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Abstract

Similarity search approaches based on graph walks have

recently attained outstanding speed-accuracy trade-offs,

taking aside the memory requirements. In this paper, we

revisit these approaches by considering, additionally, the

memory constraint required to index billions of images on

a single server. This leads us to propose a method based

both on graph traversal and compact representations. We

encode the indexed vectors using quantization and exploit

the graph structure to refine the similarity estimation.

In essence, our method takes the best of these two

worlds: the search strategy is based on nested graphs,

thereby providing high precision with a relatively small set

of comparisons. At the same time it offers a significant

memory compression. As a result, our approach outper-

forms the state of the art on operating points considering

64–128 bytes per vector, as demonstrated by our results on

two billion-scale public benchmarks.

1. Introduction

Similarity search is a key problem in computer vision.

It is a core component of large-scale image search [32,

38], pooling [41] and semi-supervised low-shot classifica-

tion [16]. Another example is classification with a large

number of classes [22]. In the last few years, most of

the recent papers have focused on compact codes, either

binary [10, 18] or based on various quantization meth-

ods [26, 11, 3, 44]. Employing a compact representation

of vectors is important when using local descriptors such as

SIFT [31], since thousands of such vectors are extracted per

image. In this case the set of descriptors typically requires

more memory than the compressed image itself. Having a

compressed indexed representation employing 8− 32 bytes

per descriptor was a requirement driven by scalability and

practical considerations.

However, the recent advances in visual description have

mostly considered description schemes [37, 27, 19] for
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Figure 1. Illustration of our approach: we adopt a graph traversal

strategy [34] that maintains a connectivity between all database

points. Our own algorithm is based on compressed descriptors

to save memory: each database vector (circle) is approximated

(square) with quantization. We further improve the estimate by re-

gressing each database vector from its encoded neighbors, which

provides an excellent representation basis. The regression coeffi-

cients β = [β0, . . . , βk] are selected from a codebook learned to

minimize the vector reconstruction error.

which each image is represented by an unique vector, typi-

cally extracted from the activation layers of a convolutional

neural network [5, 42]. The state of the art in image retrieval

learns the representation end-to-end [20, 39] such that co-

sine similarity or Euclidean distance reflects the semantic

similarity. The resulting image descriptors consist of no

more than a few hundred components.

In this context, it is worth investigating approaches for

nearest neighbor search trading memory for a better ac-

curacy and/or efficiency. An image representation of 128

bytes is acceptable in many situations, as it is compara-

ble if not smaller than the meta-data associated with it and

stored in a database. While some authors argue that the

performance saturates beyond 16 bytes [8], the best re-

sults achieved with 16 bytes on the Deep10M and Deep1B

datasets do not exceed 50% recall at rank 1 [7, 15]. While

going back to the original vectors may improve the recall,

it would require to access a slower storage device, which

would be detrimental to the overall efficiency.

One the opposite, some methods like those implemented

in FLANN [35] consider much smaller datasets and target

high-accuracy and throughput. The state-of-the-art methods

implemented in NMSLIB [9] focuses solely on the compro-
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mise between speed and accuracy. They do not include any

memory constraint in their evaluation, and compare meth-

ods only on small datasets comprising a few millions vec-

tors at most. Noticeably, the successful approach by Malkov

et al. [33, 34] requires both the original vectors and a full

graph structure linking vectors. This memory requirement

severely limits the scalability of this class of approaches,

which to the best of our knowledge have never been scaled

up to a billion vector.

These two points of views, namely compressed-domain

search and graph-based exploration, consider extreme sides

of the spectrum of operating points with respect to mem-

ory requirements. While memory compactness has an ob-

vious practical advantage regarding scalability, we show

in Section 3 that HNSW (Hierarchical Navigable Small

Worlds [33, 34]) is significantly better than the Inverted

Multi-Index (IMI) [6] in terms of the compromise between

accuracy and the number of elementary vector comparisons,

thanks to the effective graph walk that rapidly converges to

the nearest neighbors of a given query.

We aim at conciliating these two trends in similarity

search by proposing a solution that scales to a billion vec-

tors, thanks to a limited memory footprint, and that offers a

good accuracy/speed trade-off offered by a graph traversal

strategy. For this purpose, we represent each indexed vector

by i) a compact representation based on the optimized prod-

uct quantization (OPQ) [17], and ii) we refine it by a novel

quantized regression from neighbors. This refinement ex-

ploits the graph connectivity and only requires a few bytes

by vector. Our method learns a regression codebook by al-

ternate optimization to minimize the reconstruction error.

The contributions of our paper consist of a preliminary

analysis evaluating different hypotheses, and of an index-

ing method employing a graph structure and compact codes.

Specifically,

• We show that using a coarse centroid provides a better

approximation of a descriptor than its nearest neighbor

in a typical setting, suggesting that the first approxima-

tion of a vector should be a centroid rather than another

point of the dataset [8]. We also show that a vector is

better approximated by a linear combination of a small

set of its neighbors, with fixed mixing weights obtained

by a close-form equation. This estimator is further im-

proved if we can store the weights on a per-vector basis.

• We show that HNSW offers a much better selectivity

than a competitive method based on inverted lists. This

favors this method for large representations, as opposed

to the case of very short codes (8–16 bytes).

• We introduce a graph-based similarity search method

with compact codes and quantized regression from

neighbors. It achieves state-of-the-art performance on

billion-sized benchmarks for the high-accuracy regime.

The paper is organized as follows. After a brief review

of related works in Section 2, Section 3 presents an analysis

covering different aspects that have guided the design of

our method. We introduce our approach in Section 4 and

evaluated it in Section 5. Then we conclude.

2. Related work

Consider a set of N elements X = {x1, . . . , xN} ⊂ Ω
and a distance d : Ω × Ω → R (or similarity), we tackle

the problem of finding the nearest neighbors NX (y) ⊂ X
of a query y ∈ Ω, i.e., the elements {x} of X minimizing

the distance d(y, x) (or maximizing the similarity, respec-

tively). We routinely consider the case Ω = R
d and d = ℓ2,

which is of high interest in computer vision applications.

Somehow reminiscent of the research field of compres-

sion in the 90s, for which we have witnessed a rapid shift

from lossless to lossy compression, the recent research ef-

fort in this area has focused on approximate near- or nearest

neighbor search [24, 23, 14, 26, 18, 6], in which the guar-

antee of exactness is traded against high efficiency gains.

Approximate methods typically improve the efficiency

by restricting the distance evaluation to a subset of ele-

ments, which are selected based on a locality criterion in-

duced by a space partition. For instance Locality Sensitive

Hashing (LSH) schemes [12, 1] exploit the hashing proper-

ties resulting from the Johnson-Lindenstrauss lemma. Er-

rors occur if a true positive is not part of the selected subset.

Another source of approximation results from com-

pressed representations, which were pioneered by Weber et

al. [43] to improve search efficiency [43]. Subsequently the

seminal work [10] of Charikar on sketches has popularized

compact binary codes as a scalability enabler [25, 32]. In

these works and subsequent ones employing vector quanti-

zation [26], errors are induced by the approximation of the

distance, which results in swapped elements in the sorted re-

sult lists. Typically, a vector is reduced by principal compo-

nent analysis (PCA) dimensionality reduction followed by

some form of quantization, such as scalar quantization [40],

binary quantization [21] and product quantization or its

variants [26, 17]. Recent similarity search methods often

combine these two approximate and complementary strate-

gies, as initially proposed by Jégou et al. [26]. The quan-

tization is hierarchical, i.e., a first-level quantizer produces

an approximate version of the vector, and an additional code

refines this approximation [28, 3].

The IVFADC method of [26] and IMI [6] are represen-

tative search algorithms employing two quantization levels.

All the codes having the same first-level quantization code

are stored in a contiguous array, referred to as an inverted

list, which is scanned sequentially. AnnArbor [8] encodes

the vectors w.r.t. a fixed set of nearest vectors. Section 3

shows that this choice is detrimental, and that learning the

set of anchor vectors is necessary to reach a good accuracy.



Graph-based approaches. Unlike approaches based on

space partitioning, the inspirational NN-descent algo-

rithm [13] builds a knn-graph to solve the all-neighbors

problem: the goal is to find the k nearest neighbors in X ,

w.r.t. d, for each x ∈ X . The search procedure proceeds

by local updates and is not exhaustive, i.e., the algorithm

converges without considering all pairs (x, x′) ∈ X 2. The

authors of NN-decent have also considered it for the ap-

proximate nearest neighbor search.

Yuri Malkov et al. [33, 34] introduced the most accom-

plished version of this algorithm, namely HNSW. This so-

lution selects a series of nested subsets of database vectors,

or “layers”. The first layer contains only a single point, and

the base layer is the whole dataset. The sizes of the layers

follow a geometric progression, but they are otherwise sam-

pled randomly. For each of these layers HNSW constructs a

neighborhood graph. The search starts from the first layer.

A greedy search is performed on the layer until it reaches

the nearest neighbor of the query within this layer. That

vector is used as an entry point in the next layer as a seed

point to perform the search again. At the base layer, which

consists of all points, the procedure differs: a bread first

search starting at the seed produces the resulting neighbors.

It is important that the graph associated with each subset

is not the exact knn-graph of this subset: long-range edges

must be included. This is akin to simulated annealing or

other diversification techniques in optimization: a fraction

of the evaluated elements must be far away. In HNSW, this

diversification is provided in a natural way, thanks to the

long-range links enforced by the upper levels of the struc-

ture, which are built on fewer points. However, this is not

sufficient, which led Malkov et al. to design a “shrinking”

operator that reduces a list of neighbors for a vector in a

way that does not necessarily keeps the nearest ones.

3. Preliminary analysis

This section presents several studies that have guided the

design of the approach introduced in Section 4. All these

evaluations are performed on X = Deep1M ⊂ R
96, i.e.,

the first million images of the Deep1B dataset [7].

First, we carry out a comparison between the graph-

based traversal of HNSW and the clustering-based hashing

scheme employed in IMI. Our goal is to measure how ef-

fective a method is at identifying a subset containing neigh-

bors with a minimum number of comparisons. Our second

analysis considers different estimators of a vector to best

approximate it under certain assumptions, including cases

where an oracle provides additional information such as the

neighbors. Finally, we carry out a comparative evaluation

of different methods for encoding the descriptors in a com-

pact form, assuming that exhaustive search with approxi-

mate representations is possible. This leads us to identify

appealing choices for our target operating points.
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Figure 2. IMI vs HNSW: accuracy for a given selectivity.

3.1. Selectivity: HNSW versus IMI

We consider two popular approaches for identifying a

subset of elements, namely the multi-scale graph traver-

sal of HNSW [34] and the space partitioning employed in

IMI [6], which relies on a product quantizer [26]. Both

methods consists of (i) an identification stage, where the

query vector is compared with a relatively small set of vec-

tors (centroids or upper level in HNSW); and (ii) a compar-

ison stage, in which most of the actual distance evaluations

are performed. For a more direct comparison, we compute

the exact distances between vectors. We measure the trade-

off between accuracy and the number of distance calcula-

tions. This is linearly related to selectivity: this metric [36]

measures the fraction of elements that must be looked up.

We select standard settings for this setup: for IMI, we

use 2 codebooks of 210 centroids, resulting in about 1M in-

verted lists. For HNSW, we use 64 neighbors on the base

layer and 32 neighbors on the other ones. During the refine-

ment stage, both methods perform code comparisons start-

ing from most promising candidates, and store the k best

search results. The number of comparisons after which the

search is stopped is a search-time parameter T in both meth-

ods. Figure 2 reports the accuracy as a function of the num-

ber of distance computations performed for both methods.

The plot shows that HNSW is 5 to 8 times more selec-

tive than IMI for a desired level of accuracy. This better

selectivity does not directly translate to the same speed-up

because HNSW requires many random probes from main

memory, as opposed to contiguous inverted lists. Yet this

shows that HNSW will become invariably better than IMI

for larger vector representations, when the penalty of ran-

dom accesses does not dominate the search time anymore.

Figure 3 confirms that HNSW with a scalar quantizer is

faster and more accurate than an IMI employing very fine

quantizers at both levels. However, this requires 224 bytes

per vector, which translates to 50 GB in RAM when includ-

ing all overheads of the data structure.
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Figure 3. IMI vs HNSW on mid-sized dataset (Deep100M): trade-

off between speed and accuracy. Both methods use 96-byte encod-

ings of descriptors. The HNSW memory size is larger because of

the graph connectivity, see text for details.

3.2. Centroids, neighbor or regression?

Hereafter we investigate several ways of getting a coarse

approximation1 of a vector x ∈ X :

Centroid. We learn by k-means a coarse codebook C com-

prising 16k elements. It is learned either directly on X
or using a distinct training set of 1 million vectors. We

approximate x by its nearest neighbor q(x) ∈ C.

Nearest neighbor. We assume that we know the nearest

neighbor n1(x) of x and can use it as an approxima-

tion. This choice shows the upper bound of what we

can achieve by selecting a single vector in X .

Weighted average. Here we assume that we have access

to the k = 8 nearest neighbors of x ordered by de-

creasing distances, stored in matrix form as N(x) =
[n1, . . . , nk]. We estimate x as the weighted average

x̄ = β⋆⊤
N(x), (1)

where β⋆ is a fixed weight vector constant shared by

all elements in X . The close-form computation of β⋆

is detailled in Section 4.

Regression. Again we use N(x) to estimate x, but we

additionally assume that we perfectly know the opti-

mal regression coefficients β(x) minimizing the recon-

struction error of x. In other words we compute

x̂ = β(x)⊤N(x), (2)

where β(x) is obtained as the least-square minimizer

of the over-determined system ‖x− β(x)⊤N(x)‖2.

1Some of these estimations depend on additional information, for ex-

ample when we assume that all other vertices of a given database vector x

are available. We report them as topline results for the sake of our study.
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Figure 4 shows the distribution of the error (square Eu-

clidean distance) for the different estimators. We draw sev-

eral observations. First, choosing the centroid q(x) in a

codebook of 16k vectors is comparatively more effective

than taking the nearest neighbor n1(x) amongst the 64×
larger set X of 1 million vectors. Therefore using vectors

of the HNSW upper level graph as reference points to com-

pute a residual vector is not an interesting strategy.

Second, if the connectivity is granted for free or required

by design like in HNSW, the performance achieved by x̄

suggests that we can improve the estimation of x from its

neighbors with no extra storage, if we have a reasonable

approximation of N(x).
Third, under the same hypotheses and assuming addi-

tionally that we have the parameter β(x) for all x, a better

estimator can be obtained with Eqn. 2. This observation is

the key to the re-ranking strategy introduced in Section 4.

3.3. Coding method: first approximation

We evaluate which vector compression is most accurate

per se to perform an initial search given a memory bud-

get. Many studies of this kind focus on very compact codes,

like 8 or 16 bytes per vector. We are interested in higher-

accuracy operating points. Additionally, the results are of-

ten reported for systems parametrized by several factors

(short-list, number of probes, etc), which makes it difficult

to separate the false negatives induced by the coding from

those resulting from the search procedure.

To circumvent this comparison issue, we compress and

decompress the database vectors, and perform an exhaus-

tive search. All experiments in Table 1 are performed on

Deep1M (the 1M first images of the Deep1B dataset). The

codebooks are trained on the provided distinct training set.

We consider in particular product quantization (PQ [26])

and optimized product quantizer (OPQ [17]). We adopt a



codec size accuracy

(bytes) recall@1 recall@10

none 384 1.000 1.000

scalar quantizer 96 0.978 1.000

PQ16x8 16 0.335 0.818

PQ8x16 16 0.394 0.881

PQ2x8+OPQ14x8 16 0.375 0.867

PQ1x16+OPQ14x8 16 0.422 0.899

PQ2x16+OPQ12x8 16 0.421 0.904

PQ2x12+OPQ13x8 16 0.382 0.870

AnnArbor [8] (*) 16 0.421

OPQ32x8 32 0.604 0.982

PQ1x16+OPQ30x8 32 0.731 0.997

PQ2x16+OPQ28x8 32 0.713 0.996

PQ2x14+OPQ28x8 32 0.693 0.995

PCA8 32 0.017 0.074

Table 1. HNSW: Exhaustive search in 1M vectors in 96D, with

different coding methods. We report the percentage of queries for

which the nearest neighbor is among the top1 (resp. top10) results.

(*) AnnArbor depends on a parenthood link (4 bytes).

notation of the form PQ16x8 or OPQ14x2, in which the

values respectively indicate the number of codebooks and

the number of bits per subquantizer.

Additionally, we consider a combination of quantiz-

ers exploiting residual vectors [26, 28] to achieve higher-

accuracy performance. In this case, we consider a 2-level

residual codec, in which the first level is either a vector

quantizer with 65536 centroids (denoted PQ1x16 in our no-

tation) or a product quantizer (PQ2x12 or PQ2x14). What

remains of the memory budget is used to store a OPQ code

for the refinement codec, which encodes the residual vector.

Note that IVFADC-based methods and variants like IMI [2]

exploit 2-level codecs. Only the data structure differs.

Our results show that 2-level codecs are more accurate

than 1-level codecs. They are also more computationally

expensive to decode. For operating points of 32 bytes, we

observe that just reducing the vectors by PCA or encoding

them with a scalar quantizer is sub-optimal in terms of ac-

curacy. Using OPQ gives a much higher accuracy. Thanks

to the search based on table lookups, it is also faster than

a scalar quantizer in typical settings. For comparison with

the AnnArbor method, we also report a few results on 16

bytes per vector. The same conclusions hold: a simple 2-

level codec with 65536 centroids (e.g., PQ1x16+OPQ14x8)

gets the same codec performance as AnnArbor.

4. Our approach: L&C

This section describes our approach, namely L&C (link

and code). It offers a state-of-the-art compromise between

approaches considering very short codes (8–32 bytes) and

those not considering the memory constraint, like FLANN

and HNSW. After presenting an overview of our indexing

structure and search procedure, we show how to improve

the reconstruction of an indexed vector from its approxi-

mate neighbors with no additional memory. Then we in-

troduce our novel refinement procedure with quantized re-

gression coefficients, and details the optimization procedure

used to learn the regression codebook. We finally conduct

an analysis to discuss the trade-off between connectivity

and coding, when fixing the memory footprint per vector.

4.1. Overview of the index and search

Vector approximation. All indexed vectors are first com-

pressed with a coding method independent of the struc-

ture. It is a quantizer, which formally maps any vector

x ∈ R
d 7→ q(x) ∈ C, where C is a finite subset of R

d,

meaning that q(x) is stored as a code.

Following our findings of Section 3, we adopt two-level

encodings for all experiments. For the first level, we choose

a product quantizer of size 2x12 or 2x14 bits (PQ2x12 and

PQ2x14), which are cheaper to compute. For the second

level, we use OPQ with codes of arbitrary length.

Graph-based structure. We adopt the HSNW indexing

structure, except that we modify it so that it works with

our coded vectors. More precisely, all vectors are stored in

coded format, but the add and query operations are per-

formed using asymmetric distance computations [26]: the

query or vector to insert is not quantized, only the elements

already indexed are. We fix the degree of the graphs at the

upper levels to k = 32, and the size ratio between two graph

levels at 30, i.e., there are 30× fewer elements in the graph

level 1 than in the graph level 0.

Refinement strategy. We routinely adopt a two-stage

search strategy [28]. During the first stage, we solely rely

on the first approximation induced by q(·) to select a short-

list of potential neighbor candidates. The indexed vectors

are reconstructed on-the-fly from their compact codes. The

second stage requires more computation per vector is and

applied only on this short-list to re-rank the candidates. We

propose two variants for this refinement procedure:

• Our 0-byte refinement does not require any additional

storage per vector. It is performed by re-estimating

the candidate element from its connected neighbors en-

coded with q(x). Section 4.2 details this method.

• We refine the vector approximation by using a set of

quantized regression coefficients stored for each vector.

These coefficients are learned and selected for each in-

dexed vector offline, at building time, see Section 4.3.

4.2. 0­byte refinement

Each indexed vector x is connected in the graph to a set

of k other vectors, g1(x), . . . , gk(x), ordered by increas-



ing distance to x. This set can include some of the nearest

neighbors of x, but not necessarily. From their codes, we

reconstruct x as q(x) and each gi as q(gi(x)). We define

the matrix G(x) = [q(x), q(g1(x)), . . . , q(gk(x))] stacking

the reconstructed vectors. Our objective is to use this matrix

to design a better estimator of x than q(x), i.e., to minimize

the expected square reconstruction loss. For this purpose,

we minimize the empirical loss

L(β) =
∑

x∈X

‖x− β⊤
G(x)‖2. (3)

over X . Note that, considering the small set of k + 1 pa-

rameters, using a subset of X does not make any difference

in practice. We introduce the vertically concatenated vector

and matrix

X =







x1

...

xN






and Y =







G(x1)
...

G(xN )






(4)

and point out that L(β) = ‖X − β⊤
Y‖2. This is a regu-

lar least-square problem with a closed-form solution β⋆ =
Y

∗X , where Y
∗ is the Moore-Penrose pseudo-inverse of

Y. We compute the minimizer β⋆ with a standard regres-

sor. This regression weights are shared by all index ele-

ments, and therefore do not involve any per-vector code. A

indexed vector is refined from the compact codes associated

with x and its connected vectors as

x̄ = β⋆⊤
G(x). (5)

In expectation and by design, x̄ is a better approxima-

tion of x than q(x), i.e., it reduces the quantization error. It

is interesting to look at the weight coefficient in β⋆ corre-

sponding to the vector q(x) in the final approximation. It

can be as small as 0.5 if the quantizer is very coarse: in

this situation the quantization error is large and we signifi-

cantly reduce it by exploiting the neighbors. In contrast, if

the quantization error is limited, the weight is typically 0.9.

4.3. Regression codebook

The proposed 0-byte refinement step is granted for free,

given that we have a graph connecting each indexed ele-

ment with nearby points. As discussed in Section 3.2, a

vector x would be better approximated from its neighbors

if we knew the optimal regression coefficients. This re-

quires to store them on a per-vector basis, which would in-

crease the memory footprint per vector by 4× k bytes with

floating-point values. In order to limit the additional mem-

ory overhead, we now describe a method to learn a code-

book B = {β1, . . . , βB} of regression weight vectors. Our

objective is to minimize the empirical loss

L′(B) =
∑

x∈X

min
β∈B
‖x− β⊤

G(x)‖2. (6)

Performing a k-means directly on regression weight vec-

tors would optimize the ℓ2-reconstruction of the regression

vector β(x), but not of the loss in Eqn. 6. We use k-means

only to initialize the regression codebook. Then we use an

EM-like algorithm alternating over the two following steps.

1. Assignment. Each vector x is assigned to the code-

book element minimizing its reconstruction error:

β(x) = argmin
β∈B
‖x− β⊤

G(x)‖2. (7)

2. Update. For each cluster, that we conveniently iden-

tify by βi, we find the optimal regression weights

β⋆
i = argmin

β

∑

x∈X :β(x)=βi

‖x− β⊤
G(x)‖2 (8)

and update βi ← β⋆
i accordingly.

For a given cluster, Eqn. 8 is the same as the one of Eqn. 3,

except that the solution is computed only over the subset of

vectors assigned to βi. It is closed-form as discussed earlier.

In practice, as B is relatively small (B = 256), we only

need a subset of X to learn a representative codebook B.

This refinement stage requires 1 byte per indexed vector to

store the selected weight vector from the codebook B.

Product codebook. As shown later in the experimental

section, the performance improvement brought by this re-

gression codebook is worth the extra memory per vector.

However, the performance rapidly saturates as we increase

the codebook size B. This is expected because the estima-

tor β(x)⊤G(x) only spans a (k+1)-dimensional subspace

of Rd, k ≪ d. Therefore the projection of x lying in the

null space ker(G) cannot be recovered.

We circumvent this problem by adopting a strategy in-

spired by product quantization [26]. We evenly split each

vector as x = [x1; . . . , xM ], where each xj ∈ R
d/M , and

learn a product regression codebook B1× ...×BM , i.e., one

codebook per subspace. In this case, extending the super-

script notation to β and G, the vector is estimated as

x̂ = [β1(x1)G1(x), . . . , βM (xM )GM (x)], (9)

where ∀j, βj(xj) ∈ Bj . The set of possible estimators

spans a subspace having to up M × k dimensions. This

refinement method requires M bytes per vector.

4.4. L&C: memory/accuracy trade­offs

As discussed earlier, HNSW method is both the fastest

and most accurate indexing method at the time being, but its

scalability is restricted by its high memory usage. For this

reason, it has never been demonstrated to work at a billion-

scale. In this subsection, we analyze our algorithm L&C

when imposing a fixed memory budget per vector. Three

factors contribute to the marginal memory footprint:
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Figure 5. Deep1M: Performance obtained depending on whether

we allocate a fixed memory budget of 64 bytes to codes (OPQ

codes of varying size) or links. Recall that T is the parameter

capping the number of distance evaluations.

• the code used for the initial vector approximation, for

instance OPQ32 (32 bytes);

• the number k of graph links per vector (4 bytes per link);

• [optionally] the M bytes used by our refinement method

from neighbors with a product regression codebook.

L&C Notation. To identify unambiguously the parameter

setting, we adopt a notation of the form L6&OPQ40. L6

indicates that we use 6 links per vector in the graph and

OPQ40 indicates that we use first encode the vector with

OPQ, allocating 40 bytes per vector. If, optionally, we use a

regression codebook, we refer to as by the notation M=4 in

tables and figures. The case of 0-coding is denoted by M=0.

Coding vs Linking. We first consider the compromise be-

tween the number of links and the number of bytes allocated

to the compression codec. Figure 5 is a simple experiment

where we start from the full HNSW representation and re-

duce either the number of links or the number of dimen-

sions stored for the vectors. We consider all setups reaching

the same budget of 64 bytes, and report results for several

choices of the parameter T , which controls the total number

of comparisons.

We observe that there is a clear trade-off enforced by the

memory constraint. The search is ineffective with too few

links, as the algorithm can not reache all points. At the op-

posite side, the accuracy is also impacted by a too strong

approximation of the vector, when the memory budget allo-

cated to compression is insufficient. Interestingly, increas-

ing T shifts the optimal trade-off towards allocating more

bytes to the code. This means that the neighbors can be

reached but require more hops in the graphs.

Coding vectors vs regression coefficients. We now fix

the number of links to 6 and evaluate the refinement strat-

egy under a fixed total memory constraint. In this case we

vector quantization R@1

codec error (×10
3) exhaustive T=1024 T=16384

Deep: 100M 1B 100M 1B 100M 1B

L6&OPQ40 24.3 24.3 0.608 0.601 0.427 0.434

L6&OPQ40 M=0 22.7 22.5 0.611 0.600 0.429 0.435

L6&OPQ36 M=4 21.9 21.5 0.608 0.607 0.428 0.434

L6&OPQ32 M=8 20.0 19.8 0.625 0.612 0.438 0.438

Table 2. Under a constraint of 64 bytes and using k = 6 links

per indexed vector, we consider different trade-offs for allocating

bytes to between codes for reconstruction and neighbors.

have a trade-off between the number of bytes allocated to

the compression codec and to the refinement procedure.

The first observation drawn from Table 2 is that the

two refinement methods proposed in this section both sig-

nificantly reduce the total square loss. This behavior is

expected for the 0-coding because it is exactly what the

method optimizes. However, this better reconstruction per-

formance does not translate to a better recall in this setup.

We have investigated the reason of this observation, and dis-

covered that the 0-coding approach gives a clear gain when

regressing with the exact neighbors, but those provided by

the graph structure have more long-range links.

In contrast, our second refinement strategy is very effec-

tive. Coding the regression coefficients with our codebook

significantly improves both the reconstruction loss and the

recall: the refinement coding based on the graph is more ef-

fective than the first-level coding, which is agnostic of the

local distribution of the vectors.

5. Experiments

The experiments generally evaluate the search time vs

accuracy tradeoff, considering also the size of the vector

representation. The accuracy is measured as the fraction of

cases where the actual nearest neighbor of the query is re-

turned at rank 1 or before some other rank (recall @ rank).

The search time is given in milliseconds per query on a

2.5 GHz server with 1 thread. Batching searches with mul-

tiple threads is trivial but timings are less reproducible.

5.1. Baselines & implementation

We chose IMI as a baseline method because most recent

works on large-scale indexing build upon it [30, 4, 7, 15]

and top results for billion-scale search are reported by meth-

ods relying on it. We use the competitive implementation

of Faiss [29] (in CPU mode) as the IMI baseline. We use

the automatic hyperparameter tuning to optimize IMI’s op-

erating points. The parameters are the number of visited

codes (T), the multiprobe number and the Hamming thresh-

old used to compare polysemous codes [15].

Our implementation of HNSW follows the original NM-

SLIB version [9]. The most noticeable differences are that

(i) vectors are added by batches because the full set of vec-

tors does not fit in RAM, and (ii) the HNSW structure is
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Figure 6. Speed vs accuracy on Deep1B (top) and BIGANN (bot-

tom). Timings are measured per query on 1 core.

built layer by layer, which from our observation improve the

quality of the graph. Indexing 1 billion vectors takes about

26 hours with L&C: we can add more than 10,000 vectors

per second to the index. We refine at most 10 vectors.

For the encodings, we systematically perform a rotation

estimated with Optimized Product Quantization (OPQ) to

facilitate the encoding in the second level product quantizer.

5.2. Large­scale evaluation

We evaluate on two large datasets widely adopted by the

computer vision community. BIGANN [28] is a dataset of

1B SIFT vectors in 256 dimensions, and Deep1B is a dataset

of image descriptors extracted by a CNN. Both datasets

come with a set of 10,000 query vectors, for which the

ground-truth nearest neighbors are provided as well as a set

of unrelated training vectors that we use to learn the code-

books for the quantizers. IMI codebooks are trained using

2 million vectors, and the regression codebooks of L&C are

trained using 250k vectors and 10 iterations.

Figure 6 compares the operating points in terms of search

time vs accuracy on Deep1B for encodings that use 96 bytes

per vector. For most operating points, our L&S method is

much faster, for example 2.5× faster to attain a recall@1 of

50% on Deep1B. The improvement due to the refinement

step, i.e. the regression from neighborhood, is also signifi-

cant. It consumes a few more bytes per vector (up to 8).

For computationally expensive operating points, IMI is

better for recall@1 because the 4k=52 bytes spent for links

could be used to represent the vertices more accurately.

R@1 R@10 R@100 time (ms) bytes

BIGANN

Multi-LOPQ [30] 0.430 0.761 0.782 8 16

OMulti-D-OADC-L [6] 0.421 0.755 0.782 7 16

FBPQ [4] 0.179 0.523 0.757 1.9 16

0.186 0.556 0.894 9.7 16

Polysemous [15] 0.330 0.856 2.77 16

L7&C32 M=8 0.461 0.608 0.613 2.10 72

Deep1B

GNO-IMI [7] 0.450 0.8 20 16

Polysemous [15] 0.456 3.66 20

L13&C40 M=8 0.668 0.826 0.830 3.50 108

Table 3. State of the art on two billion-sized datasets.

5.3. Comparison with the state of the art

We compare L&C with other results reported in the lit-

erature, see Table 3. Our method uses significantly more

memory than others that are primarily focusing on optimiz-

ing the compromise between memory and accuracy. How-

ever, unlike HNSW, it easily scales to 1 billion vectors on

one server. L&C is competitive when the time budget is

small and one is interested by higher accuracy. The com-

peting methods are either much slower, or significantly less

accurate. On Deep1B, only the polysemous codes attain an

efficienty similar to ours, obtained with a shorter memory

footprint. However it only attains recall@1=45.6%, against

66.7% for L&C. Considering the recall@1, we outperform

the state of the art on BIGANN by a large margin with re-

spect to the accuracy/speed trade-off.

Note, increasing the coding size with other methods

would increase accuracy, but would also invariably increase

the search time. Considering that, in a general application,

our memory footprint remains equivalent or smaller than

other meta-data associated with images, our approach offers

an appealing and practical solution in most applications.

6. Conclusion

We have introduced a method for precise approximate

nearest neighbor search in billion-sized datasets. It tar-

gets the high-accuracy regime, which is important for a vast

number of applications. Our approach makes the bridge be-

tween the successful compressed-domain and graph-based

approaches. The graph-based candidate generation offers

a higher selectivity than the traditional structures based on

inverted lists. The compressed-domain search allows us to

scale to billion of vectors on a vanilla server. As a key nov-

elty, we show that the graph structure can be used to im-

prove the distance estimation for a moderate or even null

memory budget. As a result, we report state-of-the-art re-

sults on two public billion-sized benchmarks in the high-

accuracy regime.

Our approach is open-sourced in the Faiss library [29].
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[36] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive

hashing: a comparison of hash function types and querying

mechanisms. Pattern Recognition Letters, 31(11), 2010.

[37] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier. Large-scale

image retrieval with compressed Fisher vectors. In CVPR,

2010.

[38] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-

man. Object retrieval with large vocabularies and fast spatial

matching. In CVPR, 2007.
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