
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

Matthias Fey∗, Jan Eric Lenssen∗, Frank Weichert, Heinrich Müller
Department of Computer Graphics

TU Dortmund University
{matthias.fey,janeric.lenssen}@udo.edu
∗ Both authors contributed equally to this work.

Abstract

We present Spline-based Convolutional Neural Networks
(SplineCNNs), a variant of deep neural networks for irreg-
ular structured and geometric input, e.g., graphs or meshes.
Our main contribution is a novel convolution operator
based on B-splines, that makes the computation time inde-
pendent from the kernel size due to the local support prop-
erty of the B-spline basis functions. As a result, we obtain
a generalization of the traditional CNN convolution oper-
ator by using continuous kernel functions parametrized by
a fixed number of trainable weights. In contrast to related
approaches that filter in the spectral domain, the proposed
method aggregates features purely in the spatial domain.
In addition, SplineCNN allows entire end-to-end training
of deep architectures, using only the geometric structure as
input, instead of handcrafted feature descriptors.

For validation, we apply our method on tasks from the
fields of image graph classification, shape correspondence
and graph node classification, and show that it outperforms
or pars state-of-the-art approaches while being signifi-
cantly faster and having favorable properties like domain-
independence. Our source code is available on GitHub1.

1. Introduction
Most achievements obtained by deep learning methods

over the last years heavily rely on properties of the convo-
lution operation in convolutional neural networks [14]: lo-
cal connectivity, weight sharing and shift invariance. Since
those layers are defined on inputs with a grid-like structure,
they are not trivially portable to non-Euclidean domains
like discrete manifolds, or (embedded) graphs. However,
a large amount of data in practical tasks naturally comes
in the form of such irregular structures, e.g. graph data or
meshes. Transferring the high performance of traditional
convolutional neural networks to this kind of data holds the
potential for large improvements in several relevant tasks.

1https://github.com/rusty1s/pytorch_geometric

(a) Filtering of graphs (b) Filtering of meshes

Figure 1: Examples for spatial aggregation in geometric
deep learning with trainable, continuous kernel functions,
showing methods for (a) image graph representations and
(b) meshes.

Recently, a set of methods brought together under the
term geometric deep learning [3] emerged, which aim to
achieve this transfer by defining convolution operations for
deep neural networks that can handle irregular input data.
Existing work in this field can loosely be divided into two
different subsets: the spectral and the spatial filtering ap-
proaches. The former is based on spectral graph theory [5],
where eigenvalues of a graph’s Laplacian matrix are inter-
preted as frequencies of node signals [22]. They are filtered
in the spectral domain, analogously to Fourier domain filter-
ing of traditional signals. The latter subset, the spatial ap-
proaches, perform convolution in local Euclidean neighbor-
hoods w.r.t. local positional relations between points, repre-
sented for example as polar, spherical or Cartesian coordi-
nates, as shown as examples in Figure 1.

Contribution. We present Spline-based Convolutional
Neural Networks (SplineCNNs), a variant of deep neural
networks for irregular structured data. The main contribu-
tion is a trainable, spatial, continuous convolution kernel
that leverages properties of B-spline bases to efficiently fil-
ter geometric input of arbitrary dimensionality. We show

https://github.com/rusty1s/pytorch_geometric


that our method

• can be applied on different kinds of irregular structured
data, e.g., arbitrary (embedded) graphs and meshes,

• uses spatial geometric relations of the input,

• allows for end-to-end training without using hand-
crafted feature descriptors, and

• improves or pars the state-of-the-art in geometric
learning tasks.

In addition, we provide an efficient GPGPU algorithm and
implementation that allows for fast training and inference
computation.

2. Related work
Deep learning on graphs. The history of geometric deep
learning began with attempts to generalize convolutional
neural networks for graph inputs. A large number of
successful approaches are based on spectral graph theory.
Bruna et al. [4] introduced convolution-like operators on
spectral graphs, interpreting the eigenvectors of the Lapla-
cian as Fourier basis. As an extension, Henaff et al. [9] sug-
gest to use spline interpolation for smoothing kernels in the
spectral domain. Defferrard et al. [6] approximates spectral
filters with Chebyshev polynomials, providing a more effi-
cient filtering algorithm, whose kernel size determines the
range of aggregated local K-neighborhoods. This approach
was further simplified by Kipf and Welling [12], who con-
sider only the one-neighborhood for one filter application.
A filter based on the Caley transform was proposed as an
alternative for the Chebyshev approximation by Levie et
al. [15]. Together with a trainable zooming parameter, this
results in a more stable and flexible spectral filter.

It should be noted that all these spectral approaches as-
sume that information is only encoded in the connectivity,
edge weights and node features of the input. While this
is true for general graphs, it does not hold for embedded
graphs or meshes, where additional information is given
by relative positions of nodes, which we consider with our
method.

A downside of many spectral approaches is the fact
that they use domain-dependent Fourier bases, which re-
stricts generalization to inputs with identical graph connec-
tivity. Yi et al. [25] tackle this problem by applying a spec-
tral transformer network that synchronizes the spectral do-
mains. Since our approach works directly in the spatial do-
main, it is not prone to this problem.

For the shape correspondence task on meshes, which
we also analyze in this work, Litany et al. [16] present
a siamese network using a soft error criterion based on
geodesic distances between nodes. We compare our method
against this specialized method.

Local descriptors for discrete manifolds. The issue of
not representing local positional relations can be tackled
by using methods that extract representations for local Eu-
clidean neighborhoods from discrete manifolds.

Based on the intrinsic shape descriptors of Kokkinos et
al. [13], Masci et al. [17] present such a method for ex-
traction of two-dimensional Euclidean neighborhoods from
meshes and propose a convolution operation locally applied
on these neighborhoods. Boscaini et al. [2] improve this
approach by introducing a patch rotation method to align
extracted patches based on the local principal curvatures of
the input mesh.

Our convolution operator can but does not have to re-
ceive those local representations as inputs. Therefore, our
approach is orthogonal to improvements in this field.

Spatial continuous convolution kernels. While the first
continuous convolution kernels for graphs work in the spec-
tral domain (e.g. [9, 6, 20]), spatial continuous convolu-
tion kernels for irregular structured data were introduced
recently as a special case in the fields of neural message
passing and self-attention mechanisms [8, 23, 18]. Further-
more, Monti et al. [18] presented the MoNet framework for
interpreting different kind of inputs as directed graphs, on
which we built upon in our work. We show that our kernels
achieve the same or better accuracy as the trainable Gaus-
sian mixture model (GMM) kernels of MoNet, while being
able to be trained directly on the geometric structure.

3. SplineCNN

We define SplineCNNs as a class of deep neural net-
works that are built using a novel type of spline-based con-
volutional layer. This layer receives irregular structured
data, which is mapped to a directed graph, as input. In the
spatial convolutional layer, node features are aggregated us-
ing a trainable, continuous kernel function, which we define
in this section.

3.1. Preliminaries

Input graphs. Similar to the work of Monti et al. [18],
we expect the input of our convolution operator to be a
directed graph G = (V, E ,U) with V = {1, . . . , N}
being the set of nodes, E ⊆ V × V the set of
edges, and U ∈ [0, 1]

N×N×d containing d-dimensional
pseudo-coordinates u(i, j) ∈ [0, 1]

d for each directed edge
(i, j) ∈ E . Note that U can be interpreted as an ad-
jacency matrix with d-dimensional, normalized entries
u(i, j) ∈ [0, 1]

d if (i, j) ∈ E and 0 otherwise. Also, U is
usually sparse with E = |E| � N2 entries. For a node
i ∈ V its neighborhood set is denoted by N (i).
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Figure 2: Possibilities for pseudo-coordinates u: two- and
three-dimensional Cartesian, polar and spherical coordi-
nates. Values for scaling and translation of the coordinates
u to interval [0, 1]d are omitted.

Input node features. Let f : V → RMin , with
f(i) ∈ RMin , denote a vector of Min input features for
each node i ∈ V . For each 1 ≤ l ≤Min we reference the
set {fl(i) | i ∈ V} as input feature map.

B-spline basis functions. In addition to the input graph
and node features, let ((Nm

1,i)1≤i≤k1
, . . . , (Nm

d,i)1≤i≤kd
)

denote d open B-spline bases of degree m, based on uni-
form, i.e. equidistant, knot vectors (c.f . Piegl et al. [19]),
with k = (k1, . . . , kd) defining our d-dimensional kernel
size.

3.2. Main concept

Our convolution operator aggregates node features in lo-
cal neighborhoods weighted by a trainable, continuous ker-
nel function. The node features f(i) represent features on
an irregular geometric structure, whose spatial relations are
locally defined by the pseudo-coordinates in U. Therefore,
when locally aggregating feature values in a node’s neigh-
borhood, the content of U is used to determine how the fea-
tures are aggregated and the content of f(i) defines what
is aggregated. We argue that common inputs for geomet-
ric deep learning tasks can be mapped to this model while
preserving relevant information:

• For graphs, V and E are given and U can contain edge
weights or, for example, features like the node degree
of the target nodes.

• For discrete manifolds, V contains points of the dis-
crete manifold, E represents connectivity in local Eu-
clidean neighborhoods and U can contain local rela-
tional information like polar, spherical or Cartesian co-
ordinates of the target point in respect to the origin
point for each edge.

We state no restriction on the values of U, except be-
ing element of a fixed interval range. Therefore, meshes,
for example, can be either interpreted as embedded three-
dimensional graphs or as two-dimensional manifolds, us-
ing local Euclidean neighborhood representations like ob-
tained by the work of Boscaini et al. [2]. Also, either po-

lar/spherical coordinates or Cartesian coordinates can be
used, as shown in Figure 2. Independent from the type of
coordinates stored in U, our trainable, continuous kernel
function, which we define in the following section, maps
each u(i, j) to a scalar that is used as a weight for feature
aggregation.

3.3. Convolution operator

We begin with the definition of a continuous kernel func-
tion using B-spline bases, which is parametrized by a con-
stant number of trainable control values. The local sup-
port property of B-spline basis functions [19], which states
that basis functions evaluate to zero for all inputs outside
of a known interval, proves to be advantageous for efficient
computation and scalability.

Figure 3 visualizes the following kernel construction
method for differing B-spline basis degree m. We intro-
duce a trainable parameter wp,l ∈W for each element p
from the Cartesian product P = (Nm

1,i)i × · · · × (Nm
d,i)i of

the B-spline bases and each of the Min input feature maps,
indexed by l. This results in K = Min ·

∏d
i=1 ki trainable

parameters.
We define our continuous convolution kernel as func-

tions gl : [a1, b1]× · · · × [ad, bd]→ R with

gl(u) =
∑
p∈P

wp,l ·Bp(u), (1)

with Bp being the product of the basis functions in p:

Bp(u) =

d∏
i=1

Nm
i,pi

(ui). (2)

One way to interpret this kernel is to see the train-
able parameters wp,l as control values for the height
of a d + 1-dimensional B-spline surface, from which
a weight is sampled for each neighboring point j, de-
pending on u(i, j). However, in contrast to traditional
(d+ 1)-dimensional B-spline approximation, we only have
one-dimensional control points and approximate functions
gl : [a1, b1]× · · · × [ad, bd]→ R instead of curves. The
definition range of gl is the interval in which the partition
of unity property of the B-spline bases holds [19]. There-
fore, ai and bi depend on B-spline degree m and kernel size
(k1, . . . , kd). We scale the spatial relation vectors u(i, j) to
exactly match this interval, c.f . Figure 3.

Given our kernel functions g = (g1, . . . , gMin) and input
node features f , we define our spatial convolution operator
for a node i as

(f ? g)(i) =
1

|N (i)|

Min∑
l=1

∑
j∈N (i)

fl(j) · gl(u(i, j)). (3)

Similar to traditional CNNs, the convolution operator can
be used as a module in a deep neural network architecture,
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Figure 3: Examples of our continuous convolution kernel for B-spline basis degrees (a) m = 1 and (b) m = 2 for kernel
dimensionality d = 2. The heights of the red dots are the trainable parameters for a single input feature map. They are
multiplied by the elements of the B-spline tensor product basis before influencing the kernel value.

which we do in our SplineCNNs. To this end, the opera-
tor is applied Mout times on the same input data with dif-
ferent trainable parameters, to obtain a convolutional layer
that produces Mout output feature maps. It should be high-
lighted that, in contrast to self-attention methods, we train
an individual set of weights for each combination of input
and output feature map.

Local support. Due to the local support property of B-
splines,Bp 6= 0 only holds true for s := (m+ 1)

d of theK
different vectors p ∈ P . Therefore, gl(u) only depends on
Min ·s of theMin ·K trainable parameters for each neighbor
j, where s, d and m are constant and usually small. In ad-
dition, for each pair of nodes (i, j) ∈ E , the vectors p ∈ P
with Bp 6= 0, which we denote as P(u(i, j)), can be found
in constant time, given constant m and d.

This allows for an alternative representation of the inner
sums of our convolution operation, c.f . Equation 3, as

(fl ? gl)(i) =
∑

j∈N (i)
p∈P(u(i,j))

fl(j) · wp,l ·Bp(u(i, j)). (4)

and K can be replaced by s in the time complexity of the
operation. Also, Bp(u(i, j)) does not depend on l and can
therefore be computed once for all input features. Figure 4
shows a scheme of the computation. The gradient flow for
the backward pass can also be derived by following the solid
arrows backwards.

Closed B-splines. Depending on the type of coordinate
in vectors u, we use closed B-spline approximation in some
dimensions. One frequently occurring example of such a
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Figure 4: Forward computation scheme of the proposed
convolution operation. During the backward step of the
backpropagation algorithm, the gradient flows along the in-
verted solid arrows, reaching inputs from W and fl(i).

situation is when u contains angle attributes of polar coor-
dinates. Using closed B-spline approximation in the angle
dimension naturally enforces the angle 0 to be evaluated to
the same weight as the angle 2π or, for higher m, the kernel
function to be continuously differentiable at those points.

The proposed kernels can easily be modified so that they
use closed approximation in an arbitrary subset of the d di-
mensions, by mapping different p ∈ P to the same trainable
control value wp,l. This leads to a reduction of trainable
parameters and B-spline basis functions. Referring to Fig-
ure 3, this approach can be interpreted as periodic repetition
of the function surface along the corresponding axis.



Root nodes. Up to now, we did not consider the node i
of neighborhood N (i) in our convolution operator. It is not
aggregated together with all j ∈ N (i), like it would be
the case in traditional CNNs. If Cartesian coordinates are
used, we can simply define N (i) to include i. However,
when using polar/spherical pseudo-coordinates, problems
arise since the point with zero radius is not well defined.
Therefore, we introduce an additional trainable parameter
for each feature of the root node and add the product of this
parameter and the corresponding feature to the result.

Relation to traditional CNNs. Except for a normaliza-
tion factor, our spline-based convolution operator is a gen-
eralization of the traditional convolutional layer in CNNs
with odd filter size in each dimension. For example, if we
assume to have a two-dimensional grid-graph with diago-
nal, horizontal and vertical edges to be the input, B-spline
degree m = 1, kernel size (3, 3), and the vectors u to con-
tain Cartesian relations between adjacent nodes, then our
convolution operator is equivalent to a discrete convolution
of an image with a kernel of size 3 × 3. This also holds
for larger discrete kernels if the neighborhoods of the grid-
graph are modified accordingly.

4. GPGPU algorithm
For the spline-based convolutional layer defined in the

last section, we introduce a GPU algorithm which allows
efficient training and inference with SplineCNNs. For
simplicity, we use a tensor indexing notation with, e.g.,
A[x, y, z] describing the element at position (x, y, z) of a
tensor A with rank three. Our forward operation of our
convolution operator is outlined in Algorithm 1.

We achieve parallelization over the edges E by first gath-
ering edge-wise input features FE

in ∈ RE×Min from the in-
put matrix Fin ∈ RN×Min , using the target node of each
edge as index. Then, we compute edge-wise output fea-
tures FE

out ∈ RE×Mout , as shown in Figure 4, before scatter-
adding them back to node-wise features Fout ∈ RN×Mout ,
performing the actual neighborhood aggregation. Our al-
gorithm has a parallel time complexity of O(s ·Min), with
small s, usingO(E·Mout) processors, assuming that scatter-
add is a parallel operation with constant time complexity.

Computing B-spline bases. We achieve independence
from the number of trainable weights by computing matri-
ces P ∈ NE×s and B ∈ RE×s. P contains the indices of
parameters with Bp 6= 0 while B contains the basis prod-
ucts Bp for these parameters. B and P can be preprocessed
for a given graph structure or can be computed directly in
the kernel. For the GPU evaluation of the basis functions
required for B we use explicit low-degree polynomial for-
mulations of those functions for each m. For further details

Algorithm 1 Geometric convolution with B-spline kernels

Input:
N : Number of nodes
Min: Number of input features per node
Mout: Number of output features per node
s = (m+ 1)

d: Number of non-zero Bp for one edge
W ∈ RK×Min×Mout : Trainable weights
B ∈ RE×s: Basis products of s weights for each edge
P ∈ NE×s: Indices of s weights in W for each edge
Fin ∈ RN×Min : Input features for each node
Output:
Fout ∈ RN×Mout : Output features for each node
——————————————————————–
Gather FE

in from Fin based on target nodes of edges
Parallelize over e ∈ {1, . . . , E}, o ∈ {1, . . . ,Mout}:

r ← 0
for each i ∈ {1, . . . ,Min} do

for each p ∈ {1, . . . , s} do
w ←W[P[e, p], i, o]
r ← r + (FE

in [e, i] · w ·B[e, p])
end for

end for
FE

out[e, o]← r
Scatter-add FE

out to Fout based on origin nodes of edges
Return Fout

we refer to our PyTorch implementation, which is available
on GitHub.

Mini-batch handling. For batch learning, parallelization
over a mini-batch can be achieved by creating sparse block
diagonal matrices out of all U of one batch and concatenat-
ing matrices Fin in the node dimension. For matrices FE

in ,
B and P, this results in example-wise concatenation in the
edge dimension. Note that this composition allows differ-
ing number of nodes and edges over examples in one batch
without introducing redundant computational overhead.

5. Results

We perform experiments with different SplineCNN ar-
chitectures on three distinct tasks from the fields of image
graph classification (Section 5.1), graph node classification
(Section 5.2) and shape correspondence on meshes (Sec-
tion 5.3). For each of the tasks, we create a SplineCNN
using the spline-based convolution operator which we de-
note as SConv(k,Min,Mout) for a convolutional layer with
kernel size k, Min input feature maps and Mout output fea-
ture maps. In addition, we denote fully connected layers as
FC(o), with o as number of output neurons.
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Figure 5: MNIST 75 superpixels (a) example and (b) clas-
sification accuracy of SplineCNN using varying pseudo-
coordinates and B-spline base degrees.

5.1. Image graph classification

For validation on two-dimensional regular and irregular
structured input data, we apply our method on the widely-
known MNIST dataset [14] of 60,000 training and 10,000
test images containing grayscale, handwritten digits from
10 different classes. We conduct two different experiments
on MNIST. For both experiments, we strictly follow the ex-
perimental setup of Defferrard et al. and Monti et al. [6, 18]
to provide comparability. For the first experiment, the
MNIST images are represented as a set of equal grid graphs,
where each node corresponds to one pixel in the original im-
age, resulting in grids of size 28× 28 with N = 282 = 784
nodes. For the second experiment, the MNIST superpixel
dataset of Monti et al. [18] is used, where each image is
represented as an embedded graph of 75 nodes defining the
centroids of superpixels, c.f . Figure 5a, with each graph
having different node positions and connectivities. This ex-
periment is an ideal choice to validate the capabilities of our
approach on irregular structured, image-based data.

Pooling. Our SplineCNN architectures use a pooling op-
erator based on the Graclus method [7, 6]. The pooling
operation is able to obtain a coarsened graph by deriving
a clustering on the graph nodes, aggregating nodes in one
cluster and computing new pseudo-coordinates for each of
those new nodes. We denote a max-pooling layer using this
algorithm with MaxP(c), with c being the cluster size (and
approximate downscaling factor).

Architectures and parameters. For the grid graph exper-
iments, Cartesian coordinates and a B-spline basis degree of
m = 1 are used to reach equivalence to the traditional con-
volution operator in CNNs, c.f . Section 3.3. In contrast,
we compare all configurations of m and possible pseudo-
coordinates against each other on the superpixel dataset.

Dataset LeNet5 [14] MoNet [18] SplineCNN

Grid 99.33% 99.19% 99.22%
Superpixels – 91.11% 95.22%

Table 1: Classification accuracy on different representations
of the MNIST dataset (grid and superpixel) for a classical
CNN (LeNet5), MoNet and our SplineCNN approach.

For classification on the grid data, we make use of a
LeNet5-like network architecture [14]: SConv((5, 5),1,32)
→ MaxP(4) → SConv((5, 5),32,64) → MaxP(4) →
FC(512) → FC(10). The initial learning rate was chosen
as 10−3 and dropout probability as 0.5. Note that we used
neighborhoods of size 5 × 5 from the grid graph, to mirror
the LeNet5 architecture with its 5× 5 filters.

The superpixel dataset is evaluated using the SplineCNN
architecture SConv((k1, k2),1,32) → MaxP(4) →
SConv((k1, k2),32,64)→MaxP(4)→ AvgP→ FC(128)→
FC(10), where AvgP denotes a layer that averages features
in the node dimension. We use the Exponential Linear
Unit (ELU) as non-linearity after each SConv layer and
the first FC layer. For Cartesian coordinates, we choose
the kernel size to be k1 = k2 = 4 + m and for polar
coordinates k1 = 1+m and k2 = 8. Training was done for
20 epochs with a batch size of 64, initial learning rate 0.01
and dropout probability 0.5. Both networks were trained
for 30 epochs using the Adam method [11].

Discussion. All results of the MNIST experiments are
shown in Table 1 and Figure 5b. The grid graph experi-
ment results in approximately the same accuracy as LeNet5
and the MoNet method. For the superpixel dataset, we im-
prove previous results by 4.11 percentage points in accu-
racy. Since we are using a similar architecture and the same
input data as MoNet, the better results are an indication that
our operator is able to capture more relevant information in
the structure of the input. This can be explained by the fact
that, in contrast to the MoNet kernels, our kernel function
has individual trainable weights for each combination of in-
put and output feature maps, just like the filters in traditional
CNNs.

Results for different configurations are shown in Fig-
ure 5b. We only notice small differences in accuracy for
varying m and pseudo-coordinates. However, lower m and
using Cartesian coordinates performs slightly better than
the other configurations.

In addition, we visualized the 32 learned kernels of the
first SConv layers from the grid and superpixel experiments
in Figure 6. It can be observed that edge detecting patterns
are learned in both approaches, whether being trained on
regular or irregular structured data.



(a) MNIST grid experiment
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Figure 6: Visualizations of the 32 kernels from the first
spline-based convolutional layers, trained on the MNIST (a)
grid and (b) superpixels datasets, with kernel size (5, 5) and
B-spline base degree m = 1.

ChebNet [6] GCN [12] CayleyNet [15] SplineCNN

87.12 ± 0.60 87.17 ± 0.58 87.90 ± 0.66 89.48 ± 0.31

Table 2: Graph node classification on the Cora dataset for
different learning methods (ChebNet, GCN, CayleyNet and
SplineCNN). The presented accuracy means and standard
deviations are computed over 100 experiments, where for
each experiment the network was trained for 200 epochs.

5.2. Graph node classification

As second experiment, we address the problem of graph
node classification using the Cora citation graph [21]. We
validate that our method also performs strongly on datasets,
where no Euclidean relations are given. Cora consists of
2,708 nodes and 5,429 undirected unweighted edges, rep-
resenting scientific publications and citation links respec-
tively. Each document is represented individually by a
1,433 dimensional sparse binary bag-of-words feature vec-
tor and is labeled to exactly one out of 7 classes. Similar
to the experimental setup in Levi et al. [15], we split the
dataset into 1,708 nodes for training and 500 nodes for test-
ing, to simulate labeled and unlabeled information.

Architecture and parameters. We use a SplineCNN
similar to the network architecture introduced
in [15, 12, 18]: SConv((2),1433,16) → SConv((2),16,7),
with ELU activation after the first SConv layer
and m = 1. For pseudo-coordinates, we choose
the globally normalized degree of the target nodes
u(i, j) = (deg(j)/maxv∈V deg(v)), leading to filtering
based on the number of cites of neighboring publica-
tions. Training was done using the Adam optimization
method [11] for 200 epochs with learning rate 0.01,
dropout probability 0.5 and L2 regularization 0.005. As
loss function, the cross entropy between the network’s
softmax output and a one-hot target distribution was used.

Discussion. Results of our and related methods are shown
in Table 2 and report the mean classification accuracy aver-
aged over 100 experiments. It can be seen that SplineCNNs
improve the state-of-the-art in this experiment by approxi-
mately 1.58 percentage points. We contribute this improve-
ment to the filtering based on u, which contains node de-
grees as additional information to learn more complex ker-
nel functions. This indicates that SplineCNNs can be suc-
cessfully applied to irregular but non-geometric data and
that they are able to improve previous results in this domain.

5.3. Shape correspondence

As our last and largest experiment, we validate our
method on a collection of three-dimensional meshes solving
the task of shape correspondence similar to [18, 2, 17, 16].
Shape correspondence refers to the task of labeling each
node of a given shape to the corresponding node of a refer-
ence shape [17]. We use the FAUST dataset [1], containing
10 scanned human shapes in 10 different poses, resulting in
a total of 100 non-watertight meshes with 6,890 nodes each.
The first 80 subjects in FAUST were used for training and
the remaining 20 subjects for testing, following the dataset
splits introduced in [18]. Ground truth correspondence of
FAUST meshes are given implicitly, where nodes are sorted
in the exact same order for every example. Correspondence
quality is measured according to the Princeton benchmark
protocol [10], counting the percentage of derived correspon-
dences that lie within a geodesic radius r around the correct
node.

In contrast to similar approaches, e.g. [18, 2, 17, 16], we
go without handcrafted feature descriptors as inputs, like the
local histogram of normal vectors known as SHOT descrip-
tors [24], and force the network to learn from the geometry
(i.e. spatial relations encoded in U) itself. Therefore, in-
put features are trivially given by 1 ∈ RN×1. Also, we
validate our method on three-dimensional meshes as inputs
instead of generating two-dimensional geodesic patches for
each node. These simplifications reduce the computation
time and memory consumption that are required to prepro-
cess the data by a wide margin, making training and infer-
ence completely end-to-end and very efficient.

Architecture and parameters. We apply a Spline-
CNN architecture with 6 convolutional layers:
SConv((k1, k2, k3),1,32) → SConv((k1, k2, k3),32,64) →
4× SConv((k1, k2, k3),64,64) → Lin(256) → Lin(6890),
where Lin(o) denotes a 1× 1 convolutional layer to o
output features per node. As non-linear activation function,
ELU is used after each SConv and the first Lin layer.
For Cartesian coordinates we choose the kernel size to
be k1 = k2 = k3 = 4 +m and for polar coordinates
k1 = k3 = 4 +m and k2 = 8. We evaluate our method on
multiple choices of m = {1, 2, 3}. Training was done for
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Figure 7: Geodesic error plots of the shape correspondence experiments with (a) SplineCNN and related approaches and (b)
different SplineCNN experiments. The x-axis displays the geodesic distance in % of diameter and the y-axis the percentage
of correspondences that lie within a given geodesic radius around the correct node. Our SplineCNN achieves the highest
accuracy for low geodesic error and significantly outperforms other general approaches like MoNet, GCNN and ACNN.
In Figure (c), three examples of the FAUST test dataset with geodesic errors of SplineCNN predictions for each node are
presented. We show the best (left), the median (middle) and worst (right) test example, sorted by average geodesic error.

100 epochs with a batch size of 1, initial learning rate 0.01
and dropout probability 0.5, using the Adam optimizer [11]
and cross entropy loss.

Discussion. Obtained accuracies for different geodesic
errors are plotted in Figure 7. The results for different
SplineCNN parameters match the observations from before,
where only small differences could be seen but using Carte-
sian coordinates and small B-spline degrees seemed to be
slightly better. Our SplineCNN outperforms all other ap-
proaches with 99.20% of predictions on the test set hav-
ing zero geodesic error. However, the global behavior over
larger geodesic error bounds is slightly worse in comparison
to FMNet [16]. In Figure 7c it can be seen that most nodes
are classified correctly but that the few false classifications
have a high geodesic error. We contribute this differences
to the varying loss formulations. While we train against a
one-hot binary vector using the cross entropy loss, FMNet
trains using a specialized soft error loss, which is a more ge-
ometrically meaningful criterion that punishes geodesically
far-away predictions stronger than predictions near the cor-
rect node [16]. However, it is worth highlighting that we
do not use SHOT descriptors as input features, like all other
approaches we compare against. Instead, we train only on
the geometric structure of the meshes.

Performance We report an average forward step runtime
of 0.043 seconds for a single FAUST example processed by
the suggested SplineCNN architecture (k1 = k2 = k3 = 5,
m = 1) on a single NVIDIA GTX 1080 Ti. We train this
network in approximately 40 minutes. Regarding scalabil-
ity, we are able to stack up to 160 SConv((5, 5, 5),64,64)
layers before running out of memory on the mentioned
GPU, while the runtime scales linearly with the number of

layers. However, for this task we do not observe significant
improvement in accuracy when using deeper networks.

6. Conclusion

We introduced SplineCNN, a spline-based convolutional
neural network with a novel trainable convolution operator,
which learns on irregular structured, geometric input data.
Our convolution filter operates in the spatial domain and
aggregates local features, applying a trainable continuous
kernel function parametrized by trainable B-spline control
values. We showed that SplineCNN is able to improve state-
of-the-art results in several benchmark tasks, including im-
age graph classification, graph node classification and shape
correspondence on meshes, while allowing very fast train-
ing and inference computation. To conclude, SplineCNN
is the first architecture that allows deep end-to-end learning
directly from geometric data while providing strong results.
Due to missing preprocessing, this allows for even faster
processing of data.

In the future we plan to enhance SplineCNNs by con-
cepts known from traditional CNNs, namely recurrent neu-
rons for geometric, spatio-temporal data or dynamic graphs,
and un-pooling layers to allow encoder-decoder or genera-
tive architectures.
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