
Burst Denoising with Kernel Prediction Networks

Ben Mildenhall1,2∗ Jonathan T. Barron2 Jiawen Chen2

Dillon Sharlet2 Ren Ng1 Robert Carroll2
1UC Berkeley 2Google Research

Abstract

We present a technique for jointly denoising bursts of im-
ages taken from a handheld camera. In particular, we pro-
pose a convolutional neural network architecture for pre-
dicting spatially varying kernels that can both align and de-
noise frames, a synthetic data generation approach based
on a realistic noise formation model, and an optimization
guided by an annealed loss function to avoid undesirable
local minima. Our model matches or outperforms the state-
of-the-art across a wide range of noise levels on both real
and synthetic data.

1. Introduction

The task of image denoising is foundational to the study
of imaging and computer vision. Traditionally, the prob-
lem of single-image denoising has been addressed as one
of statistical inference using analytical priors [20, 22], but
recent work has built on the success of deep learning by us-
ing convolutional neural networks that learn mappings from
noisy images to noiseless images by training on millions of
examples [29]. These networks appear to learn the likely
appearance of “ground truth” noiseless images in addition
to the statistical properties of the noise present in the input
images.

Multiple-image denoising has also traditionally been ap-
proached through the lens of classical statistical inference,
under the assumption that averaging multiple noisy and in-
dependent samples of a signal will result in a more accu-
rate estimate of the true underlying signal. However, when
denoising image bursts taken with handheld cameras, sim-
ple temporal averaging yields poor results because of scene
and camera motion. Many techniques attempt to first align
the burst or include some notion of translation-invariance
within the denoising operator itself [8]. The idea of de-
noising by combining multiple aligned image patches is
also key to many of the most successful single image tech-
niques [3, 4], which rely on the self-similarity of a single

∗Work done while interning at Google.

image to allow some degree of denoising via averaging.
We propose a method for burst denoising with the signal-

to-noise ratio benefits of multi-image denoising and the
large capacity and generality of convolutional neural net-
works. Our model is capable of matching or outperforming
the state-of-the-art at all noise levels on both synthetic and
real data. Our contributions include:

1. A procedure for converting post-processed images
taken from the internet into data with the character-
istics of raw linear data captured by real cameras. This
lets us to train a model that generalizes to real images
and circumvents the difficulties in acquiring ground
truth data for our task from a camera.

2. A network architecture that outperforms the state-
of-the-art on synthetic and real data by predicting a
unique 3D denoising kernel to produce each pixel of
the output image. This provides both a performance
improvement over a network that synthesizes pixels di-
rectly, and a way to visually inspect how each burst
image is being used.

3. A training procedure for our kernel prediction network
that allows it to predict filter kernels that use infor-
mation from multiple images even in the presence of
small unknown misalignments.

4. A demonstration that a network that takes the noise
level of the input imagery as input during training and
testing generalizes to a much wider range of noise lev-
els than a blind denoising network.

2. Related work
Single-image denoising is a longstanding problem, origi-

nating with classical methods like anisotropic diffusion [20]
or total variation denoising [22], which used analytical pri-
ors and non-linear optimization to recover a signal from a
noisy image. These ideas were built upon to develop multi-
image or video denoising techniques such as VBM4D [17]
and non-local means [3, 14], which group similar patches
across time and jointly filter them under the assumption
that multiple noisy observations can be averaged to better
estimate the true underlying signal. Recently these ideas



(a) Reference (b) Average (c) HDR+ (d) NLM (e) VBM4D (f) Ours (KPN)Reference frame

Figure 1: A qualitative evaluation of our model on real image bursts from a handheld camera in a low-light environment.
The reference frame from the input burst (a) is sharp, but noisy. Noise can be reduced by simply averaging a burst of similar
images (b), but this can fail in the presence of motion (see Figure 8). Our approach (f) learns to use the information present
in the entire burst to denoise a single frame, producing lower noise and avoiding artifacts compared to baseline techniques (c
– e). See the supplement for full resolution images and more examples.

have been retargeted towards the task of denoising a burst
of noisy images captured from commodity mobile phones,
with an emphasis on energy efficiency and speed [8, 16].
These approaches first align image patches to within a few
pixels and then perform joint denoising by robust averag-
ing (such as Wiener filtering). Another line of work has
focused on achieving high quality by combining multiple
image formation steps with a single linear operator and us-
ing modern optimization techniques to solve the associated
inverse problem [11, 10]. These approaches generalize to
multiple image denoising but require calculating alignment
as part of the forward model.

The success of deep learning has yielded a number of
neural network approaches to multi-image denoising [29,
27], in addition to a wide range of similar tasks such as joint
denoising and demosaicking [7], deblurring [24], and su-
perresolution [25]. Similar in spirit to our method, Kernel-
Predicting Networks [2] denoise Monte Carlo renderings
with a network that generates a filter for every pixel in
the desired output, which constrains the output space and
thereby prevents artifacts. Similar ideas have been applied
successfully to both video interpolation [18, 19] and video
prediction [6, 15, 28, 5], where applying predicted optical
flow vectors or filters to the input image data helps prevent
the blurry outputs often produced by direct pixel synthesis
networks.

3. Problem specification

Our goal is to produce a single clean image from a noisy
burst of N images captured by a handheld camera. Fol-
lowing the design of recent work [8], we select one image
X1 in the burst as the “reference” and denoise it with the
help of “alternate” frames X2, . . . , XN . It is not necessary
for X1 to be the first image acquired. All input images
are in the raw linear domain to avoid losing signal due to
the post-processing performed between capture and display
(e.g., demosaicking, sharpening, tone mapping, and com-
pression). Creating training examples for this task requires
careful consideration of the characteristics of raw sensor
data.

3.1. Characteristics of raw sensor data

Camera sensors output raw data in a linear color space,
where pixel measurements are proportional to the number
of photoelectrons collected. The primary sources of noise
are shot noise, a Poisson process with variance equal to the
signal level, and read noise, an approximately Gaussian pro-
cess caused by a variety of sensor readout effects. These ef-
fects are well-modeled by a signal-dependent Gaussian dis-
tribution [9]:

xp ∼ N
(
yp, σ

2
r + σsyp

)
(1)

where xp is a noisy measurement of the true intensity yp
at pixel p. The noise parameters σr and σs are fixed for



each image but can vary across images as sensor gain (ISO)
changes1.

The sensor outputs pixel measurements in the integer-
quantized range [0, 2B), where B is the sensor’s bit depth.
Clipping against the upper end of the range can be avoided
by underexposing the photo. The sensor itself avoids clip-
ping potentially negative read noise values against zero by
adding a constant positive offset called the “black level” to
every pixel before measurement. This offset must be sub-
tracted in order to make sure that the expected value of a
completely black pixel is truly zero.

Real image bursts contain motion from both hand shake
and scene motion. Hand motion can often be well estimated
with a global model, while scene motion requires local esti-
mation. Motion may cause disocclusions, thereby rendering
accurate correspondence impossible.

3.2. Synthetic training data

Gathering ground truth data for image restoration tasks
is challenging, as it is constrained by the maximum perfor-
mance of the imaging system—it is unlikely that we can
learn to denoise beyond the quality of the ground truth ex-
amples. Plotz et al. [21] describe the many issues with creat-
ing a ground truth dataset for single-image denoising. Burst
denoising adds an additional complication since methods
must be robust to some degree of misalignment between the
images. Because deep neural networks require millions of
image patches during training, it is impractical to use real
pairs of noisy and noise-free ground truth bursts. We there-
fore synthesize training data, using images from the Open
Images dataset [13]. These images are modified to intro-
duce synthetic misalignment and noise approximating the
characteristics of real image bursts.

To generate a synthetic burst of N frames, we take a sin-
gle image and generate N cropped patches with misalign-
ments ∆i, where each ∆i is drawn from a 2D uniform in-
teger distribution. We downsample these patches by J = 4
in each dimension using a box filter, which reduces noise
and compression artifacts. We constrain our random crops
such that after downsampling, the alternate frames have a
maximum translation of ±2 pixels relative to the reference.

It is critical to also simulate complete alignment failure
to provide robustness in the presence of occlusion or large
scene motion. Some real bursts will be easy to align and
some hard, so for each burst we pick an approximate num-
ber of misaligned frames n ∼ Poisson(λ). Then for each
alternate frame in that burst, we sample a coin flip with
probability n/N to decide whether to apply a translational
shift of up to ±16 pixels after downsampling relative to the
reference. For synthetic bursts of length 8, we use λ = 1.5.

1These noise parameters are part of the Adobe DNG specification.
Most cameras are calibrated to output them as a function of analog and
digital gain.

Figure 2: Shot and read noise parameters are tightly coupled
for a digital camera sensor. In blue, we show shot/read pa-
rameter pairs from hundreds of images taken with the same
cellphone camera. In red, we show the shot and read values
corresponding to the synthetic gain levels we use for evalu-
ation in Table 1. During training we sample shot and read
values uniformly at random from the entire rectangular area
identified here, as different camera sensors may trace out
different shot versus read noise curves.

We expect our model to correct for the ±2 pixel misalign-
ment but not for the ±16 pixel misalignment.

To generate synthetic noise, we first invert gamma cor-
rection on our collection of randomly perturbed and down-
sampled crops to yield a set of patches in an approximately
linear color space. Then, we linearly scale the data by a
value randomly sampled from [0.1, 1]. This compresses the
histogram of intensities to more closely match our real data,
which is underexposed to avoid highlight clipping as in the
HDR+ burst imaging pipeline [8]. Finally, we sample shot
and read factors σr, σs from ranges that match what we ob-
serve in real data (see Fig. 2) and add noise to the burst
images by sampling from the distribution of Eq. 1.

4. Model
Our model builds upon recent work in kernel prediction

networks. Niklaus et al. [18, 19] perform video interpola-
tion by generating a stack of two filters at each pixel lo-
cation, then applying these filter kernels to pairs of input
frames. Bako et al. [2] use a similar idea to generate per-
pixel denoising kernels for specifically for Monte Carlo ren-
derings. Our model combines both of these applications of
kernel predicting networks: it generates a stack of per-pixel
filter kernels that jointly aligns, averages, and denoises a
burst to produce a clean version of the reference frame.

Our kernel prediction network (KPN) uses an encoder-
decoder architecture with skip connections closely resem-
bling the architecture in [19] (see Fig. 3). Rather than di-
rectly synthesizing the pixels of an output image with a



Ŷ

convolution layer average pooling layer

bilinear upsampling layerskip connection

64
128

256
512 512 512

256
K2N

⇤

⇤

⇤

⇤

X1...N
Per-pixel
Kernels

X1...N , �̂p

Input burst
and noise estimate

+

Figure 3: Our KPN architecture for burst denoising is based on the encoder-decoder structure in [19], which outputs per-pixel
feature vectors. These vectors are then reshaped into a set of spatially-varying kernels that are applied to the input burst.

single output channel, the KPN has K2N output channels,
which is reshaped into a stack of N K×K linear filters at
each pixel. The value at each pixel p in our output Ŷ is

Ŷ p =
1

N

N∑
i=1

〈
fpi , V

p(Xi)
〉
, (2)

where V p(Xi) is theK×K neighborhood of pixel p in im-
age Xi and fpi is its corresponding kernel. Ŷ is the result
of applying a spatially varying kernel to each image (a dot
product) then computing the mean over time. We will also
use the shorthand Ŷ = 1

N

∑N
i=1 fi(Xi) to denote comput-

ing the two dimensional output image as a whole. In our
experiments, K = 5 and N = 8.

In addition to the raw burst, the network takes a per-pixel
estimate of the standard deviation of the signal as input,
similar to Gharbi et al. [7]. We estimate the noise at each
pixel p to be

σ̂p =
√
σ2
r + σs max(xp, 0) (3)

where xp is the intensity of pixel p in the first image of the
burst. This noise estimate is necessarily approximate be-
cause we are substituting the observed intensity xp for the
true intensity yp. We assume σr and σs are known. The
benefits and tradeoffs of providing the noise level to the net-
work are discussed in Section 5.3.

Unlike Bako et al. [2] we do not normalize the predicted
filters with a softmax, thereby allowing predicted kernels to
have negative values. We also found softmax normalization
to lead to unstable gradients during training.

4.1. Basic loss function

Our basic loss is a weighted average of L2 distance on
pixel intensities and L1 distance on pixel gradients as com-
pared to the ground truth image. We apply the loss after

restoring the white level to 1 and applying the sRGB trans-
fer function for gamma correction, which produces a more
perceptually relevant estimate. Computing the loss without
gamma correction overemphasizes errors in the highlights
and produces overly blurry or patchy shadows.

Our basic loss on an output image patch Ŷ and its ground
truth image patch Y ∗ is

`(Ŷ , Y ∗) = λ2

∥∥∥Γ(Ŷ )− Γ(Y ∗)
∥∥∥2
2

+ λ1

∥∥∥∇Γ(Ŷ )−∇Γ(Y ∗)
∥∥∥
1
.

(4)
Here ∇ is the finite difference operator that convolves its
input with [−1, 1] and [−1, 1]T, and λ2 and λ1 are fixed
constants (both set to 1 in our experiments). Γ is the sRGB
transfer function [23]:

Γ(X) =

{
12.92X, X ≤ 0.0031308

(1 + a)X1/2.4 − a, X > 0.0031308

a = 0.055 (5)

This choice of transfer function was necessary for success-
ful gradient-based optimization. We could not simply apply
the straightforward gamma correction function Xγ because
its gradient approaches infinity as X approaches 0 (which
can cause exploding gradients during optimization) and is
undefined for negative values of X (which we encounter
throughout training due to the negative values in the input
after black level subtraction, and because the sign of model
output is unconstrained).

4.2. Annealed loss term

Minimizing our loss `(Ŷ , Y ∗) with respect to the KPN
model weights is straightforward, as our loss and all model
components are differentiable. However, when training
with just `(Ŷ , Y ∗) as the loss function, we find that our
network rapidly converges to a local minimum where only



the reference frame filter f1 is nonzero. Stochastic gradient
descent on our basic loss appears to have difficulty escap-
ing this local minimum, presumably because multi-image
alignment and denoising is more difficult than single-image
denoising, and because the basic loss does not directly in-
centivize training to consider anything but the reference
frame. To encourage the network to use the other frames,
we use an annealing strategy that initially encourages our
filters to individually align and denoise each image in the
burst before trying to produce a full 3D filter bank that cor-
rectly weights each frame in relation to the others.

Consider the result of applying filters f1, . . . , fN to the
frames X1, . . . , XN . This yields a stack of N filtered im-
ages f1(X1), . . . , fN (XN ) that can be averaged to produce
Ŷ . We add an additional image-space loss against Y ∗ for
each of these intermediate outputs, which is slowly reduced
during training. Our final time varying loss is

L(X;Y ∗, t) = `

(
1

N

N∑
i=1

fi(Xi), Y
∗

)
+ βαt

N∑
i=1

` (fi(Xi), Y
∗) .

(6)
Here β and 0 < α < 1 are hyperparameters controlling the
annealing schedule, and t is the iteration during optimiza-
tion. When βαs � 1, the second term encourages each
filter to shift and denoise its corresponding alternate image
in the burst independently. As t approaches ∞, this con-
straint disappears. In all experiments, we use β = 100 and
α = .9998, which leads to the second term being phased
out around t = 40, 000. For these values of α and β, L(·) is
initially dominated by the second term in Eq. 6, so anneal-
ing can be thought of as a pretraining phase where the KPN
is first trained to align and denoise each frame individually
before attempting to process the entire burst.

We find that the network’s ability to shift alternate frames
to correct for misalignment remains intact once the an-
nealed term is essentially zero. After the constraint that
each fi(Xi) should individually resemble ground truth dis-
appears, the network learns to reweight the relative strength
of each fi such that well aligned frames contribute strongly
and poorly aligned frames are ignored (see Fig. 7).

We implement our network in Tensorflow [1] and opti-
mize using Adam [12] with learning rate 10−4. Our batch
size is 4 and each synthetic burst in the batch has size
128 × 128 × 8. We train for one million iterations on an
NVIDIA K40 GPU, which takes 4-5 days. At test time,
the network can process about 0.7 megapixels/sec on an
NVIDIA GTX 1080 Ti.

5. Experiments
We first quantitatively assess our method on a synthetic

test set, followed by an analysis of its interpretability. To
independently evaluate our design decisions, we conduct a
set of ablations and measure the effect of our annealed loss,

Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8
Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
ref. frame 28.70 0.733 24.19 0.559 19.80 0.372 15.76 0.212
burst avg. 24.70 0.628 24.06 0.552 22.58 0.431 20.00 0.285
HDR+[8] 31.96 0.850 28.25 0.716 24.25 0.531 20.05 0.334
BM3D [4] 33.89 0.910 31.17 0.850 28.53 0.763 25.92 0.651
NLM [3] 33.23 0.897 30.46 0.825 27.43 0.685 23.86 0.475
VBM4D [17] 34.60 0.925 31.89 0.872 29.20 0.791 26.52 0.675
direct 35.93 0.948 33.36 0.910 30.70 0.846 27.97 0.748
KPN, 1 frame 34.95 0.932 32.07 0.878 29.22 0.791 26.29 0.657
KPN, no ann. 35.42 0.944 33.01 0.903 30.46 0.836 27.65 0.724
KPN, σ blind 36.41 0.954 33.83 0.918 30.71 0.848 22.37 0.497
KPN 36.47 0.955 33.93 0.920 31.19 0.857 27.97 0.741

Table 1: Performance on our linear synthetic test set at var-
ious gains (noise levels). Our networks were not trained on
the noise levels implied by the gain evaluated in the fourth
column (see Fig. 2).

PSNR = 25 PSNR = 20 PSNR = 15 PSNR = 10
Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
ref. frame 25.00 0.590 20.00 0.377 15.00 0.199 10.00 0.086
burst avg. 25.39 0.624 24.10 0.502 21.68 0.341 18.08 0.193
VBM4D 32.85 0.902 30.00 0.826 27.40 0.723 25.16 0.612
direct, σ blind 33.70 0.917 28.54 0.753 20.76 0.418 14.95 0.193
direct 33.68 0.918 30.87 0.859 28.06 0.771 25.43 0.663
KPN, σ blind 33.28 0.913 25.35 0.624 15.87 0.227 10.14 0.088
KPN 33.97 0.929 31.25 0.870 28.07 0.758 23.89 0.526

Table 2: Performance on a gamma-corrected version of our
synthetic test set with additive white Gaussian noise at four
different PSNR levels. The networks without a noise pa-
rameter (“σ blind”) do not generalize as well to this case,
but the networks with a noise parameter generalize well,
matching VBM4D’s performance in the scenario for which
it was designed.

noise model, and kernel prediction architecture. Finally, we
qualitatively evaluate our model (and demonstrate its ability
to generalize) on real bursts captured by a mobile phone and
compare against several recent techniques.

We present results on grayscale images because all com-
monly available real-world linear image data has a Bayer
color mosaic. Including demosaicking in our imaging
pipeline makes comparison difficult and unfairly biases
evaluation against our baseline techniques. To produce
grayscale images from our Bayer raw dataset collected from
real cameras, we average each 2×2 Bayer quad into a single
pixel and update its noise estimate accordingly.

5.1. Results on synthetic test set

We report quantitative results on a test set generated with
nearly the same procedure as our training set, using 73 lin-
ear raw images from a Canon 5D Mark II DSLR to generate
image patches instead of our internet images. These images
were taken in bright daylight at low ISO for minimum noise



Whole image Truth Ref. frame Average VBM4D Direct synth. KPN

Figure 4: Example results from our synthetic test set. In the top row, we see that VBM4D and the direct synthesis network
both produce overly smooth output. In the bottom row, we can see the difference in artifacts produced by each method on an
extremely noisy region.

and were deliberately underexposed to avoid clipping high-
lights. The maximum image intensity is scaled to 1 after
black level subtraction to simulate an exposure that uses the
complete dynamic range of the camera. Misalignment is
added with the same procedure as in the training set.

To quantitatively compare to other methods, we evaluate
performance at four noise levels corresponding to a fixed
set of shot and read noise parameters. These correspond
to ISO settings on a digital camera, where each category is
one full photographic “stop” higher than the previous (twice
the gain or sensitivity to light). All error metrics (PSNR
and SSIM) are computed after gamma correction to better
reflect perceptual quality. Results are in Table 1.

We evaluate our techniques against several baselines.
Burst averaging (“burst avg.”) is simply the per-pixel mean
of all images in the burst, which performs temporal denois-
ing well but lacks spatial denoising and produces signifi-
cant errors in the presence of misalignment. “HDR+” is the
method from [8], with its spatial denoising disabled by set-
ting c = 0 in Eq. 7. This method performs similarly to burst
averaging but avoids introducing error in the case of mis-
alignment. Non-local means (NLM) [3] and VBM4D [17]
are multi-frame methods based on finding similar patches
and groups of patches across the burst, and BM3D [4] is a
single-frame method based on a similar premise. The non-
local means method is implemented with 2D 13×13 patches
found in all of the frames in the burst, accelerated using
PCA [26]. The “KPN” results are our model, which we
present alongside a series of ablations: the “1-frame” model
uses only a single frame as input, the “no ann” model uses
only our basic loss function with no annealing, and the “σ
blind” model omits the known per-pixel noise as input. The
“direct” model is an ablation and extension of our approach,
in which we modify our network to directly synthesize de-
noised pixel values. Instead of reshaping the K2N feature
vectors into per-pixel kernels, we add an additional 3 con-
volutional layers. This architecture produces results simi-

lar to the KPN with a comparable amount of computation,
but tends to produce oversmoothed results (Fig. 4, “Direct
Synth.”), which is favorable only in the highest-noise con-
ditions (Tables 1 and 2).

In Table 2 we provide an additional experiment in which
we assume additive white Gaussian noise. For this experi-
ment we only evaluate against VBM4D [17], which was the
best-performing baseline in our previous experiment (Ta-
ble 1) and is specifically designed for this noise model.
Again, our networks match VBM4D at all noise levels as
measured by both PSNR and SSIM.

For all techniques requiring a single input noise level pa-
rameter, we performed a sweep and used the value that per-
formed best; see the supplement for details.

5.2. Predicted kernels

Our network predicts a stack of 2D kernels at each pixel
which we visualize in Fig. 7. Despite being trained on
patches with synthetically generated translational misalign-
ment, our model learns to robustly reject large scene mo-
tions (see Fig. 5).

In our experiments, annealing proved effective in escap-
ing the local minimum that ignores the alternate frames.
Our per-frame loss with β = 100 is a strong constraint
and the network is quickly forced to learn a shifted kernel
to correct the ±2 pixel misalignments in the training data.
Once pretrained, reverting to the base frame is no longer vi-
able since averaging already-shifted kernels across the burst
yields superior SNR. The annealing hyperparameter α did
not have much impact after shifted kernels have been pre-
trained. With our settings, the annealing schedule became
effectively zero after only 3-5% of training iterations.

5.3. Generalization to higher noise levels

Our network takes as input a per-pixel noise estimate
σ′ together with the images. One might argue that such
“noise-aware” algorithms are less useful than ones that can



(a) Ref. frame. (b) Burst average. (c) KPN output.

(d) Relative filter strength.

Figure 5: An example of a burst with a sharp reference
frame (5a) and a well-aligned static background, but a mov-
ing subject. Naive averaging produces a low-noise back-
ground and a blurry subject (5b). Visualizing the L1 norm
of the spatially varying weights allocated to each frame
by our predicted filters (5d), we see that they draw heav-
ily from the reference frame when denoising the subject,
but gather information from multiple frames to produce the
background.

Figure 6: Performance of blind versus noise-aware KPN.
The x-axis shows the read noise parameter (the shot noise
parameter is selected from the gain curve shown in blue in
Fig 2). Performance drops off rapidly when using the blind
network outside the training region, but the noise-aware net-
work successfully generalizes.

perform “blind” denoising without being fed an explicit
noise estimate. In our experiments, including the noise es-
timate as input only leads to a negligible decrease in train-
ing loss (Fig. 6). However, perhaps surprisingly, we found
that including the noise estimate lets our network gener-
alize beyond the noise levels on which it was trained bet-
ter than the blind variant. Fig. 2 shows the distribution of
noise parameters we sampled at train and test time. Fig. 6
and the final column of Table 1 demonstrate our perfor-
mance at noise levels far beyond the training region (note
the log scale). Moreover, Table 2 shows that our noise-
aware method can even denoise gamma-corrected data with
additive white Gaussian noise, which was never seen during
training.

Beyond generalization, we can treat the noise level in-
put to our noise-aware model as an adjustable parameter σ′

to tune denoising strength. Fig. 7 shows that the network
automatically reweights its filters to incorporate more infor-
mation from alternate frames as σ′ increases.

5.4. Generalizing to real data

We compare our method to several state-of-the-art con-
ventional denoisers on raw bursts captured with a Nexus 6P
cellphone in under dim lighting. We minimally preprocess
the burst by subtracting the black level, suppressing hot pix-
els, and performing a coarse whole-pixel alignment of al-
ternate frames to the reference without resampling, which
eliminates some of the globally coherent motion from hand
shake but cannot remove scene motion.

Despite having been trained on synthetic data, our
method is able to recover detail in the presence of signif-
icant noise and does not produce artifacts in the presence of
large scene motion. See Figs. 1 and 8 for a qualitative com-
parison between our results and baseline techniques. The
supplement contains additional results.

6. Conclusion
We have presented a learning-based method for jointly

denoising bursts of images captured by handheld cameras.
By synthesizing training data based on a physical image for-
mation model, we are able to train a deep neural network
that outperforms the state-of-the-art on both synthetic and
real datasets. A key component to successfully training our
kernel prediction network is an annealed loss function based
on a heuristic understanding of how kernels handle motion.



(a) σ′ = σ̂p/4 (b) σ′ = σ̂p/2 (c) σ′ = σ̂p (d) σ′ = 2σ̂p (e) σ′ = 4σ̂p

Figure 7: Because our model takes the expected noise level of the image being denoised as input, it is straightforward to
analyze its behavior by varying the input noise with a fixed input burst. In Figs. 7a through 7e we pass our KPN model the
same input burst images but with differing scalar multiples of the actual estimated noise level σ̂p (see Eq. 3). We visualize
the resulting output images (top) and the mean over the two image dimensions of the predicted filter kernels (bottom) for
each of the 8 frames in the burst. When the noise level is understated (a-b), the denoising is conservative and the predicted
filter stack becomes a delta function on the reference frame, producing an output image identical to the base framet. When
the noise level is overstated (d-e), the spatial support of the filters widens, the filters for alternate frames strengthen, and the
output image becomes smoother.

(a) Reference frame (b) Burst average (c) HDR+ [8]

(d) Non-local means [3] (e) VBM4D [17] (f) Our KPN model

Figure 8: Results on a real handheld image burst. While most methods achieve reasonable denoising performance in brighter
regions (top inset), both NLM and VBM4D fail on deep shadows (bottom inset). The foreground pianist moves significantly
over the course of the burst and simple averaging blurs away details. Conventional techniques that robustly average frames
bias the output towards the reference frame but still retain some noise. Our technique (f) recovers the hand (middle inset)
while removing more noise than the baseline techniques, without adding artifacts.



References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015.

[2] S. Bako, T. Vogels, B. Mcwilliams, M. Meyer, J. NováK,
A. Harvill, P. Sen, T. Derose, and F. Rousselle. Kernel-
predicting convolutional networks for denoising monte carlo
renderings. SIGGRAPH, 2017.

[3] A. Buades, B. Coll, and J. M. Morel. A non-local algorithm
for image denoising. CVPR, 2005.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image
denoising by sparse 3-d transform-domain collaborative fil-
tering. IEEE Transactions on Image Processing, 2007.

[5] B. De Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool.
Dynamic filter networks. NIPS, 2016.

[6] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learn-
ing for physical interaction through video prediction. NIPS,
2016.

[7] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint
demosaicking and denoising. ACM TOG, 2016.

[8] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron,
F. Kainz, J. Chen, and M. Levoy. Burst photography for high
dynamic range and low-light imaging on mobile cameras.
SIGGRAPH Asia, 2016.

[9] G. Healey and R. Kondepudy. Radiometric CCD camera cal-
ibration and noise estimation. TPAMI, 1994.

[10] F. Heide, S. Diamond, M. Nießner, J. Ragan-Kelley, and
W. G. Heidrich, W. Proximal: Efficient image optimization
using proximal algorithms. ACM TOG, 2016.

[11] F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pajk,
D. Reddy, O. Gallo, J. L. abd Wolfgang Heidrich, K. Egiazar-
ian, J. Kautz, and K. Pulli. FlexISP: A flexible camera image
processing framework. SIGGRAPH Asia, 2014.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[13] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,
A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, A. Veit,
S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik,
D. Cai, Z. Feng, D. Narayanan, and K. Murphy. Open-
images: A public dataset for large-scale multi-label and
multi-class image classification. Dataset available from
https://github.com/openimages, 2017.

[14] C. Liu and W. T. Freeman. A high-quality video denoising
algorithm based on reliable motion estimation. ECCV, 2010.

[15] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video
frame synthesis using deep voxel flow. ICCV, 2017.

[16] Z. Liu, L. Yuan, X. Tang, M. Uyttendaele, and J. Sun. Fast
burst images denoising. SIGGRAPH Asia, 2014.

[17] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian. Video
denoising, deblocking, and enhancement through separable

4-d nonlocal spatiotemporal transforms. IEEE Transactions
on Image Processing, 2012.

[18] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via
adaptive convolution. CVPR, 2017.

[19] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via
adaptive separable convolution. ICCV, 2017.

[20] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. TPAMI, 1990.

[21] T. Plotz and S. Roth. Benchmarking denoising algorithms
with real photographs. CVPR, 2017.

[22] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-
tion based noise removal algorithms. Phys. D, 1992.

[23] M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta.
A standard default color space for the Internet —
sRGB. http://www.color.org/contrib/sRGB.
html, 1996.

[24] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and
O. Wang. Deep video deblurring. CoRR, abs/1611.08387,
2016.

[25] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. Detail-revealing
deep video super-resolution. ICCV, 2017.

[26] T. Tasdizen. Principal components for non-local means im-
age denoising. In ICIP 2008, pages 1728–1731. IEEE, 2008.

[27] X. Y. Xinyuan Chen, Li Song. Deep rnns for video denoising,
2016.

[28] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman. Visual
dynamics: Probabilistic future frame synthesis via cross con-
volutional networks. NIPS, 2016.

[29] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond
a gaussian denoiser: Residual learning of deep cnn for image
denoising. IEEE Transactions on Image Processing, 2017.

http://www.color.org/contrib/sRGB.html
http://www.color.org/contrib/sRGB.html

