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Abstract

Visual attention is a field with a considerable history,
with eye movement control and prediction forming an im-
portant subfield. Fixation modeling in the past decades
has been largely dominated computationally by a number
of highly influential bottom-up saliency models, such as
the Itti-Koch-Niebur model. The accuracy of such models
has dramatically increased recently due to deep learning.
However, on static images the emphasis of these models
has largely been based on non-ordered prediction of fixa-
tions through a saliency map. Very few implemented mo-
dels can generate temporally ordered human-like sequences
of saccades beyond an initial fixation point. Towards ad-
dressing these shortcomings we present STAR-FC, a novel
multi-saccade generator based on the integration of central
high-level and object-based saliency and peripheral lower-
level feature-based saliency. We have evaluated our model
using the CAT2000 database, successfully predicting hu-
man patterns of fixation with equivalent accuracy and qua-
lity compared to what can be achieved by using one human
sequence to predict another.

1. Introduction
Most applications in computer vision function primarily

in a passive way; algorithms are applied to static images
or pre-recorded video sequences without control over what
visual data is acquired next. However, it has long been re-
cognized that eye movements are an integral aspect to hu-
man vision [33], with diverse functionality ranging from the
enhanced extraction of features via microsaccadic motion
[35] through high-level strategies for optimal information
gathering [46]. It is this latter aspect which is of particular
interest to the field of computer vision; active control over
the acquisition of image data is fundamental to efficiently
developing more robust and general computer vision solu-
tions for unconstrained environments [57, 4].

Our work presented here develops and extends the
Selective Tuning Attentive Reference model Fixation Con-

Figure 1: Two examples from the CAT2000 dataset with
overlaid fixation sequences for the first five fixation points.
The sequences predicted by our STAR-FC model are shown
in green with X’s marking the fixations, and SALICON
predictions are shown in red with O’s marking the fixa-
tion points. Human sequences (shown in blue) provided
the closest match to both models. Euclidean distances be-
tween each model and the corresponding human sequence
are noted in parentheses in the legend. Note that in both
images, STAR-FC is significantly closer to human behavior
than SALICON.

troller (STAR-FC): an explicit model of human saccadic
control [58]. In order to more easily compare with prior
efforts in fixation prediction, we concentrate on the free-
viewing paradigm, but nevertheless specify our control net-
work in a manner which provides explicit extensibility for
task-based tuning and top-down attentional control. By pro-
viding an extensive model of human fixation control which
includes a number of aspects normally neglected by the
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saliency literature, including an explicit transform to ac-
count for anisotropic retinal acuity, we are able to produce
explicit fixation sequences with greater fidelity to those of
humans than is seen by traditional saliency approaches (Fi-
gure 1). Altogether, we offer the following contributions:

1. A novel computational fixation model which outper-
forms traditional saliency map models for explicit se-
quences prediction.

2. A descriptive model of fixation control which may be
used to better explore the function of early human at-
tention.

3. A flexible design which may be parametrically tuned
to match the specific experimental conditions under
which eye tracking data is obtained.

1.1. Background

Eye movement control and early visual attention have
frequently been conflated, particularly within the compu-
tational saliency literature. The term ”saliency map” was
coined in [31] in the context of covert, pre-attentive visual
processing. Due to the significant challenge of obtaining a
suitable source of ground-truth data with which to validate
a map of pre-attentive processing, focus shifted to predict-
ing fixation locations [29]. Since then, many saliency algo-
rithms have been proposed, ranging from information the-
oretic principles [10], efficient coding [21], spectral analy-
sis [26], or processing pipelines driven largely by empirical
performance [50], to name a few. One of the earliest ma-
chine learning efforts used a collection of low-, mid-, and
high-level features as inputs to an SVM classifier in order
to classify pixels as either salient or not [30]. More recently,
however, deep learning networks have come to dominate the
field [27, 36, 34, 41].

One schism which has formed within saliency research is
whether the focus should be on locations or objects. Much
of this split originated from the claim of Einhäuser et al.
[15] that objects themselves actually predict fixations bet-
ter than feature-based pixel saliency. This led to a num-
ber of approaches including those which seek to generate
saliency maps based on class-generic object detectors (e.g.
[3] and subsequent extensions to saliency [12]) and those
which train and test saliency algorithms explicitly using ob-
ject masks rather than fixation data (e.g., [40]). However,
there has been push-back against this object-centric view,
with Borji et al. [7] arguing that the original findings of
Einhäuser et al. were based largely on the metric used to
measure performance. Given the focus of this paper on the
explicit generation of saccade sequences, we test our algo-
rithm performance against fixation data rather than object
masks, but do take the view that there is a balance to be
struck between pixel-level feature effects and higher-level
object detection. This is discussed further in Section 2.1.

While our goal differs from the standard manner in
which saliency algorithms are applied and evaluated, we
compare performance against them in order to emphasize
the importance of our novel perspective. Static saliency
maps have previously been used to generate explicit fixa-
tion sequences, such as Itti and Koch’s [28] search system
which couples Winner-Take-All (WTA) selection to a sim-
ple inhibition of return scheme. The connection between
explicit eye movement patterns and saliency maps was ex-
plored from a different direction by [54], in which a saliency
algorithm independent of the visual input was based on sta-
tistical regularities in eye movements. Despite the lack of
visual processing, it nevertheless demonstrated compara-
ble or better performance than the Itti-Koch-Niebur (IKN)
saliency model [29], suggesting that fixation location may
be driven as much by the underlying motor control of the
eye as it is by visual information. Several efforts have been
made to modulate a saliency map with a stochastic model,
including a Levý Flight [8], a mixture of Gaussians learned
from human fixation data [55], and a Markov process [43].

Outside of the saliency literature there are a number of
eye movement control models. However, such models are
usually dedicated to a specific subset of eye movements
(e.g. smooth pursuit [48], the optokinetic reflex [14], or 3D
gaze shifts [13]) or neural component (such as the role of the
superior colliculus [62], cerebellum [44] or the basal gan-
glia [60]) without a clear path of extension or inclusion of
attentional control. Tsotsos et al. [58] provide a more gen-
eral formulation of attentional control with a focus on sac-
cadic sequences. Nevertheless, the implementation of their
model provides only a largely qualitative demonstration of
efficacy over a single image. We build upon the theoretical
formulation laid out by [58], extending the architecture to
function over a broad range of natural images which allows
for a quantitative analysis of performance. See Section 2.1
for a more thorough description of our model.

1.2. Applications of Fixation Prediction

Early interest in saccadic sequences was heavily influ-
enced by Noton and Stark’s scanpath theory [47], which
posited that the explicit spatiotemporal structure of eye
movements drove memory encoding for visual patterns and
subsequent retrieval. However, challenges to this view have
arisen over the years, with experimental evidence show-
ing that there is no recognition advantage conferred by the
use of one’s own fixation locations versus those of another
viewer nor by the retention of the temporal order of fixa-
tion [19]. These results certainly support the traditional ap-
proach to saliency evaluation which predominantly seeks to
evaluate algorithms on prediction effectiveness over a static
ground-truth fixation cloud, disregarding individual source
and temporal characteristics of the fixations.

However, scanpath theory was largely devoted to the



memory encoding and recall of images. Even if visual
memory is not heavily influenced by scanpaths, there are
nevertheless a number of applications for which explicit fi-
xation sequence modeling and prediction is very valuable.
For example, motivated by the very short window of con-
sumer attention to most advertisements, commercial appli-
cations of saliency analysis already include predicted se-
quences of the first several fixations [2], despite validation
using only traditional ROC methods which do not measure
the efficacy of sequence prediction [1]. Understanding fixa-
tion locations has also gained recent interest in the area of
science communication and policy making, particularly for
graphical figures [25]. Even more so than in advertising,
the sequence of fixations over a graphical figure becomes
important for understanding whether and how viewers are
understanding the information contained.

As previously mentioned, understanding the control of
human eye movements may additionally be highly instruc-
tive in robotic visual systems with active camera control
such as robotic search [49]. This is particularly useful for
applications with anisotropic sensors which could be con-
sidered analogous to the anisotropy present within the hu-
man retina, such as omnidirectional camera systems which
introduce a high degree of spatial distortion unevenly across
the visual field [22] or a two-camera visual input system
which combines high- and low-resolution streams to ef-
fectively maintain a wide field of view without sacrificing
the ability to acquire high acuity detail over a targeted re-
gion [16]. Furthermore, as robotic applications increase
their focus on social interactions, it becomes important not
only to accurately attend to relevant information during
an interaction, but also to provide socially important cues
through body language such as gaze location [42]. Robotic
modelling of joint attention has previously been improved
through the application of saliency [65], and can likely be
further improved with a more complete gaze model. Accu-
rate modelling of joint attention between parties has wide
reaching ramifications, from self-driving vehicles [32] to
the handover of physical objects [45].

2. Methods

2.1. System Architecture

Our gaze control model extends and generalizes the ap-
proach initially taken by Tsotsos et al. [58]. Their original
implementation provided much of the theoretical basis for
the design of our model, but was only qualitatively tested
against the seminal eye tracking work of Yarbus [64]. With-
out compromising the theoretical motivations of the previ-
ous work, we have modified the network structure to gen-
eralize across natural images and thereby allow quantita-
tive testing of the model performance. Figure 3 provides a
schematic of our implementation.

(a) Original image (b) With retinal transform

Figure 2: An example of the retinal transform: (a) original
image; (b) fixated in the location marked with a red ‘X’

The primary motivation of our architecture is to con-
struct a set of interactive modules which introduce an ite-
rative temporal component to fixation prediction (i.e. an ac-
tive approach to perception). When humans visually ex-
plore an image, each fixation is made in the context of the
prior fixations, introducing a confounding difficulty for any
static map attempting to predict fixation locations passively.
Although it has long been pointed out that saliency maps
predict fixations with differing efficacy over time [53], static
maps predicting a probabilistic distribution of the likelihood
of any particular region being fixated remain standard prac-
tice in saliency research [38, 27, 37]. In order to better si-
mulate the temporal dependence of fixation order, STAR-
FC processes an input image iteratively through a chain of
interacting modules:

1. Retinal transform: Based on the cone distribution from
[23] and rod distribution from [61], we recreate the
acuity field of the human eye through anisotropic blur-
ring centered on the current fixation point. Each pixel
in the image is sampled from the appropriate level of a
Gaussian pyramid depending on the distance from fi-
xation, increasing blur with distance from fixation (see
Figure 2). Further details are provided in the supple-
mentary material.

2. Central-peripheral split: To represent the different le-
vels of cortical representation devoted to central ver-
sus peripheral processing, we split the image into two
processing streams. Peripheral attentional capture is
heavily dependent on low-level features, whereas cen-
tral attentional capture is allocated at a higher level ab-
straction and tends to be more object-based (see [58]
for justification). In the proposed architecture this is
achieved by using a bottom-up algorithm based on
low-level features (e.g. AIM [9], BMS [66], etc.) in
the peripheral field and applying a CNN-based bottom-
up saliency algorithm such as SALICON in the central
field. The radius of the central attentional field is set to
12.5 degrees.

3. Conspicuity map: The central and peripheral pro-
cessing streams are recombined into a single map;
this is our closest correlate to the original concept
of a saliency map [31]. Since there is no standard
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Figure 3: STAR-FC system architecture: Input images are first centrally fixated. A retinal transform is applied at the current
fixation, and conspicuity is calculated within two streams: a peripheral stream which is dominated by low-level features,
and a central stream which includes high-level and abstract features such as those learned by deep networks. The peripheral
and central streams are then fused into a conspicuity map. The priority map combines the conspicuity map and input from
a history map of all previous fixations (as well as any task-specific biases not further detailed here), providing an inhibition
of return (IOR) mechanism. The next fixation point is selected from the maximum of the priority map, at which point the
fixation is shifted to this new target location and the process repeats.

procedure for performing this integration, we exper-
imented with three strategies (subsequently labeled
in the text as STAR-FC SAR, STAR-FC MCA, and
STAR-FC WCA):

(a) Separate Activation Regions (SAR): A binary mask is
applied to both the peripheral and central attentional
maps to confine activations to their respective fields.
A narrow overlap region is included within which the
maximum value of either the peripheral or central ac-
tivation is retained (originally proposed in [58]).

(b) Maximum Central Activation (MCA): The central at-
tentional map is masked as in SAR, but no mask is
applied to the peripheral map. The central region of
the conspicuity map is equal to the maximum activa-
tion of either the peripheral or central maps.

(c) Weighted Central Activation (WCA): The peripheral
and central attentional maps are combined as follows:

CMij =

{
rc−rp

rc
Cij +

rp
rc
Pij, if rp < rc

(1 +
rp−rc
rmax−rc

)[1− gp]Pij , otherwise
(1)

where CMij is the conspicuity map value at pixel
(i, j), C and P are the central and peripheral maps,
respectively, rc refers to the radius of the central field
in pixels, rp is the distance to the center in pixels and
rmax is the maximum distance from the center in pix-
els. Here, an optional peripheral gain factor gp is
introduced to increase the importance of peripheral
features most affected by the retinal transform.

4. Priority map: This combines the bottom-up activity of
the conspicuity map with top-down spatial modulation,

consistent with the proposed neural model of [18]. In
our experiments this map only includes an inhibition
of return (IOR) mechanism due to our focus on free-
viewing. However, it could potentially be extended to
incorporate other forms of modulation.

5. Fixation history map: This processing layer stores a
history of previously fixated locations in image coor-
dinates. These locations are inhibited with a circular
zone of inhibition. Following [58] the radius of IOR is
set to 1.5 degrees with suppression being maximal at
the point of previous fixation and linearly decreasing
towards the edge. IOR decays linearly within 100 fi-
xations. In this paper IOR is applied by subtracting the
fixation history map from the priority map.

6. Saccade control: This module is responsible for find-
ing a new target within the priority map using a WTA
scheme, shifting the gaze to a new location (by re-
applying the retinal transform centered on the new fi-
xation coordinates), as well as updating the fixation
history map.

As mentioned, our work has been heavily influenced by
the proposed control architecture in [58], but makes a num-
ber of important modifications and extensions. The original
approach utilizes manually-derived face filters in the cen-
tral field, specific to the single test image used for illus-
tration. In order to generalize performance across natural
images, we remove the custom face filters and instead in-
corporate, as part of the central field, a deep convolutional
neural network (CNN), namely the SALICON saliency de-
tection model [27]. In our implementation we use a C++
conversion of the OpenSALICON [56].



Our choice of using a CNN-based saliency algorithm
is motivated by the idea that such saliency models can be
viewed as processing incoming visual information analo-
gous to a full forward pass through the visual hierarchy in
order to produce high-level feature abstraction and object-
based conspicuity allocation [39]. This is consistent with
the theoretical aims of the central field put forth in [58].
SALICON was chosen due to the availability of an open-
source implementation, but our formulation is agnostic to
the specific saliency representations used in its construction.

Furthermore, we experiment with several bottom-up
saliency algorithms to demostrate the effect of using
different low-level features for computing peripheral atten-
tional maps. In addition to AIM, which was also used in
[58], we tested BMS [66, 67] and VOCUS2 [20].

Despite the fact that BMS significantly outperforms AIM
on the CAT2000 dataset using the saliency metrics of the
MIT Saliency Benchmark [11], when utilized in the peri-
pheral component of STAR-FC both BMS and VOCUS2
achieve much worse fidelity to human fixation patterns
compared to AIM, leading us to focus most of our tests on
optimizing the AIM-based architecture. See the supplemen-
tary material for further information on the different STAR-
FC variants we tested.

Finally, we define two additional strategies for combin-
ing the central and peripheral attentional maps aiming to
alleviate the sharp border between the central and periphe-
ral fields. This allows our architecture to more smoothly
transition its activity across the visual field.

Although virtually any saliency algorithm can be used
within the proposed architecture, both the choice of saliency
algorithms for the central/peripheral fields and strategy for
combining them have a dramatic effect on the produced fi-
xation sequences. This will be discussed in more detail in
Section 3.

2.2. Fixation Dataset

We evaluated model performance over the CAT2000
dataset1 [6]. This dataset was chosen due to several posi-
tive attributes: it contains twenty different image categories
(thereby representing a wide spectrum of visual stimuli),
as well as one of the widest fields of view which we are
aware of for a free-viewing eye tracking dataset (approxi-
mately 45◦). Larger fields of view better approximate natu-
ral scene exploration, and are also likely to be more greatly
impacted by considerations of retinal anisotropy and mo-

1A number of fixations included in the individual sequences of ob-
servers for the CAT2000 dataset were outside the bounds of the image.
In order to prevent spurious comparisons with out of bound fixations while
still ensuring cohesive sequences, we groomed the CAT2000 data by trun-
cating any sequence which went out of bounds to the final in-bounds fixa-
tion location. If this truncation left the sequence with fewer than ten total
fixations, it was discarded completely. Of 36000 total recorded fixation
sequences, this criterion led to the elimination of 6257 sequences.

toric bias than a comparable dataset gathered over a narrow
field of view.

2.3. Evaluation Metrics

One major challenge in this work was determining the
best method for evaluation. The output of our fixation con-
trol model is not directly comparable to that of saliency al-
gorithms designed to predict human fixations, as we output
a sparse set of explicitly predicted locations rather than a
smooth map which can be treated as a probability distri-
bution for likely fixation points over an image [38]. How-
ever, as mentioned in Section 1.2, there are applications for
which an explicit sequence of fixation points is preferable
to a probabilistic heat-map which lacks temporal structure.

Given that the innovation of our work rests on providing
an explicit, temporally ordered fixation sequence rather than
on a novel representation of saliency, we focus on evalua-
tion metrics which reflect the spatiotemporal structure of se-
quences. In order to compare against the static maps which
are the standard output of saliency algorithms, we sampled
fixation sequences from the maps by applying an iterative
WTA procedure. IOR was applied to each selected loca-
tion using the same parameters as those of our fixation con-
trol model. This technique is consistent with previous work
which samples loci of attention from saliency maps [28].

Although saccade amplitude distributions provide a rel-
atively coarse measure with which to compare fixation se-
quences (as there is no representation of positional differ-
ences over the visual field), they do provide a representa-
tion of the motoric bias in the prediction. An early criticism
of saliency algorithms was that they fail to account for in-
herent motor biases in how humans move their eyes [54],
and it has been suggested that this motor bias could implic-
itly contribute to the persistent challenge of center bias in
saliency research [63]. We therefore examine this aspect
of model function in Section 3.1, demonstrating a much
more human-like distribution of saccade amplitude with our
model than is found from the predictions of sampled from
static saliency maps.

To more explicitly explore the prediction performance
of our model, we utilize trajectory-based scoring methods.
These metrics focus on measuring the deviation between
two spatiotemporal sequences. Trajectory comparison is
a common problem in a wide range of fields, and can of-
ten rely on a number of different constraints or assump-
tions. Three common classifications of trajectory metrics
are network-constrained, shape-based, and warping-based
[5]. Network-constrained methods rely on an underlying
path structure (such as a road network), and were therefore
not appropriate for our purposes. However, both shape-
based (which measure the spatial structure of trajectories)
and warping-based (which take into account the temporal
structure as well as the spatial) can provide meaningful in-



sight for saccadic sequences, and we therefore utilized the
following set in order to provide a comprehensive sense
of performance (trajectory-based score results are found in
Section 3.2):

• Euclidean Distance (ED): ED is one of the most com-
mon and basic warping-based trajectory metrics, and
is calculated by matching two sequences in temporal
order and computing the average pairwise distance be-
tween corresponding fixation points.

• Fréchet Distance (FD): FD, also referred to as the
‘dog-walking distance’, represents the maximum dis-
tance at any given point in time over the length of two
trajectories.

• Hausdorff Distance (HD): HD is the maximum dis-
tance of a point in one sequence to the nearest point in
a second sequence. Unlike ED and FD, HD is purely
spatial and does not take sequence order into account.

3. Results

We compare the performance of our STAR-FC with a
range of established saliency models: AIM [10], BMS [66],
GBVS [24], LDS [17], SALICON [27, 56], SSR [51], and
VOCUS2 [20]. For additional comparisons see the supple-
mentary material. Results for saliency models modulated
by motoric distributions [8, 55, 43] were not available for
comparison on the CAT2000 at the time of publication.

3.1. Spatial Distributions

Saccadic amplitude distributions are shown in Figure 4.
As can be seen in Figure 4a, the original central-peripheral
integration strategy of Separate Activation Regions (SAR)
used in [58] has a tendency to create a bimodal distribu-
tion not seen in the human data. This is likely due to the
fact that the retinal anisotropy creates a biased gradient to
the output of both the central and peripheral fields, meaning
that near the border of the two the central field is weakest
and the peripheral field is strongest. In order to facilitate a
smoother transition of activation across the visual field, we
tested two other integration strategies (described in Section
2.1): Maximum Central Activation (MCA) and Weighted
Central Activation (WCA).

Our motivation to allow for the low-level feature repre-
sentation of the peripheral map to affect the central region
but not the other way around is based on the fact that there
do appear to be fundamental perceptual limitations in ob-
ject perception and feature binding within peripheral vision
[52], whereas low-level features do seem to have a persis-
tent role in attentional guidance [39].

Despite blending peripheral and central activations in a
smoothly merging fashion, the WCA strategy leads to an
activation pattern remarkably similar to the original SAR
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Figure 4: Plots of the saccadic amplitude distributions over
the CAT2000 dataset. Saccade lengths were assigned to
bins of pixel ranges and the proportion of saccades falling in
each bin are shown in the figures: (a) shows the effect of the
different STAR-FC configurations on the resultant saccadic
amplitude distribution (contrasted with the human distribu-
tion shown with a dashed line); (b) shows the distributions
of traditional saliency algorithms contrasted with the MCA
variant of STAR-FC and the human distribution.

strategy. This is likely due to the fact that a weighted blend-
ing penalizes the chances of both algorithms within the mid-
central region to attract attention unless they both happen to
achieve a high score, essentially requiring a target to attract
both high and low level attention simultaneously.

The closest distribution pattern to that of humans was
achieved by the MCA integration strategy, and it is therefore
the variant reported in Figure 7 and Table 1. Although it
does match the human distribution more closely than WCA
and SAR variants, MCA appears to over-emphasize short
saccades, having a much shallower tail than seen in the dis-
tribution of human observers. As previously mentioned, one
likely contribution to this over-emphasis is the difficulty of
many algorithms which have not been explicitly designed
or trained to deal with signal degradation to function effec-



(a) Human
(MSE Score)

(b) STAR-FC,
(0.002)

(c) LDS,
(0.027)

(d) GBVS,
(0.072)

(e) SALICON,
(0.122)

Figure 5: 2D histograms of fixation locations over the CAT2000 dataset. Mean-squared-error (MSE) scores between model
and human distributions are shown in parentheses under each model name; as can be seen, STAR-FC is an order of magnitude
closer to the human distribution than the closest competing saliency model.

Model AUC ED AUC HD AUC FD MSE
Human 632 844 1004 0

STAR-FC 630 841 1006 0.002
LDS 762 918 1067 0.027

GBVS 1068 1239 1415 0.072
BMS 1253 1447 1629 0.102

SALICON 1281 1471 1680 0.122
AIM 1313 1525 1758 0.161

VOCUS2 1347 1551 1781 0.183
SSR 1557 1755 1966 0.183

center 1875 2156 2156 0.008

Table 1: Algorithm performance. Area-under-the-curve
(AUC) scores are reported over the first five fixations for
each plot in Figure 7. The last column shows the mean-
square-error for the spatial histogram of predicted fixations
versus the distribution of human fixations over the entire
dataset. Note that our model (in bold) matches the inter-
subject error of human observers.

tively across the retinal transform.
In contrast to the STAR-FC amplitude distributions, vir-

tually all static saliency maps are skewed in the opposite di-
rection with distributions which are much flatter than those
seen with human data. Many algorithms do retain a small
preference for shorter saccades, but this could also be an
outcome of compositional bias in the underlying images.
2D histograms of fixation location produced with 64 × 64
sized blocks across the full CAT2000 dataset are shown for
humans along with the MCA variant of STAR-FC and sev-
eral representative saliency algorithms in Figure 5. As can
be seen, there does appear to be a consistent spatial bias to-
ward the center of the image which, at least in part, likely
represents the underlying composition of the dataset im-
ages. Likewise, the saliency algorithms with the closest spa-
tial distribution to the human distribution do tend to have a
greater propensity for shorter saccades (Figure 4).

3.2. Trajectory Scores

Figure 6 shows the results of computing pair-wise scores
across all combinations of human sequences for each image
from the CAT2000 dataset. Figure 6a shows that the
different trajectory metrics all tend to drift toward a satu-
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Figure 6: Average scores computed for all metrics over
pair-wise matches of human sequences: (a) shows that as
sequence length increases observer agreement tends to di-
verge, leading to a saturation in score values for each met-
ric; (b) shows average sequence score per category, show-
ing agreement with [6] about which categories tend to have
greatest inter-observer consistency.

rated value; ED, FD, and HD all get larger as sequences
diverge through time. Additionally, it has been shown that
saliency tends to correlate best with early fixations [53], and
both saliency correlation and inter-observer consistency de-
grade largely after the first five fixations. We therefore re-
strict our analysis to only this interval. Analysis of the full
sequences may be found in the supplementary material.

Figure 6b shows the category-wise average total



F
re

c
h

e
t 

d
is

ta
n

c
e

 (
p

x
)

number of fixations
2 3 4 5

200

400

300

500

600

700

800

(a) Mean FD

number of fixations
2 3 4 5

150

250

350

450

550

650

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

 (
p

x
)

(b) Mean ED

number of fixations
2 3 4 5

H
a

u
s
d

o
rf

f 
d

is
ta

n
c

e
 (

p
x
)

human

FC_STAR_MCA

AIM

BMS

GBVS

LDS
SALICON

SSR

VOCUS2

center

200

400

600

800

(c) Mean HD

Figure 7: A comparison of fixation prediction scores for static saliency maps and STAR-FC. A sequence formed by always
picking the center pixel is shown in a dashed line to provide a performance baseline.

sequence scores per category. Here we can see that the
trajectory metrics largely agree with the analysis in [6] on
which categories have the greatest inter-observer consis-
tency (Sketch, Low Resolution, and Black and White), and
which categories tend to have poor inter-observer consis-
tency (Satellite, Jumbled, and Cartoon).

We compare STAR-FC against a wide selection of
saliency algorithms in Figure 7, showing that STAR-FC
consistently achieves trajectory scores more in line with hu-
man sequences over the critical range of the earliest fixati-
ons, followed by LDS and GBVS (see Table 1 for numerical
scores). In fact, STAR-FC is the only model which is able
to achieve near-parity with the natural heterogeneity found
within human observers.

As is made clear in Figure 5, human fixations over
CAT2000 are strongly biased toward the center, a distribu-
tion which is well-matched by STAR-FC. The best perform-
ing saliency algorithms (LDS [17] and GBVS [24]) likewise
have correspondingly stronger biases toward predicting fi-
xations near the image center. We therefore also tested the
”center” model, which is simply a sequence which always
selects the central pixel for every fixation. This selection
will minimize the upper error bound for all trajectory met-
rics, and can be qualitatively thought of as a similar perfor-
mance baseline to a centered Gaussian for more traditional
saliency metrics [30]. Nevertheless, as Figure 7 shows, the
center model consistently achieves the worst score in all
metrics, confirming that while a centrally focused distribu-
tion of fixation locations is appropriate for the CAT2000
dataset, it is not a sufficient characteristic to score well.

4. Conclusion

Our Fixation Control model provides a powerful tool
for predicting explicit fixation sequences. demonstrating fi-
delity to human fixation patterns equivalent to that of using
one person’s fixation sequence to predict another. This per-
formance is significantly better than what can be achieved

by sequence sampling from static saliency maps (see Ta-
ble 1). Our model will allow improved performance in
saliency applications relying on explicit fixation prediction,
including for commercial [2] and science communication
[25] purposes. In addition to its performance, our model is
also constructed to provide a descriptive model of fixation
control, allowing further research into the interaction of the
different cognitive control architectures which link gaze to
higher order visual cognition [59].

While it is clear that retinal anisotropy has a signifi-
cant effect on human visual performance, very few com-
putational algorithms are developed with the aim of dealing
with anisotropic acuity. This creates a significant challenge
to accurately detect and ascribe conspicuity values across
the visual field, and our model’s incorporation of retinal
anisotropy represents an interesting platform for exploring
this area of research.

Additionally, free-viewing over static images represents
only a very narrow range of task for which fixation pre-
diction provides valuable information. Fixation prediction
over video and under task demands are highly challenging
domains for which explicit fixation control may prove ex-
tremely valuable.
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[39] M. Kümmerer, T. S. A. Wallis, L. A. Gatys, and M. Bethge.
Understanding low- and high-level contributions to fixation
prediction. In ICCV, 2017. 5, 6

[40] G. Li and Y. Yu. Deep contrast learning for salient object
detection. In CVPR, 2016. 2

[41] N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting
eye fixations using convolutional neural networks. In CVPR,
2015. 2

[42] N. Mavridis. Grounded situation models for situated conver-
sational assistants. PhD thesis, Massachusetts Institute of
Technology, 2007. 3

[43] O. L. Meur and Z. Liu. Saccadic model of eye movements
for free-viewing condition. Vision Research, 116:152 – 164,
2015. Computational Models of Visual Attention. 2, 6

[44] F. Miles. The cerebellum. In R. Carpenter, editor, Eye Move-
ments, pages 224–243. CRC Press, 1991. 2

[45] A. Moon, D. M. Troniak, B. Gleeson, M. K. Pan, M. Zheng,
B. A. Blumer, K. MacLean, and E. A. Croft. Meet me where
I’m gazing: How shared attention gaze affects human-robot
handover timing. In Proceedings of the ACM/IEEE Interna-
tional Conference on Human-robot Interaction, 2014. 3

[46] J. Najemnik and W. S. Geisler. Optimal eye movmement
strategies in visual search. Nature, 434:387–391, 2005. 1

[47] D. Noton and L. Stark. Scanpaths in eye movements during
pattern perception. Science, 171(3968):308–311, 1971. 2

[48] J. Pola and H. J. Wyatt. Smooth pursuit: response character-
istics, stimuli and mechanisms. In R. Carpenter, editor, Eye
Movements, pages 138–157. CRC Press, 1991. 2

[49] A. Rasouli and J. K. Tsotsos. Visual saliency improves au-
tonomous visual search. In Canadian Conference on Com-
puter and Robot Vision (CRV), 2014. 3

[50] N. Riche, M. Mancas, B. Gosselin, and T. Dutoit. RARE: A
new bottom-up saliency model. In IEEE International Con-
ference on Image Processing (ICIP), pages 641–644, 2012.
2

[51] H. J. Seo and P. Milanfar. Static and space-time visual
saliency detection by self-resemblance. Journal of vision,
9(12):15–15, 2009. 6

[52] H. Strasburger, I. Rentschler, and M. Jüttner. Peripheral vi-
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