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Figure 1: Results on real data (AVD [1], left) and game footage (ResearchDoom [14], right). Best seen in color. Our
method predicts a joint heatmap of the camera position and orientation in absolute coordinates (shown separately). This is
done online while creating a deep embedding of the surrounding environment, which was not seen during training.

Abstract

Autonomous agents need to reason about the world be-
yond their instantaneous sensory input. Integrating infor-
mation over time, however, requires switching from an ego-
centric representation of a scene to an allocentric one, ex-
pressed in the world reference frame. It must also be pos-
sible to update the representation dynamically, which re-
quires localizing and registering the sensor with respect to
the world reference. In this paper, we develop a differen-
tiable module that satisfies such requirements, while being
robust, efficient, and suitable for integration in end-to-end
deep networks. The module contains an allocentric spatial
memory that can be accessed associatively by feeding to it
the current sensory input, resulting in localization, and then
updated using an LSTM or similar mechanism. We formu-
late efficient localization and registration of sensory infor-
mation as a dual pair of convolution/deconvolution opera-
tors in memory space. The map itself is a 2.5D representa-
tion of an environment storing information that a deep neu-
ral network module learns to distill from RGBD input. The
result is a map that contains multi-task information, differ-
ent from classical approaches to mapping such as structure-
from-motion. We present results using synthetic mazes, a
dataset of hours of recorded gameplay of the classic game
Doom, and the very recent Active Vision Dataset of real im-
ages captured from a robot.

1. Introduction

Machine learning nowadays plays a crucial role in most
computer vision tasks. Compared to hand-crafted solutions,
a key advantage of approaches such as deep learning is
their ability to acquire automatically very efficient and ro-
bust representations of the data. Successes in image-centric
tasks such as classification, segmentation, and object detec-
tion provide the clearest demonstration of the benefits of
this approach [19, 6, 20]. Beyond static data, recurrent ar-
chitectures such as LSTMs can be used to great effect in the
analysis of temporal data streams as well [22].

Despite these successes, however, several aspects of im-
age understanding remain difficult to approach directly us-
ing deep distributed representations. One of them is reason-
ing about 3D space and geometry, particularly in relation to
large environments. Traditional SLAM techniques offer a
reliable approach to the analysis of such data [15]. For ex-
ample, these methods can build incrementally large maps of
the world simply by observing video streams. Nevertheless,
the representations built into these systems are still based
on primitives such as 3D point clouds and image patches.
While this may work well, it does not provide a natural fit
for learnable representations such as deep neural networks.
Given the success of the latter in so many areas of image
analysis, it is then natural to ask whether deep, distributed,
and effective representations of geometry are possible.

Such a representation may offer significant advantages
compared to traditional approaches. For example, humans



can effectively navigate small and large environments and
yet are unlikely to build internally large-scale metric recon-
structions of spaces akin to traditional SLAM systems [21].
Analogously, it may be possible to develop efficient and ro-
bust representations of geometry that are semi-quantitative,
which may enable solving problems such as navigation just
as well as traditional representations. Furthermore, such
a representation may encode semantic information beyond
the position of 3D points and the appearance of image
patches. Such an approach may be particularly useful for
autonomous agents, where it can reformulate the mapping
component as a deep, learnable function, simplifying its
integration with other components of the system that are
likely to use the same formalism.

In this paper, we thus propose and study a new dis-
tributed representation of 3D environments that can be used
in a deep learning context. The representation is used
by a recurrent neural network to interpret an environment
seen through a moving camera. The representation works
as a mapping component, i.e. a dynamic spatial memory
which is updated incrementally from the camera observa-
tions. This memory allows the recurrent network to remem-
ber places visited in the past, as well as to relocalize itself
with respect to those.

Our design addresses two challenges. The first one is to
allow the model to factor egocentric and allocentric infor-
mation. One of the most difficult challenges of perception is
in fact to understand that images are the result of scenes and
objects that move (largely) independently of the observer.
For a deep network, doing so is difficult because informa-
tion paths between pixels and its internal representation are
hardwired, whereas a given object or scene element is gen-
erally associated to different pixels in different video frames
due to motion. To address this issue, we allow the feature
extraction network to dynamically rewire with respect to an
allocentric spatial memory. Rewiring is based on an esti-
mate of the absolute position of the observer in the world.

The second challenge we address is to decide which in-
formation should be stored in the map. Focusing on envi-
ronments that mostly extend across a ground plane, such as
a building floor or outdoor streets, we propose to consider a
2.5D representation of the world, in which any information
related to the vertical dimension is implicitly encoded as
feature vectors in a dense 2D field representing the ground.
Writing information to this field is based on the current esti-
mated location of the observer and of a depth map measured
from the current view. Second, we allow the deep neural
network to automatically learn which information should be
extracted from the image, encoded, and stored in this fea-
ture field. This encoding process is learned with the goal of
maximizing re-localization accuracy.

Technically, we propose a few implementation ideas to
execute the aforementioned steps elegantly and efficiently.

In particular, we reduce localizing an observation in the map
as the application of a standard convolutional operator, and
the registration of new observations to the map as its dual
operator, deconvolution. Both operators act efficiently in
the allocentric representation rather than the image space.

We apply our method to three datasets: a toy set of syn-
thetic mazes, data from the Doom video-game, and real
images captured from a robotic platform using a recently-
released public benchmark [1]. We show in all cases excel-
lent localization performance, outperforming baselines that
lack spatial memory [24]. We also explore some emerging
semantic properties of the latent map embeddings.

The rest of the paper is structured as follows. Sec. 2 re-
views related work, sec. 3 discusses our technical approach,
sec. 4 evaluates the method on the aforementioned data, and
sec. 5 summarizes our findings.

2. Related Work
The goal of iteratively building a map from a video

stream, while using it to perform localization, has deep
roots in robotics, and is commonly referred to as Visual
SLAM (Simultaneous Location And Mapping) [23]. Clas-
sic SLAM methods emphasize real-time operation from a
continuous video stream, which allows the use of tempo-
ral continuity cues (unlike typical Structure-from-Motion,
which operates offline on unordered images). Modern
SLAM systems are usually composed of several care-
fully engineered modules, such as tracking, mapping, re-
localization, loop closure, graph optimization, key-frame
selection, or post-processing by bundle adjustment [15].
Drawing from the success of deep learning [19, 6, 27, 20],
where end-to-end training is key, there have been recent ef-
forts to replace some of these components with more flexi-
ble learnable architectures.

One such effort is the recent surge of deep Visual Odom-
etry (VO) methods [25, 24, 4]. Though related to ours,
they focus on frame-by-frame estimation of the immedi-
ate changes in camera pose. DeepVO [24], VINet [25] and
VidLoc [3] all employ Long-Short Term Memory (LSTM)
on top of Convolutional Neural Networks (CNN) to pre-
dict pose changes, and are trained in a supervised manner.
VINet uses additional information from an Inertial Mea-
surement Unit (IMU) inputs [25], while VidLoc [3] per-
forms multiple passes over the sequence with an LSTM,
which brings it closer to Structure-from-Motion methods.
These methods fill in only part of the role of SLAM, since
they do not attempt to build a map of the environment, and
make necessarily incremental predictions.

Another recent line of research has focused on replac-
ing the whole SLAM pipeline, with encouraging prelimi-
nary results [12, 28, 8]. Kanitscheider and Fiete [12] train
LSTM networks with location supervision on toy 2D en-
vironments, and explore the connections to hippocampal
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Figure 2: Proposed architecture. Our method performs localization and registration on a spatial memory via convolutional
operators (sec. 3).

place cells [26]. Neural SLAM [28] and Neural Map [16],
on the other hand, are trained with Reinforcement Learning
(RL) to maximize a reward for successful navigation in a
simulated environment. Both write to a differentiable mem-
ory to solve navigation tasks, and assume perfect informa-
tion of either the agent’s egomotion or position. Although
promising, they are demonstrated only on small synthetic
and toy tasks.

Building on these works, Gupta et al. [8] propose a dif-
ferentiable architecture that unifies mapping and navigation.
The map is an egocentric ground projection of image em-
beddings, and at each step the egocentric map from the pre-
ceding frame is integrated via a differentiable warp. This
mapper module is the one that comes closest to our own
work. The navigation module uses a Value Iteration Net-
work (VIN) [18] to train the whole architecture end-to-end
from example trajectories.

Integrating navigation as proposed by Gupta et al. [8]
is a natural extension, although here we restrict our atten-
tion to the mapping task. There are several other key dif-
ferences from our own work. Our architecture includes a
world-centric rather than an egocentric map, which avoids
the spatial blurring associated with repeated warping oper-
ations. We exploit convolutions to efficiently perform op-
erations over all map locations. Another key difference is
in the input modality: they assume 360◦ input images, with
constant orientation, as well as perfect knowledge of ego-
motion, none of which we assume. Their experiments are
on a synthetic dataset generated from 3D scene scans, while
we experiment on free-form trajectories and real images.

3. Method

In this section we develop a Recurrent Neural Network
(RNN) that can dynamically build a representation of an en-

vironment using observations obtained from a moving cam-
era. The key component of the system is an allocentric spa-
tial memory module, which allows the network to under-
stand the world independently of the observation point, as
well as to relocalize itself with respect to the latter.

Figure 2 illustrates one time step of our recurrent archi-
tecture. At time t, the architecture takes as input a new im-
age xt, consisting of both RGB and depth values (the latter
may be estimated from another module, such as a monocu-
lar deep regression network [7]). A CNN extracts features
from the image and a ground projection module (sec. 3.4)
maps them to a 2.5D representation ot ∈ Rs×s×n of a s× s
spatial neighborhood around the camera, with n features per
spatial location. The latter is rotated r times, obtaining a
stack o′t, which is used for re-localization as explained next.

The network also has access to the state mt−1 ∈
Rh×w×n of the allocentric spatial memory from the pre-
vious time step t − 1. The spatial memory state can be
thought of as a h × w map, much larger than the neighbor-
hood ot. The main idea is then to perform registration of the
new observation ot to the map mt−1 via dense matching in
the ground plane. This is carried out efficiently by convolu-
tional operators applied to the rotational stack (sec. 3.2).

Registration can also be interpreted as addressing an as-
sociative spatial memory, where soft addresses correspond
to strong activations in the response of the convolution. This
information is used to inform an LSTM module that per-
forms an update (sec. 3.3) of the memory, adding more de-
tails to the map.

The remainder of this section discusses in details all
these steps.

3.1. Localization

The goal of the localization module is to find the location
and orientation of the camera at time twith respect to the al-



locentric world map. In order to do so, the ground-projected
camera features ot are matched at all possible rotations and
locations against the current map state.

In order to do this efficiently, the observations ot are
transformed into a stack o′t by applying a rotational resam-
pler,

∀ijkr : o′ijkl = [R(o, 2πl/r)]ijk,

where R(o, θ) rotates all feature channels of o by θ radians
using bilinear interpolation.

Note that the stack o′ ∈ Rs×s×n×r can be interpreted
as a bank of r filters of size s × s with n feature channels
each. This allows to quickly compare an observation ot to
all possible locations and rotations in the map by using the
standard neural network convolution operator. In more de-
tail, one obtains a probability field pt ∈ Rh×w×r as

pt = σ(mt−1 ? o
′
t), (1)

where ? denotes cross-correlation1, and σ denotes the soft-
max operation:

[σ(x)]ijk =
exijk∑

i′j′k′ exi′j′k′ . (2)

Before applying convolution, the map mt−1 is zero-padded
so that the output of the operator has the same size asmt−1.

The result of eq. (1) is a normalized tensor of scores pt
for several discretized positions (dimensions h × w) and
orientations (dimension r). The highest value of pt cor-
responds to where the observation is maximally correlated
with the map. After training, this can be read as the net-
work’s belief that the agent is at a given position and orien-
tation.

3.2. Registration

The observation ot needs to eventually be integrated into
the map, for the next time step. In order facilitate this step,
we propose to translate and rotate ot ∈ Rs×s×n according
to the position and orientation encoded in pt, to obtain a
registered observation ôt ∈ Rh×w×n in map-space.

We first define a spatial transformation function T , that
registers the observation o w.r.t. translation (u, v) and rota-
tion w parameters. This function is defined as (omitting the
time subscript t for clarity)

T (o|u, v, w) = τuv (R(o, 2πw/r)) , (3)

where τuv(x) shifts the tensor x by (u, v).
If z ∈ Rh×w×r is a one-hot encoding of the coordinates

(u, v, w) (i.e. xijk = δi=u,j=v,k=w), then the following

1Note that cross-correlation ? is related to convolution ∗ by flipping the
second argument: x ∗ y = x ? y′, y′ij = y(−i,−j). In most deep learning
frameworks, the default convolutional operator is cross-correlation.

identity holds:

T (o|u, v, w) = z ∗ ōt, (4)
with ōijlk = o′ijkl. (5)

There are three useful interpretations of these equations.
First, the tensor ō represents the same filter bank as o′, but
with the input and output dimensions transposed. Thus the
registration operator (3) can be implemented with a single
application of a convolutional operator (4) on transposed
filters. Second, this transposed filtering operation is exactly
the same calculation performed when backpropagation is
applied to convolution. Thus transposition can be skipped in
code by simply calling the “convolution backward” routine
implemented in all deep learning toolboxes. Third, the latter
idea is also the same “trick” used to define the convolution
transpose operator (also known as deconvolution). Hence,
registration can be interpreted as deconvolution applied to
the one-hot tensor z.

In practice, due to the softmax operator (2), the posi-
tion/rotation estimate pt is an approximation of a one-hot
tensor: all values are in [0, 1], and it sums to 1. We can thus
register the observation by linearly combining T , weighted
by pt:

ôt =
∑
uvw

puvwT (o|u, v, w), (6)

where the time subscript t in the tensor pt is omitted for con-
venience. Plugging eq. (4) into eq. (6), and by the linearity
of convolution, we obtain

ôt = pt ∗ ōt. (7)

Equation (7) is very efficient: it relies on a single
(de)convolution and the previously computed o′ to perform
registration, without any explicit spatial transformation T .
Unlike a spatial transformer [11], it can deal with multi-
modal distributions in pt, and any uncertainty in the esti-
mates will be reflected as uncertainty (blurring) in the out-
put ôt.

3.3. Update

After the new observations ôt have been localized and
then registered to the current spatial memory mt−1, the lat-
ter must be updated to incorporate the new evidence in a
new state mt. Since ôt and mt−1 are now aligned (they
also have the same dimensions as tensors), this is relatively
easy and can be achieved in a number of ways. We decided
to use a LSTM [10], since it is an off-the-shelf RNN that
already includes read and write gating mechanisms.

In order to maintain spatial invariance, we apply the
same LSTM (shared weights) to all spatial locations inde-
pendently:

mij,t−1 = LSTM (mij,t, ôij,t,W ) ,



Figure 3: Example 3D point cloud, obtained from a RGBD
image in the Active Vision Dataset (sec. 4.3). Part of the
ground discretization grid is shown, with the center denoted
by a black dot. Each 3D point is ground-projected to a cell
(e.g. the points and cell shaded green). The CNN embed-
dings associated with these 3D points are accumulated into
the corresponding cell of o using max pooling (see sec. 3.4
for details). Cells with no associated 3D points (e.g. the red
cell) have their features set to 0.

where the function LSTM (h, x,W ) returns the (single-
step) updated state of an LSTM, given a hidden state h,
input x and trainable parameters W .

3.4. Ground projection

So far, we have discussed observations ot that are ex-
pressed in 3D space, whereas the input to the systems are
RGBD images (xt, dt). In order to convert xt into ot, we
assume that the ground plane is approximately known (e.g.
downwards from the input image). For many applications
of mobile robotics, in environment such as roads or indoors,
this is a reasonable assumption.

Given an RGB image xt ∈ Rh′×w′×3 at time t, we ob-
tain a tensor of features x′t with n channels using a standard
CNN. Given the corresponding depth image dt ∈ Rh′×w′

and known camera intrinsics, these features are projected
onto the ground plane in camera-space (fig. 3). This re-
sults in a discretized, egocentric observation tensor ot ∈
Rs×s×n, which contains n features in an s×s spatial neigh-
borhood around the agent.

Note that the ground projection is not, in general, a one-
to-one map: either 0, 1 or more elements of the image fea-
tures x′t can be ground-projected onto any given element of
ot ∈ Rs×s×n. To resolve ambiguities, for each feature we
simply take the maximum of any competing elements, or 0
if there are none. This form of aggregation of 3D points is
advocated by Qi et al. [17] in their PointNet method, and
we found it to be superior to aggregation by averaging or
summing.

In more detail, let K ∈ R3×3 be the camera calibration
matrix, so that the 3D coordinate of an image point can be

written asp̄x(i, j)
p̄y(i, j)
p̄z(i, j)

 = K

ji
f

 dij , i ∈ [1, . . . ,H], j ∈ [1, . . . ,W ].

Here p̄y is the 3D height of the point, p̄z its depth, p̄x its
horizontal displacement, and f the focal length. These are
mapped to a column otk of the s × s spatial neighborhood
as follows:

t̄(i, j) =
s− 1

2
p̄x(i, j)− s+ 1

2
,

k̄(i, j) =
s− 1

2
p̄z(i, j)− s+ 1

2
,

where we assume that s is an odd integer. Note in particu-
lar that the camera center sits in the middle of the tensor o
(fig. 2). Then we obtain the definition:

otkl = max{x′ijl : t = [t̄(i, j)] ∧ k = [k̄(i, j)]}

where [·] denotes integer rounding and the maximum of the
empty set max{} is defined to be zero.

3.5. Training and loss function

Our RNN is trained end-to-end to solve the localiza-
tion problem with sequences of RGB-D inputs, and as-
sociated ground-truth positions and orientations. For a
given training sequence, the RNN is initialized with an
environment-agnostic position p0, which is always set to
be a one-hot encoding of the center of the map, facing the
right (corresponding to an angle of 0◦). The position for
time t can be discretized into classes Ht ∈ {1, . . . , h}
and Wt ∈ {1, . . . , w}, and likewise for the orientation
Rt ∈ {1, . . . , r}. The objective is to minimize the nega-
tive log-probability of the estimate position and orientation
at each time step, namely:

L(p) = − log
∑
t

pHtWtRt,t. (8)

4. Experiments
We show results on a toy dataset of 2D mazes (sec. 4.1),

synthetic data from the Doom video-game (sec. 4.2), and
real data from a moving robotic platform (sec. 4.3).

4.1. Results on synthetic mazes

To validate our approach without the added complexities
of a complex CNN for ingesting images and performing fea-
ture extraction and ground projection, we first experimented
with simple 2D environments.

Data. We generated 100,000 random labyrinths (fig. 4-left)
by randomized depth-first search, yielding 21 × 21 binary



Figure 4: Visualization of 4 sequences of 5 frames, on a
synthetic dataset of 100,000 labyrinths (sec. 4.1). Left:
Ground-truth environment and trajectory (red). Middle:
Observations in camera-space (i.e. rotated, local views
of the environment centered on the trajectory). Right:
Heatmap of position predictions (brighter means higher
confidence), and corresponding ground-truth in red.

occupancy maps. 5,000 labyrinths were set aside for vali-
dation, and the rest used for training.

A simulated agent with limited, local information is
considered. A camera viewpoint was simulated by ray-
casting from the agent’s position and view direction, with
a 180◦ field-of-view. The view directions are limited to
{0◦, 90◦, 180◦, 270◦} (thus r = 4). Example observations
o generated this way can be visualized in the second col-
umn of fig. 4. The observations consist of two channels of
one-hot encodings: one for walls and another for unoccu-
pied cells. Note that, due to the local viewpoint, the camera
is in the center and the view is always pointing to the right.

For training, we generated trajectories of 5 frames, ran-
domly moving the agent to a visible unoccupied cell, with
random view direction. At least 3 visible unoccupied cells
are ensured at all times (to avoid getting stuck).

Architecture and training details. We implemented the
method described in sec. 3, which we will refer to as Map-
Net. Instead of an image-space CNN and ground projection
(sec. 3.4), in this section we used a small CNN, that trans-
forms the two observed channels into an embedding of size
n = 16. This CNN has two layers of 3×3 filters followed by
batch-normalization, with 20 hidden channels and a ReLU.

The network was then trained by minimizing eq. (8) with
the Adam optimizer [13] for 10 passes over the training
data. The learning rate was set to 10−3, with a batch size
of 100. The map size was set to h = w = 15, and the
observations size to s = 11.

Experiments and analysis. After training the network
to convergence, we measured the Average Position Error
(APE), defined as the average Euclidean error of the posi-
tion only. The APE for the training and validation sets are
nearly equal, 0.72 and 0.71 cells respectively. This means
that the MapNet is wrong on average by less than one cell,
after a 5-frames sequence where the camera may move sev-
eral steps per frame. This is surprising given the difficulty of

Figure 5: Map embeddings at the end of 4 sequences (same
as in fig. 4), showing one channel per column.

Figure 6: Visualization of the data used in the map decoding
experiment (sec. 4.1). The classes are: corridor (white), turn
(blue), dead end (red), fork (yellow), and crossroad (purple,
visible only in the second-to-last tile, since it is a rare oc-
currence).

Corridor Turn Dead end Fork Crossroad All
76.1% 73.3% 69.8% 68.8% 62.3% 71.3%

Table 1: Accuracies of binary classifiers for the semantic
categories illustrated in Fig. 6, showing that map embed-
dings are correlated to semantics (random chance is 50%).
The last column shows one-versus-all accuracy. See sec. 4.1
for details.

the task: the observations shown in fig. 4 have to be matched
together to build a bigger picture, like puzzle pieces, with
unknown positions and orientations, and very little overlap.

Some example predictions are shown on the right
of fig. 4. Note the bi-modal distribution in the last row:
the second observation may correspond to either end of the
corridor in the first observation. This inherent ambiguity is
resolved after more observations are collected.

The map embeddings obtained at the end of the example
sequences of fig. 4 are visualized in fig. 5. The n = 16
channels are shown as tiles, with a brighter color meaning a
higher value at a given map position. Some channels seem
to follow the contours of visible portions of the ground truth
map, while others are less interpretable. It is interesting
that these contours cover a larger context than any single
observation.

To perform a more quantitative analysis of the map em-
beddings, we decided to check whether they are correlated
with intuitive semantic features of the mazes, such as long
corridors, forks and dead ends. We divided unoccupied cells
into categories, as a function of the number of entry points
(one for dead ends, 2 for corridors/turns, 3 for forks and 4
for crossings), and their relative angle (180◦ for corridors,
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Figure 7: Average Position Error (APE) over different se-
quence lengths on the ResearchDoom dataset.

90◦ for turns), covering all possible states. We then took
the MapNet embeddings obtained from the training set, and
trained a one-versus-all Support Vector Machine to classify
each map embedding into the corresponding semantic class.

The resulting accuracy is 71.3% (last column of table 1).
Because this is a heavily unbalanced dataset (e.g. most cells
are corridors and very few are crossings), we wanted to be
sure that the classifier’s accuracy reflected the discrimina-
tive power of the embeddings, and not just a-priori class
probabilities. We then created a balanced dataset of pos-
itive and negative samples for each semantic category, by
subsampling the majority class to match the number of sam-
ples of the minority class. If the map embeddings are pre-
dictive of a semantic category, then the accuracy of a bi-
nary SVM trained on the balanced dataset should be above
chance (50%). Table 1 presents the results, showing that
this is the case. This demonstrates that the map embeddings
indeed encode recognizable aspects of the environment, as a
side-effect of the primary goal of self-localization (eq. (8)).

4.2. Results on 3D game recordings

We now turn to a more challenging setting, with 3D data
and richer environments: the classic game Doom. We used
ResearchDoom [14] to render pre-recorded playing sessions
by human players. Even though the images are synthetic,
they contain many of the complexities of natural images,
such as occlusions, fast motions, and ambiguous textures.
Importantly, the camera traverses large, hand-crafted envi-
ronments that were designed to be complex and appealing
to players, as opposed to small and simple toy scenes.

Data details. We used recordings from 4 speed-runs
through the game, capturing RGB-D and camera pose data.
This yielded 687,894 images, or over 6 hours of gameplay.
The game sprites were turned off, so that the networks can
focus on the environment and navigation. For training we

Doom data [14] Units APE-5 APE-50 ATE-50
MapNet-32 (ours) 32 23 197 74

MapNet-32-F (ours) 32 20 219 73

CNN-LSTM 128 37 296 111
1024 33 288 108

DeepVO [1] 128 22 282 109
1024 19 278 107

Table 2: Absolute Trajectory Error (ATE) and Average Po-
sition Error (APE), for sequences of 5 and 50 frames, on the
ResearchDoom dataset (sec. 4.2).

sample sequences of 5 images, obtained every 2 frames of
recorded video, and resized to 160× 100 pixels.

Architecture and training details. We fine-tune a ResNet-
50 [9] (pre-trained on ImageNet and keeping only the first
21 convolutional layers) to extract features from the RGB
image. This CNN’s features are then ground-projected ac-
cording to sec. 3.4, and input to a final 2-layers CNN with
64 hidden channels (same as in sec. 4.1), to obtain the Map-
Net’s observations. The discretization cell size is 30 (in the
internal units of the game world), and r = 12 rotations are
considered. Finally, the map size was set to h = w = 29,
with an embedding of n = 32 units, and an observation size
s = 21. Training was again performed using Adam, with a
learning rate of 10−3, and a batch size of 20, for 20 epochs.

Baselines and error metrics. In this experiment, we
focused on testing the proposed method’s capabilities of
self-localization, and compare it against more general ap-
proaches. As a simple baseline we tested a CNN-LSTM
combination that predicts pose directly, with different num-
bers of LSTM units. It uses the same CNN as ours, fol-
lowed by global average pooling, which improves perfor-
mance. We also reimplemented the state-of-the-art DeepVO
method [24], which is similar but uses a FlowNet CNN [5].
Note that this method computes optical flow, which is a
strong indicator of short-term motion, by concatenating the
preceding frame along the channels of each input image.
For a fair comparison, we also test a variant of our method
with the same concatenated input images (MapNet-F).

We measured two kinds of errors. The Average Posi-
tion Error (APE) is the average Euclidean distance between
the predicted position and the corresponding ground-truth.
The Average Trajectory Error (ATE), commonly used when
evaluating SLAM systems [15], consists of translating and
rotating the predicted trajectory to minimize the squared er-
ror w.r.t. the ground-truth, and then computing the Root-
Mean-Squared (RMS) error in position. This metric is thus
more generous, and corrects for the inevitable long-term ef-
fects of drift, making it more useful for long sequences. We
measured short-term APE over 5 frames (APE-5), and long-
term APE (APE-50) and ATE (ATE-50) over 50 frames.
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Figure 8: Average Position Error (APE) over different se-
quence lengths on the Active Vision Dataset.

Experiments and analysis. After training all networks, we
measured the APE and ATE (table 2). Notice that long-
term metrics (ATE/APE-50) test the networks’ capabili-
ties at extrapolating beyond the length of the training se-
quences (which is 5 frames). DeepVO [24] fares better than
a generic CNN-LSTM, and shows better performance than
ours in the short-term. This can be explained by its use of
optical flow cues, which are very helpful over short time-
scales. We verified that the proposed MapNet achieves bet-
ter localization for most sequence lengths, converging for
longer ones, despite using fewer LSTM units. The explicit
spatial-memory matching seems to be most helpful in the
long term, when simple odometry accumulates too many
errors. Adding optical flow-like cues (MapNet-F) has a pos-
itive impact, as expected. Figure 1 shows qualitative results.

4.3. Results on real data

Active Vision Dataset. For our final experiment, we used
the very recent Active Vision Dataset (AVD) [1]. AVD uses
a robotic platform to capture RGBD images densely every
30cm (on a 2D grid) and every 30◦ in rotation, over 19 in-
door scenes. The dataset contains over 15,000 images, but
they can be combined into different trajectories, simulating
robot navigation using real data. We sampled 200,000 ran-
dom trajectories of 5 frames for training, by moving along
the shortest path between 2 random locations.

Architecture and training details. All hyperparameters in
this experiment remain identical to those in sec. 4.2. The
discretization cell size is 300 millimeters. The only other
difference is that we fine-tune a faster VGG-F model [2].

Experiments and analysis. In addition to the previ-
ous methods, we tested the state-of-the-art system ORB-
SLAM2 [15], which should be appropriate given that we
are dealing with real images. Unfortunately it performed
quite poorly, despite extensive parameter tuning and ensur-

AVD data [1] Units APE-5 APE-50 ATE-50
MapNet (ours) 32 222 1844 614

MapNet-F (ours) 32 207 1338 464

CNN-LSTM 128 335 1860 751
1024 266 1921 717

DeepVO [1] 128 207 1866 735
1024 181 1838 700

ORB-SLAM2 [15] 463 1969 786

Table 3: Absolute Trajectory Error (ATE) and Average Po-
sition Error, for sequences of 5 frames (APE-5) and 50
frames (APE-50), on the Active Vision Dataset (sec. 4.3).
Quantities are in millimeters (movement per frame is in dis-
crete steps of 300mm).

ing a correct camera model. This is explained by the fact
that classic SLAM systems rely heavily on temporal conti-
nuity, and AVD has a very low frame-rate. By contrast, our
algorithm performs a full matching over all (planar) poses
every frame, and thus can cope with large displacements.
The performance advantage seems to be larger than for Re-
searchDoom, both in the short and long-term, probably due
to ResearchDoom’s high speed (since it consists of player
speed-runs). It is interesting to note that, in the short-term
(APE-5), the MapNet error is on the same order of the dis-
cretization cell size (300mm). This suggests that finer dis-
cretization could possibly improve results, at the expense of
more computation. Example results are shown in fig. 1.

5. Conclusions
In this paper we considered the problem of developing an

allocentric representation of 3D spaces that can be dynam-
ically updated by a deep neural networks for solving prob-
lems such as mapping and navigation. The method is based
on a 2.5D associative spatial memory that is addressed and
updated dynamically using information extracted from a
RGBD sensor. We have also reduced the problem of lo-
calizing and registering observations to the application of
convolution/deconvolution operators in memory space.

We have shown very encouraging results on both syn-
thetic and real data. Our main finding is that this system,
which uses a representation noticeably simpler than tradi-
tional mapping algorithms, can still achieve good localiza-
tion performance, robustly, efficiently, and in a manner that
affords end-to-end learning as a component of a more com-
plex system.

Future extensions include handling full 3D spaces, or at
least spaces such as buildings that can be decomposed as a
stack of 2.5D areas, as well as reorganizing the map glob-
ally to account for long-term loop closure constraints.
Acknowledgments. The authors acknowledge the generous
support of ERC 677195-IDIU.
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