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Abstract

This work addresses the problem of estimating the full
body 3D human pose and shape from a single color im-
age. This is a task where iterative optimization-based so-
lutions have typically prevailed, while Convolutional Net-
works (ConvNets) have suffered because of the lack of train-
ing data and their low resolution 3D predictions. Our work
aims to bridge this gap and proposes an efficient and effec-
tive direct prediction method based on ConvNets. Central
part to our approach is the incorporation of a parametric
statistical body shape model (SMPL) within our end-to-end
framework. This allows us to get very detailed 3D mesh
results, while requiring estimation only of a small number
of parameters, making it friendly for direct network pre-
diction. Interestingly, we demonstrate that these parame-
ters can be predicted reliably only from 2D keypoints and
masks. These are typical outputs of generic 2D human anal-
ysis ConvNets, allowing us to relax the massive requirement
that images with 3D shape ground truth are available for
training. Simultaneously, by maintaining differentiability,
at training time we generate the 3D mesh from the estimated
parameters and optimize explicitly for the surface using a
3D per-vertex loss. Finally, a differentiable renderer is em-
ployed to project the 3D mesh to the image, which enables
further refinement of the network, by optimizing for the con-
sistency of the projection with 2D annotations (i.e., 2D key-
points or masks). The proposed approach outperforms pre-
vious baselines on this task and offers an attractive solution
for direct prediction of 3D shape from a single color image.

1. Introduction

Estimating the full body 3D pose and shape of humans
from images has been a challenging goal of computer vision
going all the way back to the work of Hogg [15]. The inher-
ent ambiguity of the problem has forced the researchers to
use monocular image sequences for inference [54, 3], em-
ploy multiple camera views [36, 16], or even explore alter-
native sensors, like Kinect [53] or IMUs [52]. In these set-
tings, the body shape reconstruction results are remarkable.
However, estimating 3D pose and shape from single color

images remains the ultimate goal for 3D human analysis.

Considering the particularly challenging nature of such
a problem, the literature remains undeniably sparse. Most
approaches rely on iterative optimization, attempting to es-
timate a full body 3D shape that is consistent with 2D image
observations, like silhouettes, edges, shading, or 2D key-
points [41, 14]. Despite the significant runtime required
to solve the complicated optimization problem, the com-
mon failures because of local minima, and the error-prone
reliance on ambiguous 2D cues, optimization-based solu-
tions remain the leading paradigm for this problem [22, 7].
Even the emergence of deep learning has not changed sig-
nificantly the landscape. ConvNets did not seem as a vi-
able candidate for this problem because they require a huge
amount of training data and they are infamous for their low
resolution 3D predictions [37, 44]. The goal of our work is
to demonstrate that ConvNets can indeed offer an attractive
solution for this problem, by proposing an efficient and ef-
fective direct prediction approach, which is competitive and
even outperforms iterative optimization methods.

To make this feasible, a critical design choice for our ap-
proach is the incorporation of a parametric statistical body
shape model (SMPL [25]) within our end-to-end frame-
work, presented in Figure 1. The advantage of such a rep-
resentation is that we can generate high quality 3D meshes
in the form of 6890 vertices while estimating only a small
number of parameters, i.e., 72 for pose and 10 for shape.
This low-dimensional parameterization makes the model
friendly for direct network prediction. In fact, this predic-
tion is feasible and accurate by using only 2D keypoints and
silhouettes as input. This allows us to relax the limiting as-
sumption that natural images with 3D shape ground truth
are available for training. In contrast, we can leverage the
available 2D image annotations (e.g., [19, 4]) to train for
image-to-2D inference, while using instances of the para-
metric model to train for 2D-to-3D shape inference. Simul-
taneously, another major advantage of employing this para-
metric model is that its structure allows us to generate the
estimated 3D mesh at training time and optimize directly for
the surface, by using a 3D per-vertex loss. This loss has bet-
ter correlation with the vertex-to-vertex 3D error that is typi-
cally used for evaluation and improves training compared to
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Figure 1. Schematic representation of our framework. (a) An initial ConvNet, Human2D, predicts 2D heatmaps and masks from a single
color image, using 2D pose data [19, 4] for training. (b) Two networks estimate the parameters of the statistical model SMPL [25], using
instances of the parametric model for training. The PosePrior estimates pose parameters (θ) from keypoints, and the ShapePrior estimates
shape parameters (β) from silhouettes. (c) The framework can be finetuned end-to-end without requiring images with 3D shape ground
truth, by projecting the full body 3D mesh to the image and optimizing for the consistency of the projection with 2D annotations (keypoints
and masks). The blue parts (Mesh Generator and Renderer) indicate components without learnable parameters.

naive parameter regression. Finally, we propose to employ
a differentiable renderer to project the generated 3D mesh
back to the 2D image. This enables end-to-end finetuning
of the network by optimizing for the consistency of the pro-
jection with annotated 2D observations, i.e., 2D keypoints
and masks. The complete framework offers a modular di-
rect prediction solution to the problem of 3D human pose
and shape estimation from a single color image and outper-
forms previous approaches on the relevant benchmarks.

Our main contributions can be summarized as follows:

• an end-to-end framework for 3D human pose and
shape estimation from a single color image.

• incorporation of a parametric statistical shape model,
SMPL, within the end-to-end framework, enabling:

– prediction of the SMPL model parameters from
ConvNet-estimated 2D keypoints and masks to avoid
training on synthetic image examples.

– generation of the 3D body mesh at training time and
supervision based on the 3D shape consistency.

– use of a differentiable renderer for 3D mesh projec-
tion and refinement of the network with supervision
based on the consistency with 2D annotations.

• superior performance compared to previous ap-
proaches for 3D human pose and shape estimation at
significantly faster running time.

2. Related work

3D human pose estimation: In order to estimate a con-
vincing 3D reconstruction of the human body, it is crucial
to get an accurate prediction of the 3D pose of the person.
Many recent works follow the end-to-end paradigm [48,
40, 42, 46, 55], using images as input to predict 3D joint
locations [23, 45, 34, 28], regress 3D heatmaps [31], or
classify the image in a particular pose class [39, 40]. Un-
fortunately, an important constraint is that most of these
ConvNets require images with 3D pose ground truth for
training, limiting the available training data sources. Other
approaches commit to the 2D pose estimates provided by
state-of-the-art ConvNets and focus on the 3D pose re-
construction [29, 57], recover 3D pose exemplars [8], or
produce multiple 3D pose candidates consistent with the
2D pose [18]. Notably, Martinez et al. [27] demonstrate
state-of-the-art results using a simple multi-layer perceptron
which regresses the 3D joint locations from 2D pose input.
Our goal is significantly different from the aforementioned
works, since instead of a rough stickman-like figure, we es-
timate the whole surface geometry of the human body.
Human shape estimation: Concurrently with advances in
3D human pose, a different set of works addressed the prob-
lem of human shape estimation. In this case, given a sin-
gle image, most methods attempt to estimate the parame-
ters of a statistical body shape model like SCAPE [5] or
SMPL [25]. The input is usually silhouettes, while regres-
sion forests [9] and ConvNets [11, 10] have been proposed



for the prediction. Knowledge of human shape is useful
for biometric applications, however we argue that for 3D
perception the potential and the challenges are significantly
greater when pose and shape are inferred jointly.
Joint 3D human pose and shape estimation: Despite indi-
vidual advances in pose and shape prediction, their joint es-
timation makes the task significantly harder. This has con-
sistently fostered research in non single image scenarios,
for more robust results. Xu et al. [54] propose a pipeline
for full performance capture from monocular video assum-
ing knowledge of the shape mesh for the observed subject.
Alldieck et al. [3] estimate pose and shape jointly from
monocular video relying on optical flow cues. Rhodin et
al. [36] and Huang et al. [16] use images from multiple cal-
ibrated cameras and rely on keypoint detections, silhouettes
and temporal consistency to recover a reconstruction of the
body. An alternative setting is proposed by Weiss et al. [53]
making use of the depth modality of the Kinect sensor to
tackle the same problem. In the same spirit of exploring
different sensors, von Marcard et al. [52] use a sparse set of
IMUs on the subject to recover pose and shape jointly.
3D human pose and shape from a single color image: In
the most challenging case of using only a single color im-
age as input, the work of Sigal et al. [41] is among the first
to estimate high quality 3D shape estimates, by fitting the
parametric model SCAPE [5] to ground truth image silhou-
ettes. Guan et al. [14] use silhouettes, edges and shading as
cues during the fitting process, but still require initialization
through a user specified 2D skeleton. A fully automatic ap-
proach was proposed very recently by Bogo et al. [7]. They
use 2D keypoint detections from a 2D pose ConvNet [33]
and fit the parametric model SMPL [25] to these 2D loca-
tions. Their 3D pose results are very accurate, but shape
remains highly underconstrained. To improve upon this,
Lassner et al. [22] extends the fitting using silhouettes pro-
vided by a segmentation ConvNet. The common theme of
these works is that they pose an optimization problem and
attempt to fit a body model to a set of 2D observations. The
drawback though is that solving this iterative optimization
problem is very slow, it can easily fail because of local min-
ima, and it relies a lot on error-prone 2D observations.

Alternatively, direct prediction approaches estimate 3D
pose and shape in a discriminative way, without explicitly
optimizing a specific objective during inference. Relevant
to this paradigm is the work of Lassner et al. [22], where a
ConvNet detects 91 landmarks of the human body and then
a random forest estimates the 3D body and shape from these
detections. However, to train for these landmarks, they still
require alignment of body shapes with images. In contrast,
we demonstrate that only a much smaller set of annota-
tions are critical for the reconstruction, i.e., 2D joints and
masks, which can be provided by human annotators and are
abundant for in-the-wild images [19, 4, 24], while we also

incorporate everything within a unified end-to-end frame-
work. Concurrently, Tan et al. [43] use an encoder-decoder
ConvNet, where the decoder is trained to predict the silhou-
ette corresponding to SMPL parameters. We differ to them
by identifying that from these parameters we can analyti-
cally generate the body mesh and project it to the image in
a differentiable way (as in [47] for face models), avoiding
half a million of extra learnable weights. Instead, we focus
our computational and learning effort in the image to 3D
shape part of the framework. Our work is also related to the
concurrent work of Tung et al. [50], however our framework
can be trained from scratch instead of relying on synthetic
image data for pretraining, and we demonstrate state-of-the-
art results for model-based 3D pose and shape prediction.

3. Human body shape models
Statistical body shape models, like SCAPE [5] or

SMPL [25], are powerful tools, which provide significant
opportunities for an end-to-end framework. One of the
important advantages is their low-dimensional parameter
space, which is very suitable for direct network prediction.
With this parameter representation, we can keep the out-
put prediction space small, compared to voxelized or point
cloud representations. Simultaneously, the low dimensional
prediction does not sacrifice the quality of the output, since
we can still generate high quality 3D meshes from the es-
timated parameters. Furthermore, from a learning perspec-
tive, we bypass the problem of learning the statistics of the
human body, and devote the network capacity at the infer-
ence of the model parameters from image evidence. In con-
trast, approaches without the aid of a model put additional
burden on the learning side, which often leads to embarrass-
ing prediction errors (e.g., failing to reconstruct limbs under
occlusion, missing body details, etc). Moreover, most mod-
els offer a convenient disentanglement of pose and shape
which is useful to independently focus on the factors that
affect each one of the two. Last but certainly not least for
end-to-end approaches, the function which generates the 3D
mesh from parameter inputs is differentiable, making the
models compatible with current end-to-end pipelines.

In this work, we employ the more recent SMPL model,
introduced by Loper et al. [25]. We provide the essential
notation here, and we refer the reader to [25] for more de-
tails. SMPL defines a function M(β,θ; Φ), where β are
the shape parameters, θ are the pose parameters and Φ are
fixed parameters of the model. The direct output of this
function is a body mesh P ∈ RN×3 with N = 6890 ver-
tices Pi ∈ R3. The shape of the model uses a linear com-
bination of a low number of principal body shapes which
are learned from a large dataset of body scans [38]. The
shape parameters β are the linear coefficients of these base
shapes. The pose of the body is defined through a skeleton
rig with 23 joints. The pose parameters θ are expressed in



the axis angle representation and define the relative rotation
between parts of the skeleton. In total, 72 parameters define
the pose (3 for each of the 23 joints, plus 3 for the global
rotation). Given the rest pose shape retrieved by the shape
parameters β, SMPL defines pose-dependent deformations
and uses the pose parameters θ to produce the final output
mesh. Conveniently, the body joints J are a linear combina-
tion of a sparse set of mesh vertices, making joints a direct
outcome of the estimated body mesh.

4. Technical approach
The conventional ConvNet-based approach for our task

would be to acquire a large amount of color images with 3D
shape ground truth and train the network with these input-
output pairs. However, except for small-scale datasets [22]
or synthetically generated image examples [51] this type of
data is typically unavailable. Therefore, to deal with this
task, we need to rethink the typical pipeline. Our main goal
is to leverage all the resources we have available and use our
insights for the problem to build an effective framework.
As a first step, from findings of prior work, we identify
that 3D pose can be estimated reliably from 2D pose es-
timates [7, 27], while the shape can be inferred from silhou-
ette measurements [11, 10]. This observation conveniently
decomposes the problem in a) estimation of keypoints and
masks from color images and, b) prediction of 3D pose and
shape from the 2D evidence. The advantage of this prac-
tice is that the framework can be trained without requiring
images with 3D shape ground truth.

4.1. Keypoints and silhouette prediction

The first step of our framework focuses on 2D keypoint
and silhouette estimation. This part is motivated by the
availability of large-scale benchmarks [19, 4, 24] with 2D
joints and mask annotations. Considering the volume and
the variability of this data, we leverage it to train a ConvNet
for 2D pose and silhouette prediction, that is particularly
reliable under various imaging conditions and poses.

In the past, two individual ConvNets have been used to
provide 2D keypoints and masks [16, 22]. In contrast, for
a more elegant solution, we train a single ConvNet, which
we denote as Human2D, that generates two outputs, one
for keypoints and one for silhouettes. Human2D follows
the Stacked Hourglass design [30], using two hourglasses,
which was found to be a good trade-off between accuracy
and running time. The keypoint output is in the form of
heatmaps [49, 32], where an MSE loss, Lhm, between the
ground truth and the predicted heatmaps is used for su-
pervision. The silhouette output has two channels (body
and background) and is supervised using a pixelwise binary
cross entropy loss, Lsil. For training, we combine the two
losses: Lhg = λLhm+Lsil, where λ = 100. This ConvNet
falls under the multi-task learning paradigm [34]. Through
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Figure 2. We aim to learn the mapping from silhouettes and key-
points to model parameters, so we can synthesize body model in-
stances and project them to the image plane to simulate the net-
work input. We only require a source to sample pose parameters,
and a source to sample body shape parameters. Projections from
different viewpoints can also be employed for data augmentation.

sharing, the two tasks might benefit each other, but multi-
task learning can also pose certain challenges (e.g., appro-
priate weighting of the losses), as Kokkinos identifies [21].

4.2. 3D pose and shape prediction

The second step is significantly more challenging, re-
quiring estimation of the full body 3D pose and shape from
2D keypoints and silhouettes. Silhouettes and/or keypoints
have been used extensively for 3D model fitting through it-
erative optimization [6, 7, 22]. Here, we demonstrate that
this mapping can also be learned from data while it is pos-
sible to get a reliable prediction in a single estimation step.

For this mapping, we train two network components:
(a) the PosePrior, which uses 2D keypoint locations as in-
put together with the confidence of the detections (realised
by the maximum value of each heatmap) and estimates the
pose coefficients θ, and (b) the ShapePrior, which uses the
silhouette as input and estimates the shape coefficients β.
In general, the silhouette can be helpful for 3D pose in-
ference [6] and vice versa [7]. However, empirically we
discovered this disentanglement to provide more stable and
accurate 3D predictions, while it also leads to a more mod-
ular pipeline (e.g. updating only the PosePrior, without re-
training the whole network). Regarding the architecture,
the PosePrior uses two bilinear units [27], where the input
is the 2D keypoint locations and the maximum responses
from each heatmap, and the output is the 72 SMPL pose pa-
rameters θ. The ShapePrior uses a simple architecture with
five 3× 3 convolutional layers, each one followed by max-
pooling, and an additional bilinear unit at the end with 10
outputs, corresponding to the SMPL shape parameters β.

The form of the input (2D keypoints and masks) and the
output (shape and pose parameters) allows us to produce
large amount of training data by generating instances of the
SMPL model with different 3D pose and shape (Figure 2).
In fact, we can leverage MoCap data (e.g., [1, 17]) to sam-
ple 3D poses, and body scans (e.g., [38]) to sample body



shapes. For the input, we only need to project the 3D model
to the image plane (possibly from different viewpoints), and
compute silhouettes and 2D keypoint locations to generate
input-output pairs for training. This data generation is feasi-
ble, exactly because we used an intermediate silhouette and
keypoints representation. In contrast, attempting to learn a
mapping directly from color images would require genera-
tion of synthetic image examples [51], which typically do
not reach the variability of in-the-wild images.

In the previous paragraphs, we deliberately avoided
discussing the supervision of the Priors networks. Past
works [22, 43] have examined supervision schemes using
a typical L2 loss between the predicted and ground truth
parameters. One shortcoming of this naive parameter re-
gression approach, is that different parameters might have
effects of different scale on the final reconstruction (e.g., the
global body rotation is much more crucial than the local ro-
tation of the hand with respect to the wrist). To avoid hand-
selecting or tuning the supervision for each parameter, we
aim for a more global solution. Our approach entails the
generation of the full body mesh at training time, where we
optimize explicitly for the predicted surface by applying a
3D per-vertex loss. Since the functionM(β,θ; Φ) is differ-
entiable, we can backpropagate through it and handle this
mesh generator as a typical layer of our network, without
any learnable parameters. Given the predicted mesh ver-
tices P̂i and the corresponding groundturth vertices Pi, we
can supervise the network with a 3D per-vertex loss:

LM =

N∑
i=1

‖P̂i − Pi‖22, (1)

which considers all the vertices equally and has better cor-
relation with the 3D per-vertex error which is usually em-
ployed for evaluation. Alternatively, if the focus is mainly
on 3D pose, we can also supervise the network considering
only the M relevant 3D joints Ji, which are trivially ex-
posed by the model as a sparse linear combination of the
mesh vertices. In this case, denoting with Ĵi the estimated
joints, the corresponding loss can be expressed as:

LJ =

M∑
i=1

‖Ĵi − Ji‖22. (2)

Empirically, we found that the best training strategy is to
initially get a reasonable initialization for the network pa-
rameters using an L2 parameter loss, and then activate also
the vertex loss LM (or the joints loss LJ if the focus is on
pose only), to train a better model.

4.3. Differentiable renderer

Our previous analysis relaxed the assumption that im-
ages with 3D shape ground truth are available for training
and relied on geometric 3D data (MoCap and body scans).

In some cases though, even this type of data might be un-
available. For example, LSP [19] has gymnastics or parkour
poses which are not represented in typical MoCap. Luckily,
our generated 3D mesh has potential to leverage these 2D
annotations for training purposes.

To close the loop, our complete approach includes an
additional step that projects the 3D mesh to the image and
examines consistency with 2D annotations. In concurrent
work, a decoder-type network was used to learn the map-
ping from SMPL parameters to silhouettes [43]. How-
ever, here we identify that this mapping is known and in-
volves the projection of the 3D mesh to the image, which
can be expressed in a differentiable way, without the need
to train a network with learnable weights. More specifi-
cally, for our implementation, we employ an approximately
differentiable renderer, OpenDR [26], which projects the
mesh and the 3D joints to the image space, and enables
backpropagation. The projection operation Π gives rise
to: (a) the silhouette Π(P̂ ) = Ŝ, which is represented as
a 64 × 64 binary image, and (b) the projected 2D joints
Π(Ĵ) = Ŵ ∈ RM×2. In this case, the supervision comes
from the comparison of these projections with the annotated
silhouettes S, and the 2D keypointsW , using L2 losses:

LΠ = µ

M∑
i

‖Ŵi −Wi‖22 + ‖Ŝ − S‖22, (3)

where µ = 10. The goal of this type of supervision is
twofold: (a) it can be employed for end-to-end refinement
of the network, using only images with 2D keypoints and/or
masks for training, and (b) it can be useful to mildly adapt
a generic pose or shape prior to a new setting (e.g., new
dataset), where only 2D annotations are available.

5. Empirical evaluation

This section focuses on the empirical evaluation of the
proposed approach. First, we present the benchmarks that
we employed for quantitative and qualitative evaluation.
Then, we provide some essential implementation details of
the approach. Finally, quantitative and qualitative results
are presented on the selected datasets.

5.1. Datasets

For the empirical evaluation, we employed two recent
benchmarks that provide color images with 3D body shape
ground truth, the UP-3D dataset [22] and the SURREAL
dataset [51]. Additionally, we used the Human3.6M [17]
dataset for further evaluation of the 3D pose accuracy.
UP-3D: It is a recent dataset that collects color images from
2D human pose benchmarks, like LSP [19] and MPII [4]
and uses an extended version of SMPLify [7] to provide 3D
human shape candidates. The candidates were evaluated
by human annotators to select only the images with good



3D shape fits. It comprises 8515 images, where 7818 are
used for training and 1389 for testing. We report results
on this test set, while we also consider subsets, based on
the original dataset (LSP, MPII, or FashionPose) of the UP-
3D images. Finally, we examine a reduced test set of 139
images, selected by Tan et al. [43] aiming to limit the range
for the global rotation. We report results using the mean
per-vertex error, between predicted and ground truth shape.
SURREAL: It is a recent dataset which provides synthetic
image examples with 3D shape ground truth. The dataset
draws poses from MoCap [1, 17] and body shapes from
body scans [38] to generate valid SMPL instances for each
image. The synthetic images are not very realistic, but the
accurate ground truth, makes it a useful benchmark for eval-
uation. We report results on the Human3.6M part of the
dataset, considering all test videos and keeping every fifth
frame of each video to avoid excessive redundancy in the
data. Results are reported using the mean per-vertex error.
Human3.6M: It is a large-scale indoor dataset that con-
tains multiple subjects performing typical actions like “Eat-
ing” and “Walking”. We follow the protocol of Bogo et
al. [7] using all videos of subjects S9 and S11 from ‘cam3’
for evaluation. The original videos are downsampled from
50fps to 10fps to remove redundancy as is done in [22]. Re-
sults are reported using the reconstruction error.

5.2. Implementation details

The Human2D network is trained on MPII [4], LSP [19]
and LSP-extended [20] data, using the silhouettes from
Lassner et al. [22]. We use a batch size of 4, learning rate
set to 3e-4, and rmsprop for the optimization. Augmenta-
tion for rotation (±30◦), scale (0.75-1.25) and flipping (left-
right) is used. The training lasts for 1.2M iterations.

For the Priors networks, we train with a batch size of
256, learning rate set to 3e-4, and using rmsprop for the
optimization. Initially, the networks are trained for 40k it-
erations using an L2 parameter loss, and then for 60k more
iterations using also LM (or LJ if we focus on pose only)
weighted equally with the parameter loss.

The end-to-end refinement with the reprojection loss
lasts for 2k iterations with a batch size of 4, learning rate
set to 8e-5, and using rmsprop for the optimization. To im-
prove training robustness, the end-to-end updates are alter-
nated with individual updates of the Human2D and the Pri-
ors networks (as described in the previous two paragraphs).
This helps the individual components to maintain their orig-
inal purpose, while we are also leveraging the strength of
end-to-end training to integrate them together.

5.3. Component evaluation

In this section, we evaluate the components of our ap-
proach, using the UP-3D dataset. We train two different
versions of our system, where for Priors we leverage data

Avg error

Data source for Priors UP-3D CMU

Parameter loss (axis-angle) 514.9 589.9

Parameter loss (rot matrix) 140.7 152.2
+ Per-vertex loss 120.7 142.0

+ Reprojection finetuning 117.7 135.5

Table 1. Ablative study on UP-3D, comparing the different super-
vision forms on the same architecture. The numbers are mean per-
vertex errors (mm). Two versions of the Priors networks are used,
trained with data from UP-3D [22] and CMU [51] respectively.
All networks are trained for the same number of iterations.

Figure 3. Successful 3D pose and shape predictions of our ap-
proach on challenging examples of UP-3D.

either from UP-3D (provided by Lassner et al. [22]), or
from CMU MoCap (provided by Varol et al. [51]). The
Human2D network remains the same in both cases.

Our experiment focuses on the type of supervision.
Naively training the Priors networks using an L2 loss for
the θ and β parameters [43], keeps the prediction error
high as can be seen in Table 1 (line 1). Alternatively, we
can transform the θ parameters from axis-angle represen-
tation to rotation matrix using the Rodrigues’ rotation for-
mula [12], and apply an L2 loss on this representation in-
stead (line 2). This leads to more stable training and bet-
ter performance, as has also been observed by Lassner et
al. [22]. However, generating the body mesh and further
training of the network using our proposed per-vertex su-
pervision (line 3) is even more appropriate and elevates our
framework to state-of-the-art performance (see Section 5.4).
Finally, the additional end-to-end finetuning with 2D anno-
tations and the reprojection error (line 4) offers a mild re-
finement to the network. In the UP-3D case, the benefit is
small, since the Priors have already observed very similar
examples with full 3D ground truth, so 2D annotations be-
come redundant. However, when training the Priors with
CMU data, the domain shift, from CMU poses to UP-3D
poses is significant, so these 2D annotations offers a clear



LSP MPII Fashion Full Reduced

Lassner et al. [22] 174.4 184.3 108.0 169.8 123.6
Tan et al. [43] (Indirect) - - - - 189
Tan et al. [43] (Direct) - - - - 105
Ours 127.8 110.0 106.5 117.7 100.5

Table 2. Detailed results on UP-3D [22]. The numbers are mean
per vertex errors (mm), except for the ‘Reduced’ column where
only 91 landmarks [22] contribute to the error. Our approach out-
performs the other baselines across the table.

Figure 4. Examples from UP-3D where our approach (blue
shapes) performs significantly better than the direct prediction
method of Lassner et al. [22] (pink shapes).

performance benefit. This is an interesting empirical result
demonstrating that training with reprojection losses can be
useful not only for end-to-end refinement, but it can also as-
sist the network with novel information recovered from 2D
annotations. Some qualitative results from UP-3D using our
best model are presented in Figure 3.

5.4. Comparison with state-of-the-art

UP-3D: We compare with two state-of-the-art direct predic-
tion approaches by Lassner et al. [22] and Tan et al. [43].
We do not include the SMPLify method [7] since a version
of this algorithm was used to generate the ground truth for
this dataset, so we observed that many estimated reconstruc-
tions had only minimal differences from the ground truth.
For [22] we use the publicly available code to generate pre-
dictions. The complete results are presented in Table 2.
Our approach outperforms the other two baselines by sig-
nificant margins. It is interesting to note that a version of
[43], which uses over 100k images (most of them synthetic)
with ground truth pose and shape parameters to directly su-
pervise the network (line ‘Direct’) is outperformed by our
approach which does not have access to this data. Finally,
in Figure 3, we provide a qualitative comparison with our
closest competitor, the direct prediction approach of [22].
SURREAL: We compare with two state-of-the-art ap-
proaches, one based on iterative optimization, SMPLify [7],
and one based on direct prediction [22]. We use the publicly
available code for both approaches to generate predictions.
For our approach, we train the PosePrior using CMU data

Avg

Lassner et al. [22] (GT shape) 200.5
Bogo et al. [7] (GT shape) 177.2
Ours (GT shape) 151.5

Bogo et al. [7] 202.0
Ours 155.5

Table 3. Detailed results on the Human3.6M part of SUR-
REAL [51]. Numbers are mean per vertex errors (mm). “GT
shape” indicates that the shape coefficients are known.

Avg

Akhter & Black [2]* 181.1
Ramakrishna et al. [35]* 157.3
Zhou et al. [56]* 106.7
Bogo et al. [7] 82.3
Lassner et al. [22] (direct prediction) 93.9
Lassner et al. [22] (optimization) 80.7
Ours 75.9

Table 4. Detailed results on Human3.6M [17]. Numbers are recon-
struction errors (mm). The numbers are taken from the respective
papers, except for (*), which were obtained from [7].

which we found to be more general than UP-3D. Also, we
train two ShapePriors, for female and male subjects respec-
tively, since the gender is known for this dataset. We em-
phasize that the testing was conducted on the Human3.6M
part of the dataset to avoid any overlap with the training of
the different methods (in terms of images or priors). The
complete results are presented in Table 3. Since Lassner et
al. [22] provide only a non gender-specific model for shape,
we also report results considering only the pose estimates,
and assuming known shape parameters. Our approach out-
performs the other two baselines. For this dataset we ob-
served that because of the challenging color images (low
illumination, out-of-context backgrounds, etc), the 2D de-
tections where more noisy than usual, providing some hard
failures for the iterative optimization approach [7]. In con-
trast, our approach was more resistant to these noisy cases
recovering a coherent 3D shape in most cases.
Human3.6M: Finally, for Human3.6M we evaluate only
the estimated 3D pose, since there is no body shape ground
truth available. Our network is the same as before (Priors
trained on CMU), although, we use the 3D joints error for
supervision (equation 2), since the focus is on pose. Among
others, we compare with the SMPLify method [7] and the
direct prediction approach of Lassner et al. [22]. Similarly
to the other approaches we compare with, we do not use any
data from this dataset for training. The detailed results are
presented in Table 4. Our approach again outperforms the
other baselines. Some works have reported better results re-



FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify 91.89 88.07 87.71 63.98
SMPLify + our anchor 92.17 88.38 88.24 64.62

SMPLify on GT 92.17 88.23 88.82 67.03

Table 5. Accuracy and f1 scores for foreground-background and
six-part segmentation on LSP test set for different versions of
SMPLify. Using our direct prediction as an anchor improves
vanilla SMPLify, while also achieving a 3x speedup. The num-
bers for the first and third rows are taken from [22].

Figure 5. LSP examples with improved SMPLify fits (right side of
each image) when our direct prediction is used as an initialization
and anchor for the iterative optimization.

sults on Human3.6M (e.g., [27, 31]), but they do so only by
leveraging the training data of this dataset for training.

5.5. Boosting SMPLify

In the previous section, we validated that our direct pre-
diction approach can achieve state-of-the-art results with a
single prediction step. However, we aspire our method to
have greater applicability, by being complementary to iter-
ative optimization solutions. In fact, here we demonstrate
that our direct predictions can be a useful initialization and
provide a reliable anchor for the SMPLify approach [7].

To keep it simple, we make only minor modifications
to the SMPLify optimization. First, we use our predicted
pose as an initialization, instead of the typical mean pose.
Additionally, we avoid the hierarchical four-step optimiza-
tion, and we limit the whole procedure in a single step.
The reason for the multi-stage optimization is to explore the
pose space and get a roughly correct pose estimate. How-
ever, using our predicted pose as initialization makes this
search unnecessary, so we require only the last step of the
previously complex optimization scheme. Finally, we add
one more data term to the optimization: Eanchor(θ) =∑

i ρ(θi − θiniti ), to avoid deviations from our predicted,
anchor pose. Similarly to [7], we use the Geman-McClure
penalty function, ρ [13], for the optimization. This anchor-
ing, does not typically have effect on the quality of the out-
put, but it can accelerate the convergence. We can also use
the shape parameters as anchor, but we observed that pose
had greater effect than shape on the optimization.

For our evaluation, we use the public implementation of
SMPLify and we run the original code, as well as our an-
chored version, on the LSP test set. The anchored version

is three times faster on average than vanilla SMPLify. More
importantly, this speedup comes also with a quantitative
performance benefit. In Table 5 we present the segmenta-
tion accuracy of different SMPLify versions, by projecting
the 3D shape estimate on the image. To demonstrate that the
performance benefit of our anchored version is non-trivial,
we report the results for running SMPLify on the ground
truth 2D joints and silhouettes. Improved fits from the an-
chored version are presented in Figure 5. These results vali-
date the additional benefit of our direct prediction approach,
since it can also enhance current pipelines that rely on iter-
ative optimization.

5.6. Running time

Our approach requires a single forward pass from the
ConvNet to estimate the full body 3D human pose and
shape. This translates to only 50ms on a Titan X GPU.
In comparison, SMPLify [7] report roughly 1 minute for
the optimization, while the publicly available (unoptimized)
code runs on 3 minutes per image on average. When the
number of landmarks increases to 91, Lassner et al. [22]
report that the SMPLify optimization can get two times
slower. This makes our direct prediction approach more
than three orders of magnitude faster than the state-of-the-
art iterative optimization approaches. Regarding other di-
rect prediction approaches, Lassner et al. [22] reports run-
time of 378ms, but we demonstrate significantly better per-
formance with our end-to-end framework.

6. Summary

The goal of this paper was to present a viable ConvNet-
based approach to predict 3D human pose and shape from
a single color image. A central part of our solution was the
incorporation of a body shape model, SMPL, in the end-
to-end framework. Through this inclusion we enabled: a)
prediction of the parameters from 2D keypoints and silhou-
ettes, b) generation of the full body 3D mesh at training
time using supervision for the surface with a per-vertex loss,
and c) integration of a differentiable renderer for further
end-to-end refinement using 2D annotations. Our approach
achieved state-of-the-art results on relevant benchmarks,
outperforming previous direct prediction and optimization-
based solutions for 3D pose and shape prediction. Finally,
considering the efficiency of our approach, we demon-
strated its potential to accelerate and improve typical iter-
ative optimization pipelines.

Project Page: https://www.seas.upenn.edu/˜pavlakos/
projects/humanshape

Acknowledgements: We gratefully appreciate support through the fol-
lowing grants: NSF-IIP-1439681 (I/UCRC), ARL RCTA W911NF-10-2-
0016, ONR N00014-17-1-2093, DARPA FLA program and NSF/IUCRC.

https://www.seas.upenn.edu/~pavlakos/projects/humanshape
https://www.seas.upenn.edu/~pavlakos/projects/humanshape


References
[1] CMU Graphics Lab Motion Capture Database. 4, 6
[2] I. Akhter and M. J. Black. Pose-conditioned joint angle lim-

its for 3D human pose reconstruction. In CVPR, 2015. 7
[3] T. Alldieck, M. Kassubeck, B. Wandt, B. Rosenhahn, and

M. Magnor. Optical flow-based 3D human motion estimation
from monocular video. In German Conference on Pattern
Recognition, 2017. 1, 3

[4] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2D
human pose estimation: New benchmark and state of the art
analysis. In CVPR, 2014. 1, 2, 3, 4, 5, 6

[5] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,
and J. Davis. SCAPE: shape completion and animation
of people. In ACM Transactions on Graphics (TOG), vol-
ume 24, pages 408–416, 2005. 2, 3
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