataset [4],
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Figure 3. Illustration of Shape Loss. (a) Shape loss LS1 is defined when Ix = Iy (b) Shape loss LS2a and LS2b are defined when Ix 6= Iy .
To achieve our goal, these shape losses should be minimized. In the figure, generator G is only one model (same weights), and blue images
are the generated output images from the generator

where each set consists of multiple images of one person
with multiple poses, identity of an image is indeed the who
the person is in the image and shape is the person’s pose.
We demonstrate various kinds of set definition in Section 4.

3.1. Identity Loss LI

To get the identity of image x, we need to make the dis-
tribution of the output image similar to the distribution for
the set of images to which the first input image x belongs.
To do so, we used a pair discriminator D that discriminates
whether the input pair is a real pair or fake pair. We express
identity loss as:

LI(G,D) = Ex,x̂∼pdata(x)[logD(x, x̂)]

+ Ex∼pdata(x),y∼pdata(y)[log(1−D(x,G(x, y)))], (2)

where x and y are the two network inputs, and x̂ is an-
other image having the same identity as x, i.e., Ix = Ix̂.
x ∼ pdata(x) and y ∼ pdata(y) represents the data distri-
bution. This identity loss includes G and D, and we apply
adversarial training to achieve the goal. G tries to generate
desired image G(x, y) ∼ pdata(x) while D aims to distin-
guish between a real pair (x, x̂) and a fake pair (x,G(x, y)).
That is, D tries to maximize LI and G aims to minimize
it. After adversarial training, output G(x, y) is generated to
have the same identity as input x. The whole architecture
of our network is shown in Figure 2. The generated output
is input to the discriminator as a pair with input x.

We use L2 loss instead of the negative log likelihood.
Now, LI(G,D) is replaced by the following equation. We
train the G to maximize LI and D to minimize LI . Re-
placed identity loss LI is

LI(G,D) = Ex,x̂∼pdata(x)[||1−D(x, x̂)||2]
+ Ex∼pdata(x),y∼pdata(y)[||D(x,G(x, y))||2]. (3)

3.2. Shape Loss LS

If we train the network by using only the objective LI ,
we get a random image with an identity of x that is inde-
pendent of y. Therefore, we need to design another objec-
tive that extracts the shape from the second input image y.
Since we are using unlabeled multiple image sets that have
no shape label, it is difficult to define what the resulting im-
age (Ix, Sy) should be. CycleGAN [26] and DiscoGAN [8]
use a loss that input image must return to the original input
image after passing through two consecutive translations.
Shape preserving ability in those works is achieved by such
a loss that encourages returning the image back to its origi-
nal input. Since it is not directly trained to retain shape and
it may be possible to learn an inverse mapping of the first
translation without the ability to preserve shape perfectly,
there is a risk of under-preservation of shape.

We propose another effective way of preserving shapes
by novel design of shape loss functions. What if two input
images have the same identity? Then, the second input im-
age y should be the output image G(x, y). Using this idea,
we designed the following loss to extract the shape from the
second image. Then the network can generate a target im-
age even though the ground truth does not exist. A simple
illustration of shape losses is described in Figure 3. For two
input images x and y with the same identity, i.e., Ix = Iy ,
shape loss LS1

(G) is defined as:

LS1
(G) = Ex∼pdata(x),y∼pdata(y)[||y −G(x, y)||1]. (4)

Since this is a simple L1 loss, if we only use LS1
(G), the

generator’s learning may focus only on getting the second
image. Therefore, we added two more losses that have the
same concept as above, but try to get information from the
first input of the generator. In the case of a human, let’s say
that person x and y belong to sets A and B, respectively. If
G(x, y) comes out as we want it, then G(x, y) would be a
figure of x posing as y. So what happens if the resulting im-



age passes through the generator again with y? If G(x, y)
goes with y to pose like y, then G(x, y) should come out
because it already has a pose of y. And if y goes into re-
sembling a pose of G(x, y), then y should come out. This
helps to learn shape while preventing the generator from be-
ing biased to one side of the input. For the following losses,
two inputs do not need to have the same identity. For two
input images x and y with different identities, i.e., Ix 6= Iy ,
additional shape loss is defined as:

LS2a(G) = Ex∼pdata(x),y∼pdata(y)[||y −G(y,G(x, y))||1],
(5)

LS2b
(G) = Ex∼pdata(x),y∼pdata(y)

[||G(x, y)−G(G(x, y), y)||1]. (6)

Shape loss must be minimized to achieve our goal of the
generator producing the shape of the second input. Then,
the overall shape loss LS becomes the sum of these LS1

,
LS2a

, and LS2b
:

LS(G) = LS1
+ α(LS2a

+ LS2b
). (7)

Thus, the overall loss function used in our paper is:

L(G,D) = LI + βLS (8)

where α and β are hyper-parameters.

3.3. Training Algorithm

Before training, we prepare unlabeled multiple image
sets A,B,C, · · ·. All the images in each set share the same
set-level characteristic which we call identity, and each im-
age in the set has an individual instance-level characteristic
which we call shape. Therefore, Ix = Iy if image x and
image y belong to the same set.

Our training algorithm follows the basic flow of GANs.
We train both the generator and discriminator adversarially
to generate a realistic desired image. Since we need differ-
ent types of input pairs for two losses LI and LS , we need
two separate steps. The training procedure of our Fusion-
GAN is described in Algorithm 1.

3.4. Min-Patch Training

The original discriminator in GANs produces a single
output that observes whole images at once. Recently, Patch-
GAN [10, 11, 26] has been used to focus on every partial
patches of an image. PatchGAN produces an output feature
mapD(x) ∈ Rh×w instead of a single output value and uses
the sum of all output values in that feature map. It discrimi-
nates an image by observing all partial patches comprehen-
sively. However, when humans observe an image, we do
not focus on every small part of it. Even if most parts seem
realistic, if a small part of the image is strange, we feel that
the image is a fake. Therefore, when we generate realistic

min pool

(a) (b)

PatchGAN

FusionGAN

Figure 4. Illustration of Min-Patch training. Minimum pooling is
applied to the final output of discriminator when our generator is
trained. When training discriminators, we use PatchGAN without
min-pool. (a) Minimum pooling is applied to the last feature map
of the discriminator. (b) Corresponding receptive field of the input
image.

images, it is better to concentrate on the strangest parts of
the image.

Algorithm 1 Training Algorithm for FusionGAN
Data: Multiple image sets A,B,C, · · ·(# sets ≥ 2). Each

image set has images with the same identity, and each
image has individual shapes.

Initialize: All the settings include learning rates, optimiza-
tion method, training iteration, initial weights, etc.

while not converged do
(I) Get input image x and y each from two different

randomly chosen sets, i.e. Ix 6= Iy:
Update the G← maximizes Identity loss LI

(Min-Patch Training is applied)
Update the D← minimizes Identity loss LI

Update the G← minimizes Shape loss Ls2a , Ls2b

(II) Get input image x and y from one randomly cho-
sen set, i.e. Ix = Iy:

Update the G← minimizes Shape loss LS1

end

We suggest Min-Patch training, which uses minimum
pooling at the last part of the PatchGAN discriminator when
we train G adversarially. G tries to maximizes the objective
LI after passing the minimum pooling because the lower
discriminator output implies fake patch. So the generator G
is trying to maximizeD values after minimum pooling solv-
ing one more max-min problem as an inner loop. Min-Patch
training is described in Figure 4. PatchGAN training looks
at every part of an input image (8 × 8 in the figure); how-
ever, Min-Patch training only focuses on the most important
part of fake images (2 × 2 in the figure) when training G.
It helps to generate realistic images because G is trained so
that there are less patches where it looks strange.
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Figure 5. Results on the YouTube Pose Dataset [4]. From left to right: input x, input y, FusionGAN, CycleGAN [26], and DiscoGAN [8].
We used only one generator. CycleGAN and DiscoGAN are both trained for three pairs of identities. For the CycleGAN and DiscoGAN,
outputs are generated as G1(y), G2(y) and G3(y) using three generators. They need three generators for this experiment.

4. Experiment

To confirm our method’s successful result, we conducted
experiments using various datasets. We compared our re-
sult with other unlabeled generative networks in various set-
tings.

Implementation details: The generator network has
two inputs x and y. Each x and y passes separate three con-
volutional layers and two residual blocks, and then two out-
put feature maps are concatenated. After passing through
the two more residual blocks and two deconvolutional lay-
ers, it generates an output image. The generator has U-
Net [17] like structure to preserve low-level information
well.

For the Section 4.1 and Section 4.3, the discriminator
outputs 32× 32 size of feature maps. Our Min-Patch train-
ing uses 8 × 8 min pooling, so generator uses output 4 × 4
size of feature map for training the LI . For the Section
4.2, the discriminator outputs 15 × 9 size of feature maps.
Min-patch training uses 3× 3 min pooling for this case, so
generator uses output 5× 3 size of feature map for LI .

4.1. VGG YouTube Pose dataset

We trained our network on a subset of VGG YouTube
Pose dataset [4]. We made three image sets A, B, and C by
capturing frames of three videos in YouTube Pose dataset.
Each image set has all captured images of only one person
with various poses. Thus, these three image sets contain

various pose images of three people. Here, identity refers
to each person, and shape refers to the person’s pose. All
images are generated in high-resolution (256 × 256). For
each set, 638, 663, and 686 images were used for training.
For testing, 157 images which are disjoint from training sets
were used.

Qualitative Results: Figure 5 shows our qualitative re-
sults on the YouTube Pose dataset. We compared our results
with those of well-known unlabeled set translation methods,
CycleGAN [26] and DiscoGAN [8]. Our network gener-
ates output as G(x, y). CycleGAN and DiscoGAN gener-
ate outputs as G1(y), G2(y) and G3(y) for three kinds of
set transitions where G1 : A → B, G2 : B → C, and
G3 : C → A. Our network generated more convincing re-
sults close to the desired image that has the identity of x and
the shape of y. Details such as arms and faces are generated
well. It is to our advantage that our method learns shapes
from unlabeled sets.

Moreover, CycleGAN and DiscoGAN required several
separate generators for each pair of identities to handle var-
ious transformation in multiple sets. If there are three iden-
tities, they need 6 generators to cover all the combinations.
However, our network can handle several kinds of image
sets using only one model. If there are more identities, this
difference is amplified.

The Effectiveness of FusionGAN: Since previous
works focused on set-to-set translation, they only work for
two image sets. Therefore, to achieve transformation in
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Figure 6. An efficient generation with FusionGAN: (a) First input x is fixed. Therefore, all people in output images are the same person.
(b) Second input y is fixed. Therefore, all outputs have the same pose, but the people are different. All outputs are generated from only one
generator G.

Input y FusionGAN SimGANCycleGAN

Figure 7. Eye dataset results: from left to right, second input y,
our method, CycleGAN [26], and SimGAN [18]. For our network,
arbitrary real eye images were used for first input x.

three sets, 3P2 = 6 generators were usually required. How-
ever, as mentioned above, we can transform images in mul-
tiple sets freely using only one generator. The generation
results are shown in Figure 6. Figure 6a illustrates the case
when the first input x is fixed. Since the first input is fixed,
the generated outputs have the same identity. The only thing
that changes is the pose, which comes from the second im-
ages. Conversely, Figure 6b is the case when the second
input y is fixed. Since the second input is fixed, generated
outputs have the same pose. However, the person is changed
depending on the identity of the first input x. These results
are generated from only one generator.

Quantitative Evaluation by Pose Detection: Since the
label for the pose is not given, we cannot directly estimate
whether the output has desired pose. Instead, we can use
existing body keypoint estimation that tells the location of
each body joints to measure our quantitative results. We

applied keypoint estimation on both second input image
y and generated output for three methods, and then com-
putes the similarity to check whether y’s shape is well pre-
served. We applied pre-trained pose estimation model [3]
to extract upper-body keypoints. To measure the difference
of keypoints, we slightly modified existing measure object
keypoint similarity (OKS) [1]. While calculating OKS, the
fixed penalty 100 distance is applied when keypoint estima-
tion has failed on detecting the existing keypoint of refer-
ence image (256×256 resolution setting). We experimented
with various distance penalties and there was no significant
difference. Total of randomly chosen 147 images from 3
sets were used for the estimation in Table 1.

Keypoint similarity
FusionGAN 0.52
CycleGAN 0.42
DiscoGAN 0.38

Table 1. Keypoint similarity on YouTube Pose dataset

According to Table 1, our FusionGAN outperforms other
baselines. It can be seen as that our proposed framework has
generated an image that preserves the shape of target image
better than the baselines.

User Study: To evaluate the quality of our generated
images, we designed a user study that asks three simple
questions. 1) Does generated image look like real person
image? 2) Is person in generated image the same person as
input x? 3) Does the person in generated image have same
pose as input y? For this survey, each user was asked to
score 24 source images and 72 images generated by three
GAN methods. Users score the questions on a scale from 0
to 5 for each question and generated output. 32 users par-
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Figure 8. Result images of FusionGAN in Photo–Sketch–Cartoon dataset. In this dataset, we define identity as a style of the image and
shape as each person. When the network receives a photo as image x, then it produces photo style image of a human face in input y. All 6
combinations of the dataset are shown.

ticipated in this survey.
Results on user study are shown in Table 2. The sub-

jects found that our generated outputs are realistic and well
generated compare to the existing methods.

Reality Identity Pose
FusionGAN 3.23 3.02 3.06
CycleGAN 2.77 2.59 2.79
DiscoGAN 0.75 0.78 0.89

Table 2. User study on YouTube Pose Dataset

4.2. MPIIGaze and UnityEyes dataset

SimGAN [18] transformed simulated unreal eye images
to realistic images using a GAN structure. They gath-
ered many simulated eye images from UnityEyes [21] and
trained a generator that can transform these simulated im-
ages into realistic images. Since real images are always
limited, it is a great advantage to be able to create realis-
tic images from synthetic images. By using this idea, Sim-
GAN [18] improved performance on the gaze estimation
task.

We performed the same tasks by using our FusionGAN.
For this task, we prepared two image sets. Set A has all
simulated eye images from UnityEyes and set B has all real
eye images from the MPIIGaze dataset [25]. Here, iden-
tity refers to whether the image is real or simulated, and
shape refers to the other characteristics (gaze, wrinkle, eye-
lid, etc.) of each eye image. In this experiment, all the im-
ages have a resolution of 36 × 60. For training, 13, 939
synthetic eye images from UnityEyes and 14, 732 real eye
images from MPIIGaze dataset were used.

Qualitative Results: The result of our work for the eye

datasets is shown in Figure 7. For our network, we gener-
ated output G(x, y) with some arbitrary real image x. Cy-
cleGAN [26] and SimGAN [18] generate a realistic fake im-
age with y as input. Since this task is much easier than the
one described in Section 4.1, all three networks generated
realistic images. However, our network generates clearer
images compare to the others.

Here, we need to note how well the shape is preserved.
The outputs generated by SimGAN look very realistic, and
the identities are translated well. However, if we compare
the output images with the simulated image y, we see con-
siderable deformation of the image details. For example,
the gaze direction of the 4th image is changed by both Cy-
cleGAN and SimGAN.

User Study: To evaluate the quality of our generated im-
ages, we designed a user study that asks two simple ques-
tions. 1) Is generated image realistic? 2) Does generated
eye image have same gaze direction as the reference image?
For this survey, each user was asked to score 40 source im-
ages and 120 images generated by three GAN methods. 32
users participated in this survey.

Identity (Reality) Shape (Eye gaze)
FusionGAN 3.97 4.57
CycleGAN 2.55 2.63
SimGAN 3.02 3.57

Table 3. User study on Eye Dataset

Results on user study are shown in Table 3. The sub-
jects found that our generated outputs are realistic and well
generated compare to the existing methods. Especially, the
ability to keep the shape of input y is better than others.



𝐿𝐼 aloneInput 𝑥 Input 𝑦 𝐿𝐼 + 𝐿𝑆2𝑎 + 𝐿𝑆2𝑏 𝐿𝐼 + 𝐿𝑆1

𝐿𝐼 + 𝐿𝑆1
+𝐿𝑆2𝑎 + 𝐿𝑆2𝑏

FusionGAN
(Min-Patch training)

(a) (b) (c) (d) (e) (f) (g)

Figure 9. (Left) Ablation Study on our method. From left to right: input x, input y, LI alone, LI +LS2a +LS2b , LI +LS1 , LI +LS1 +
LS2a + LS2b , and FusionGAN which added Min-Patch training.

4.3. Photo–Sketch–Cartoon

Lastly, we evaluated FusionGAN on the Photo–Sketch–
Cartoon dataset, which consists of photographs, sketches,
and cartoon images of people. Photographs were made by
combining all 795 images from the 2D face sets [2] and
the CUHK student datasets [23]. A total of 560 Sketch im-
ages were retrieved from the CUHK Face Sketch Database
(CUFS) [23]. Cartoon image set was created by randomly
combining attributes at cartoonify.com. We cropped 1, 091
images and resized them to 256 × 256 pixels for training.
As our definition of identity and shape, the image style is
the identity for each set, and the shape was represented as
who the person in an image is in the case of this dataset.

Figure 8 illustrates the result of our work with the Photo–
Sketch–Cartoon dataset. FusionGAN produced successful
results from this dataset. When a photography served as
input x and a sketch as input y, a realistic picture of sketch
y was created (left-top of Figure 8). It is also possible to
generate a cartoon image of a real face and realistic image
of a cartoon.

4.4. Ablation study

We have suggested several novel ideas in this paper.
Above experiments were conducted using all of the pro-
posed methods. To investigate the strength of our new ideas,
we designed an ablation study that shows how the perfor-
mance changes depending on the presence or absence of
each loss. Results are shown in Figure 9.

For (c), a random image is often generated, and the learn-
ing itself is also unstable. For the second row example, (c)
does not generate realistic images because of unstable train-
ing. For (d), it is obvious that without LS1 , the network pick
the first image. We see that generated output is more like a
second input y after the shape loss LS1

is applied. In the
first row example, only (e), (f) and (g) outputs the glasses

following the y. Actually, (e) and (f) do not show the no-
ticeable difference. However, because of the LS2a

+ LS2b
,

the outputs of (f) are slightly more like the style of x. Af-
ter the Min-Patch training, FusionGAN shows more realis-
tic outputs compared to the other methods. We notice that
the unnatural parts of the output images are clearly reduced.
Now it becomes more like the image what we aimed.

5. Conclusion

In this paper, we propose a new network, FusionGAN,
that combines two input images by using identity loss LI

and shape loss LS . We have verified FusionGAN’s ability
to generate images that follow the identity of one image
with the shape of another. FusionGAN can be applied to
multiple sets and generate a reasonable image even if there
is no ground truth for the desired result image. Using a
subset of the YouTube Pose dataset, we changed a person’s
pose. In Eye dataset, we transformed the synthetic eye im-
age into a real image while maintaining the shape. We also
applied our concept to show that Photo–Sketch–Cartoon
character translation is possible with one model.
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