
Fast Monte-Carlo Localization on Aerial Vehicles using
Approximate Continuous Belief Representations

Aditya Dhawale∗ Kumar Shaurya Shankar∗ Nathan Michael

Abstract

Size, weight, and power constrained platforms im-
pose constraints on computational resources that introduce
unique challenges in implementing localization algorithms.
We present a framework to perform fast localization on such
platforms enabled by the compressive capabilities of Gaus-
sian Mixture Model representations of point cloud data.
Given raw structural data from a depth sensor and pitch
and roll estimates from an on-board attitude reference sys-
tem, a multi-hypothesis particle filter localizes the vehicle
by exploiting the likelihood of the data originating from the
mixture model. We demonstrate analysis of this likelihood
in the vicinity of the ground truth pose and detail its utiliza-
tion in a particle filter-based vehicle localization strategy,
and later present results of real-time implementations on a
desktop system and an off-the-shelf embedded platform that
outperform localization results from running a state-of-the-
art algorithm on the same environment.

1. Introduction
For an agent lost in a known environment, much of the

cost of localization can be offset by precomputing measures
of what the sensor is expected to see; localization can then
be cast as the much simpler problem of a search through
these pre-existing “hallucinated” views. However, exhaus-
tively considering all possible views incurs a prohibitive
cost that increases exponentially with both the dimension-
ality of the state space and the size of the environment. Fur-
ther, naı̈ve pre-rendering approaches can be susceptible to
errors caused by perceptual aliasing due to slight variations
in the environment appearance or by regions that are not
feature rich, such as blank walls [1].

In this paper we present a framework enabling rapid
computation of sensor data likelihood via an environment
representation that is both high-fidelity and memory effi-
cient. The framework models a depth camera observation as
being sampled from the environment representation with a

∗Contributed equally to this work. Authors are with The Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
{adityand, kshaurya, nmichael}@cmu.edu

likelihood measure that varies smoothly about the true cam-
era pose. We thus exploit the dramatically reduced storage
complexity of the representation and the local spatial regu-
larity of a fast-to-compute likelihood function to re-cast the
pose estimation problem as that of Monte-Carlo localiza-
tion [25].

Similar in spirit to our choice of representation, [8] map
the world with a succinct, albeit restrictive parameterization
of using only dominant planes. Our choice of representation
however, does not have any such restrictions. Likewise, [2]
is similar in its restriction of representation to a structured
world consisting of planes and edges and only localizes in
2D. Approaches such as NDT occupancy maps [5, 16, 23],
unlike the representation used in this work, learn indepen-
dent distributions over each discretized cell leading to a
lower fidelity representation at the cell boundaries [6, 21].
Further, for fast pointcloud alignment they require pre-
computation of the incoming data for comparison with a
stored model, known as Distribution-to-Distribution (D2D)
registration. The more accurate Point-to-Distribution (P2D)
registration approaches, however, are not as real-time vi-
able [5, 14], and are less so for our purpose. In [4] the
authors represent each point in the reference scan of a 2D
sonar scan as an isotropic Gaussian distribution and itera-
tively compute the 2D transformation that maximizes the
likelihood of all points in the target scan. Our approach, on
the other hand, represents clusters of points in the reference
scan as individual anisotropic Gaussian components and is
not restricted to transformations of small magnitude.

Closest in terms of our choice of implementation frame-
work, [9] propose a particle filter based real-time RGB-D
pose estimation approach and [3] present a real-time lo-
calization approach on a fixed-winged aircraft during ag-
gressive flights with a laser scanner and an IMU. The lat-
ter work implicitly exploits much more restricted dynam-
ics of a fixed wing aircraft within its process model and
further, both these approaches use the OctoMap [12] rep-
resentation to provide correction updates within their filter
estimates. Note that the memory footprint of an OctoMap is
much greater than that of our choice of representation. For
instance, memory consumption for an OctoMap of dataset
D3 (Sec. 4.1) with 0.1 m resolution is 872 KB while the



Figure 1. Comparison of the mean particle filter pose (orange) with that of the integrated process model trajectory (cyan) from a represen-
tative (office) dataset. The filter estimate is initialized with a uniform distribution away from the true location of the vehicle. As the camera
observes more informative data the filter quickly converges to the correct pose. Top Right: Four views of the raw point cloud sensor data
and the corresponding view of the GMM map from the mean of the particle filter estimates. The GMM components are superimposed on
top of the source point cloud with their 3Σ bounds visualized as gray ellipsoids.

corresponding data usage for our Gaussian Mixture Model
(GMM) map representation consisting of 1000 Gaussian
components is 40 KB.

Prior works exploiting known map appearance for pre-
cise monocular pose estimation [10,17,19,22] employ a tex-
tured depth map within an iterative optimization framework
to compute the warp that minimizes a photometric cost
function between a rendered image and the live image such
as the Normalized Information Distance [19], that is robust
to illumination change, or a Sum of Squared Differences
cost function with an affine illumination model to tackle
illumination change [17]. Both algorithms rely on initial-
ization for tracking via a GPS prior or an ORB-based bag-
of-words approach, respectively, and expensive ray casted
dense textured data for refinement. Note that in contrast
to the above mentioned algorithms that use RGB informa-
tion, we only use depth observations and only project a fi-
nite number of mixture components as opposed to dense
pre-rendered views of the map.

Our framework solves the problem of 6 Degree-of-
Freedom pose estimation for Size, Weight, and Power
(SWaP) constrained micro air vehicles operating in a known
dense 3D pointcloud environment with an onboard monoc-
ular depth camera and Inertial Measurement Unit (IMU).
We assume that the vehicle pitch and roll are obtained from
an attitude estimation algorithm using the IMU in order to
constrain the search space to just heading and position. Our
main contributions are:
• A particle filter-based localization strategy based on

a high fidelity, memory efficient environment repre-
sentation enabled by a fast likelihood computation ap-
proximation; and
• Experimental evaluation of the approach on a desktop

and an off-the-shelf mobile GPU system.

2. Approach
Contemporary direct tracking algorithms require the pro-

jection of a large number of dense or semi-dense points into
image space to align the current sensor data to a reference
model. In contrast, we employ GMMs as a succinct pa-
rameterized representation to achieve orders of magnitude
computational savings via an analytic projection into im-
age space. The consequent reduction in complexity enables
projection in multiple pose hypotheses concurrently in real-
time and motivates this work.

This section details the choice of environment represen-
tation and how it enables the proposed real-time sensor data
likelihood computation.

2.1. Spatial GMMs as an Environment Representa-
tion for Tracking

Conventional means of representing maps such as voxel
grids discretize space to encode occupancy leading to res-
olution dependent model fidelity and memory efficiency.
An alternate approach is to represent occupancy using a
GMM map that attempts to approximate the underlying
distribution from which sensor measurements are sampled.



This formulation is capable of representing the environment
model with as high a fidelity as required that scales grace-
fully with model complexity when used in a hierarchical
fashion [21]. Additionally, this representation provides a
probabilistic uncertainty estimate of the occupancy at any
sampled location. Fitting these models to data in real time
is possible due to recent advances that enable efficient op-
eration [7]. We utilize the contribution presented in [7, 21]
to inform the number of Gaussian components required to
pre-compute GMM maps of the environment point cloud at
various fidelity levels. For the purpose of this paper, how-
ever, we limit the discussion to using only GMM maps at a
certain fidelity level chosen according to Sec. 4.2, but note
that the approach can be readily extended to a hierarchical
formulation.

Figure 2. Negative log-likelihood plots of sensor data acquired
from camera poses offset from a randomly chosen true pose in
dataset D1 by incremental linear and rotational displacements.
Utilizing only the relevant components using the approximation
discussed in Sec. 3 leads to almost identical likelihoods as when
utilizing all the Gaussian components present in the model.

A spatial GMM represents the probability of matter ex-
isting at a specific position Pw given the model component
parameters Θ = {µi,Σi, λi}i=1...M such that

p
(
Pw;Θ

)
=

M∑
i

λiN (µi,Σi) (1)

where λi is the mixture weight, µi the mean 3D position,
and Σi the covariance of the ith component of the GMM
respectively, with

∑M
i λi = 1 and λi > 0.

2.2. Projection of a GMM Component into Image
Space

In order to determine relevant mixture components of a
given spatial GMM map for evaluating sensor data likeli-
hood we first analytically project the mixture components
into image space.

For a point Pw in the world frame, the transformed po-
sition Pc in a camera frame Tc

w is denoted as

Pc = Rc
wPw + tcw

where Rc
w and tcw are the corresponding rotation matrix and

translation vectors, respectively. Since this is a linear oper-
ation on Pw, using Eq. 1 the transformed distribution of
points in the camera frame for the ith component is

p
(
Pc;Θi

)
= N (Tc

wµi,R
c
wΣiR

c
w

T)

Consider a sample xs ∼ N (µ,Σ) and a monotonic con-
tinuous nonlinear function y = f(x) (where y and xs are
in the same space). The first order Taylor series expansion
about a point xs leads to

y ∼ N

(
E[f(x)],

∂f

∂x

∣∣∣∣
x=xs

Σ
∂f

∂x

∣∣∣∣T
x=xs

)

Under the standard pinhole projection model, a point P
in the camera frame is projected to the image space using
the operation π : R3 → R2 defined as

π(P) =

[
cx + f Px

Pz

cy + f
Py

Pz

]

where f is the focal length of the camera, and cx and cy are
the principal point offsets. The derivative of the projection
operation with respect to the 3D point P is

∂π

∂P
=

[
f
Pz

0 −f Px

P2
z

0 f
Pz

−f Py

P2
z

]

Thus the projection of a 3D normal distribution component
into image space is the 2D normal distribution

p(u, v;Θi) =

N

π(Tc
wµi),

∂π

∂P

∣∣∣∣
Tc

wµi

Rc
wΣiR

c
w

T ∂π

∂P

T
∣∣∣∣∣
Tc

wµi

 (2)

where u, v are pixel coordinates in the image.

2.3. Estimating the Likelihood of a Camera Pose
Hypothesis

As shown in the previous subsection, each Gaussian
component can be projected into image space as a 2D
Gaussian distribution. We utilize this property to deter-
mine relevant components for computing the likelihood of
sensor data (Sec. 3). Given a scan Zt of depth pixels
{z1, z2, . . . , zk} from a sensor scan and a set of 3D GMM
parameters Θ, the log likelihood of the scan being sampled
from the GMM is defined as

l
(
Zt|Θ,Tc

w

)
=

K∑
i

ln

M∑
j

1jλjN
(
π−1(zi);T

c
wµj ,R

c
wΣjR

c
w

T) (3)



where 1i is a binary indicator function that signifies if the
ith component is used to compute the log likelihood, π−1 is
the inverse projection from depth image pixel to 3D points,
and K is the number of pixels in the sensor scan. This
likelihood should peak at the true sensor pose and decay
smoothly in the local neighbourhood, which is indeed ob-
served as shown in Fig. 2.

Figure 3. System overview. The algorithm operates on depth im-
age streams and a source of odometry given a precomputed GMM
map of the environment. For each particle, the GMM components
are projected into image space using its current pose hypothesis.
Relevant components are sub-selected and are then used to com-
pute the likelihood of the depth image. The likelihood values for
all the particles are used to resample a new set of particles that are
then forward propagated using the process model.

2.4. Tracking Multiple Hypotheses

The discussion above only considers the nature of the
likelihood in the vicinity of the true location; in practice it is
not reasonable to assume that a single viewpoint suffices to
localize the system as perceptual aliasing may arise due to a
paucity of data that precludes state observability. Hence,
we require a technique that permits tracking of multiple
hypotheses and ensures appropriate weighting of equally
likely viewpoints given the current sensor observations.

A standard approach to tracking multiple hypotheses is a
Monte Carlo filter (or particle filter). Particle filters operate
by continuously sampling candidate particle poses and mea-
sure the likelihood of the current sensor data having orig-
inated at the sampled pose. Based on the relative scores
of the samples the particles are resampled and propagated
based on a process model (often a noisy source of odom-
etry). Convergence is generally achieved as soon as the
sequence of observations made over time render alternate
hypotheses inadmissible. Note that due to their inherent
structure particle filters are extremely parallelizable and we
exploit this in our implementation.

2.4.1 State Propagation

We assume the presence of some odometry to drive the first
order Markov process model and inject Gaussian noise into
it. Note that we assume that we know the pitch and roll
that can be obtained from the attitude and heading reference
system onboard a robotic system to a high level of accuracy.

2.4.2 Importance Weight

The importance weight of a particle in the filter represents
a score of how well the sensor scan matches the GMM map
at its location. Since the negative log likelihood of the cur-
rent scan Zt being drawn from the GMM map is a mini-
mum at the true location, as shown in Fig. 2, in practice we
use the inverse of the negative log likelihood. Thus, given
the current state estimate Tc(i)

w of a particle i out of N par-
ticles at time step t, the corresponding normalized impor-
tance weight is

w
(i)
t =

l
(
Zt|Θ,Tc(i)

w

)−1∑N
j l
(
Zt|Θ,Tc(j)

w

)−1 (4)

2.4.3 Sampling Strategy

A particle filter should ideally converge to the correct hy-
pothesis after running for a finite amount of iterations with
a reduction in the filter variance signifying the confidence
of the filter. At the same time, an early reduction in the fil-
ter variance may cause the filter to diverge to an incorrect
hypothesis and never recover due to low variance. In order
to avoid such situations, we implement the stratified sam-
pling strategy [13] in combination with low variance sam-
pling [25]. The particles are divided into random groups of
equal weights and in each group we employ low variance
sampling. This approach has low particle variance [25] and
works well when the particle filter is tracking multiple hy-
potheses at once.

2.4.4 Handling Particle Deprivation

One of the most common failure modalities of a particle fil-
ter is that of particle deprivation [26]. Even with a large
number of particles, the stochasticity intrinsic to a particle
filter might cause it to diverge from the correct state. We
employ a modified version of Augmented MCL strategy as
described in [25] where instead of adding new particles we
reinitialize Nmodify number of particles randomly selected
from the original set using the parameters αslow and αfast.
This is done since we cannot increase the number of parti-
cles once the filter is initialized because of implementation
limitations. For our process model we use diagonal covari-
ances for translation, and the final choice of parameters in
all our experiments is shown in Table 1.



3. Fast Localization
In order to perform fast localization using the above ap-

proach it is essential to compute the likelihood of the data
given a proposed pose as quickly as possible. Eq. 3 sug-
gests that computing the likelihood of a scan having been
sampled from the GMM map is the summation of the con-
tribution of all the components within the GMM. However,
the key insight here is that not all the components have a
significant contribution to the likelihood.

The point clouds that we use in our experiments have
roughly uniform coverage of points across the scene. As a
consequence, all Gaussian components fit to these point-
clouds end up having roughly equivalent mixture weight
probabilities. This fact, in addition to the diminishing prob-
ability mass of the Gaussian distribution, permits the ap-
proximation of using only the projected components within
spatial proximity of a certain pixel location for computing
the likelihood of the corresponding 3D point being sampled
from the map. As an added optimization step we perform
this membership computation over subdivided patches of
the image. These optimizations have negligible effect on
the computed likelihood value of the sensor data, as demon-
strated in Fig. 2.

We follow the following steps (graphically illustrated in
Fig. 4) to obtain the relevant components for computing the
likelihood of a depth image:
• Divide the image into 32× 32 pixel patches;
• Compute the 2D projection of each Gaussian compo-

nent on to the image plane of the depth sensor;
• Inflate the 3Σ-bound ellipse of the projected 2D Gaus-

sian of each component by half the diagonal of the
patch along its major and minor axis to generate el-
lipses Ei; and
• For each patch, check if the center of the image patch
cp lies within or on each of the Ei and update the indi-
cator variable 1i,p accordingly.

1i,p =

{
1, if cp ∈ Ei
0, otherwise

(5)

Given a set of updated indicator variables 1i,p for all the
Gaussian components Θ and a depth image, Zt, the likeli-
hood of the image can be computed as the sum of the likeli-
hoods of all the image patches computed according to Eq. 3.

4. Results
4.1. Experiment Design

This section presents performance analysis of our filter-
ing approach on a variety of datasets. First, we conduct a
sensitivity analysis to determine the number of particles and
the number of components we use in our implementation.
Second, we analyze metric accuracy of the proposed filter

Figure 4. Membership computation process. 3D Gaussian compo-
nents from the GMM representation of the world are projected to
the image plane. The image is subdivided into multiple patches,
where for a selected patch the relevant Gaussian members are de-
termined for computing the likelihood. In order to determine the
latter, we employ the heuristic described in Sec. 3. For instance
the inflated bounds of the bottom left projected component (red)
do not contain the center of the selected patch; in contrast those of
the bottom right (green) do, and the component is thus selected for
computing the likelihood of data within that particular patch.

on publicly available datasets and show that our filter out-
put is consistent with ground truth. Third, we compare the
localization performance of our approach with a state-of-
the-art RGB-D tracking algorithm (ORB-SLAM2 [15]) on
the same sequences and demonstrate superior performance
for localization. Fourth, we demonstrate the ability of our
approach to incorporate both different odometry algorithms
and ground truth map acquisition methodologies. Finally,
we analyze runtime performance of our filter and show that
its runtime is competitive both on a desktop class system
and on an embedded platform, thus enabling SWaP con-
strained operation.

We evaluate our approach on
• D1: The (a) lounge and (b) copyroom datasets [27];
• D2: The voxblox dataset [18];
• D3: A representative dataset collected in-situ; and
• D4: The TUM Freiburg3 dataset [24] for demonstrat-

ing the ability to generalize.
In all cases we utilize a fixed number of components
(Sec. 4.2) to first fit a GMM to the pointcloud using the
scikit-learn1 toolkit.

We employ two processing systems for evaluation: (1) A
desktop with an Intel i7 CPU and an NVIDIA GTX 960 Ti
GPU, and (2) An embedded NVIDIA TX2 platform.

4.2. Sensitivity Analysis

Particle filters can achieve increased performance with
large number of particles at the cost of increased compu-
tational complexity. Conversely too few particles can lead
to divergence from the true location due to an inability to
represent the true underlying distribution. In order to find
the appropriate number of particles that ensure precision
while still being computationally feasible we compare the

1http://scikit-learn.org/stable/modules/mixture.html

http://scikit-learn.org/stable/modules/mixture.html


Table 1. Filter hyperparameters

Process Noise σ
αslow αfastTranslation (m) Yaw (rad)

Desktop 0.02 0.01 0.01 0.001
TX2 0.025 0.1 0.05 0.005

filter performance with various number of particles against
a ground truth filter with N = 16200. Assuming the under-
lying distribution represented by the particle set to be a uni-
modal Gaussian (a valid assumption after convergence), we
compute the variance of the KL-Divergence [11] of multiple
runs of the filter output with that of the ground truth filter
to determine the empirically optimal parameters to be used
in our implementation. A low value of the KL-Divergence
variance indicates similar performance to the ground truth
filter.

The fidelity of a GMM map to the underlying dis-
tribution monotonically increases with the number of
components. However, the marginal benefit (in a KL-
Divergence sense) of increasing the model complexity di-
minishes rapidly after adding an adequate number of com-
ponents [21]. In order to determine the appropriate model
complexity to represent the original map concisely while
enabling accurate filter performance, we perform similar
experiments with the optimal number of particles obtained
from the previous study, this time with varying number of
Gaussian components.
We compute the optimal parameters to be N = 1068 and
M = 1000 based on D3, the dataset with the largest volu-
metric span. This specific parameter choice is further moti-
vated by implementation constraints.

Figure 5. Left: Log of variance of KL-Divergence between the
ground truth filter (N = 16200) and filters with reduced par-
ticle counts. The knee point implies similar performance to the
ground truth filter at particles counts N > 1000. Right: A simi-
lar comparison given a ground truth map with many components
(M = 2500) and those with a reduced number motivates the
choice of M >= 1000. Evaluated on D3.

4.3. Metric Accuracy Analysis

In this subsection we discuss the localization accuracy
of our approach. As mentioned in Sec. 3 since we do not
add new particles when the filter observes particle depriva-
tion and instead randomly reinitialize the particles from the

original set, the Root Mean Squared Error (RMSE) of the
filter estimate increases when the filter observes particle de-
privation. This is highlighted in the plots as vertical shaded
regions. For all our evaluations we run the filter 10 times
on each dataset and report the average of the mean filter es-
timate. We do not quantify the sensitivity of the likelihood
values to the AHRS pitch and roll estimates as they are ac-
curate enough to not cause any significant difference.

4.3.1 Evaluation with Ground Truth Datasets (D1, D2)

The objective of using these datasets is to demonstrate the
ability of the filter to converge to the ground truth given per-
fect odometry. We generated a GMM map of the environ-
ments using the reconstructed point cloud and used the delta
transforms between two consecutive reported sensor poses
with added noise as our process model. In all these experi-
ments, we initialized the particles from a uniform distribu-
tion over a 4 m cube and π radians yaw orientation around
the known initial location. D1(a) and D1(b) contain nomi-
nal motion of the sensor, while D2 consists of very aggres-
sive motion in all degrees of freedom.

Figure 6. Mean trajectory (red) of the particle filter estimate of 10
trials on the D1(a) dataset compared to the process model trajec-
tory (blue). The shaded region around the mean trajectory shows
the variance of the filter estimate over multiple runs. The filter es-
timates have high variance in the beginning of the trajectories, but
soon converge to the correct location and track the ground truth
trajectory (blue).

The filter estimate converged to an incorrect hypothesis
for some runs in the initial iterations due to the highly sym-
metric nature of the environments about the X axis, as can
be seen in Fig. 6. The RMSE of the filter poses for these
datasets is presented in Fig. 7.

4.3.2 Evaluation with Representative Dataset (D3)

The objective of using this dataset is to demonstrate results
on a real-world application of the filter. We no longer use
ground truth odometry. Additionally, since we don’t have a
baseline algorithm to directly compare against, we compare



Figure 7. RMSE of 10 trials of the particle filter on the D1(a),
D1(b), and D2 datasets respectively. The region in red indicates
the time at which the particle filter observes particle deprivation
and a consequential RMSE rise.

the localization performance against ORB-SLAM2 which
builds its own succinct map representation. Note that ORB-
SLAM2 also utilizes the RGB image data in the dataset
whereas we only use the depth. Finally, we also briefly con-
trast the performance of the filter on the same dataset.

We generate a ground truth pointcloud using a FARO
Focus 3D Laser scanner 2 and use an ASUS Xtion RGB-
D camera for acquiring sensor data. An IMU strapped to
the camera determines the roll and pitch of the sensor. For
odometry, we only use the frame to frame relative transform
as opposed to the global pose output from ORB-SLAM2
as input to the process model. Note that the global ORB-
SLAM2 position we compare to in Fig. 8 and Fig. 9 is us-
ing loop closure to mitigate the drift in its frame to frame
estimates.

As ground truth is not available for this dataset, we re-
port the negative log likelihood values at the mean particle
filter location and the reported ORB-SLAM2 poses. We
show results of two runs in this environment in Fig. 8: The
first through a nominal path with feature rich data (as shown
in detail earlier in Fig. 1) where the estimated positions
of the sensor for the two approaches are very similar (but
with worse likelihood values for ORB-SLAM2). The sec-
ond run demonstrates the advantage of using particle filters
over maximum likelihood estimators in that the former can
converge to the correct result even after moving through
a region of low observability. We observe that the sensor
measurements register at the converged filter location better
after snapping back than those for the ORB-SLAM2 esti-
mate, as can be qualitatively seen in Fig. 9.

The particles in these experiments are initialized from a
uniform distribution over a 4m× 8m× 3m for position and
π radians in yaw.

2https://www.faro.com/products/construction-bim-cim/

faro-focus/

Figure 8. Comparison between the position and corresponding
likelihood estimates for two runs from ORB-SLAM2 and our fil-
ter, respectively. Top: A nominal path with feature rich data, and
Bottom: A path moving through regions of low observability. Con-
trast the continually increasing divergence (capped in the graph) of
the ORB-SLAM2 estimate after moving through the feature poor
region with the lower snapped negative likelihood values for the
same locations for our filter. The corresponding poses and over-
laid depth scan at approximately 55s is shown in Fig. 9. Due to
a minimal overlap of the depth scan with the map for the ORB-
SLAM2 frame, the likelihood value is very low.

Figure 9. Comparison of registration of current sensor measure-
ment at ground truth point cloud (gray) at ORB-SLAM2 pose esti-
mation (cyan) and at the estimated filter pose (orange). The sensor
measurement aligns with the ground truth point cloud in the filter
estimate frame while the accumulated drift in the ORB-SLAM2
frame due to transition through a less feature rich region leads to
poor alignment.

4.3.3 Evaluation with TUM Dataset (D4)

To demonstrate the ability of our filter to generalize to both
different odometry algorithms and datasets we compare the
performance with three different odometry inputs as pro-
cess models: The Generalized-ICP algorithm [20], ORB-
SLAM2 frame-to-frame relative transform, and ground
truth odometry. The point cloud map of the environment
was created by stitching several sensor scans together us-
ing their corresponding ground truth poses. In spite of the
stitched point cloud not being as well registered as that from

https://www.faro.com/products/construction-bim-cim/faro-focus/
https://www.faro.com/products/construction-bim-cim/faro-focus/


a FARO scanner due to sensor and ground truth pose noise,
the performance of the filter is similar (Table 2).

Table 2. Performance on D4 (RMSE in cm)
Our Approach ORB-SLAM2

Process Input mean var (cm2)

ORB-SLAM2 Velocity 7.67 0.21
Ground Truth Velocity 7.56 0.28 4.55

G-ICP Velocity 9.07 0.21

Figure 10. Comparison of our particle filter approach using ORB-
SLAM2 frame-to-frame odometry (orange) and Generalized-ICP
(cyan) as process models with ground truth pose (black) on TUM’s
Freiburg 3 Desk Dataset. The GMM representation of the world
is created by stitching sensor scans using the ground truth pose
estimates. The higher global error of our approach than that of
ORB-SLAM2 can be attributed to the noisy reconstruction of the
environment point cloud from the accumulated scans.

4.4. Runtime Performance Analysis

As seen in Fig. 11, the likelihood evaluation is the most
computationally expensive operation. Execution time for
this step varies with the number of Gaussian components
used to compute likelihood for each image patch and there-
fore is dependent on the fidelity of the model.

The filter runs at an average rate of 80 Hz and 9.5 Hz on
the Desktop and embedded class systems, respectively. This
is comparable to the ORB-SLAM2 rates of 47 Hz and 20
Hz on the respective platforms. Initial convergence on the
TX2 is slower due to the implicitly larger odometry steps.
However, post convergence the metric performance is not
significantly affected. As an illustrative example, the impact
of the slower runtime performance on the TX2 for D1(a) is
demonstrated in Fig. 12.

5. Summary and Future Work
We present a framework to perform real-time localiza-

tion of depth sensors given a prior continuous spatial belief
representation. Key to being able to do this is the ability
to project a succinct representation into the image frame of
the sensor to evaluate the likelihood of the data having orig-
inated from the given map for a given pose. By utilizing a

Figure 11. Execution time comparison for subcomponents of the
algorithm for the D1(a) dataset on an Intel i7 desktop with an
NVIDIA GPU and an embedded NVIDIA TX2 platform. Perfor-
mance scales linearly with the number of CUDA cores. As a point
of comparison ORB-SLAM2 runtime on the same dataset is faster
on the embedded platform than on the desktop.

Figure 12. Comparison of the filter performance on the desktop
with the NVIDIA TX2 on the D1(a) dataset. As the filter operates
at a slower frame rate on the TX2 it initially exhibits a larger error
but once the sensor observes a uniquely identifiable location, both
trial sets converge to the ground truth location.

fast likelihood computation approximation we can then per-
form robust particle filter localization in real-time even on
an embedded GPU platform.

Despite the apparent suitability of the likelihood func-
tion to an optimization based approach for more fine grained
pose refinement, it is not so straightforward. For Gaussian
components that are more flat the gradient profile can vary
rapidly in the vicinity of the components leading to poor
conditioning that can challenge traditional iterative Gauss-
Newton descent strategies. Further, the absence of strong
gradient information in spatial data as encoded by the nec-
essarily smooth-by-construction representation hinders the
application of such methods.

Future steps will involve extending the formulation to hi-
erarchical map representations to localize over larger scale
environments. We also intend to investigate incorporation
of this approach as a possible robust relocalization backend
for a visual SLAM algorithm running onboard a relevant
SWaP constrained aerial platform.



References
[1] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast and

incremental method for loop-closure detection using bags of
visual words. IEEE Transactions on Robotics, 24(5), 2008.
1

[2] J. Biswas and M. Veloso. Depth camera based indoor mo-
bile robot localization and navigation. In Proc. of IEEE Intl.
Conf. on Robotics and Automation, 2012. 1

[3] A. Bry, A. Bachrach, and N. Roy. State estimation for ag-
gressive flight in GPS-denied environments using onboard
sensing. In Proc. of IEEE Intl. Conf. on Robotics and Au-
tomation, 2012. 1

[4] A. Burguera, Y. González, and G. Oliver. The likelihood field
approach to sonar scan matching. In Proc. of IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, 2008. 1

[5] A. Das, J. Servos, and S. L. Waslander. 3D scan registration
using the normal distributions transform with ground seg-
mentation and point cloud clustering. In Proc. of IEEE Intl.
Conf. on Robotics and Automation, 2013. 1

[6] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz.
MLMD: Maximum Likelihood Mixture Decoupling for fast
and accurate point cloud registration. In Proc. of IEEE Intl.
Conf. on 3D Vision, 2015. 1

[7] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz. Ac-
celerated generative models for 3D point cloud data. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition,
2016. 3

[8] M. F. Fallon, H. Johannsson, and J. J. Leonard. Efficient
scene simulation for robust Monte Carlo localization using
an RGB-D camera. In Proc. of IEEE Intl. Conf. on Robotics
and Automation, 2012. 1

[9] Z. Fang and S. Scherer. Real-time onboard 6DoF localization
of an indoor MAV in degraded visual environments using a
RGB-D camera. In Proc. of IEEE Intl. Conf. on Robotics and
Automation, 2015. 1

[10] T. Gonçalves and A. I. Comport. Real-time Direct Tracking
of Color Images in the Presence of Illumination Variation. In
Proc. of IEEE Intl. Conf. on Robotics and Automation, 2011.
2

[11] J. R. Hershey and P. A. Olsen. Approximating the Kullback
Leibler divergence between Gaussian mixture models. In
Proc. of the IEEE Intl. Conf. on Acoustics, Speech and Signal
Processing, volume 4, 2007. 6

[12] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Autonomous Robots,
34(3), 2013. 1

[13] G. Kitagawa. Monte Carlo filter and smoother for non-
Gaussian nonlinear state space models. Journal of Compu-
tational and Graphical Statistics, 5(1), 1996. 4

[14] M. Magnusson, N. Vaskevicius, T. Stoyanov, K. Pathak, and
A. Birk. Beyond points: Evaluating recent 3D scan-matching
algorithms. In Proc. of IEEE Intl. Conf. on Robotics and
Automation, 2015. 1

[15] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo, and RGB-D
cameras. IEEE Transactions on Robotics, 33(5), 2017. 5

[16] S. Oishi, Y. Jeong, R. Kurazume, Y. Iwashita, and
T. Hasegawa. ND voxel localization using large-scale 3D
environmental map and RGB-D camera. In Proc. of IEEE
Intl. Conf. on Robotics and Biomimetics, 2013. 1

[17] K. Ok, W. N. Greene, and N. Roy. Simultaneous Track-
ing and Rendering: Real-time Monocular Localization for
MAVs. In Proc. of IEEE Intl. Conf. on Robotics and Au-
tomation, 2016. 2

[18] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto.
Voxblox: Incremental 3D Euclidean Signed Distance Fields
for On-Board MAV Planning. In Proc. of IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems. IEEE, 2017. 5

[19] G. Pascoe, W. Maddern, and P. Newman. Robust Direct Vi-
sual Localisation using Normalised Information Distance. In
Proc. of British Machine Vision Conf., 2015. 2

[20] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In
Proc. of Robotics: Science and Systems, volume 2, 2009. 7

[21] S. Srivastava and N. Michael. Approximate Continuous Be-
lief Distributions for Precise Autonomous Inspection. In
Proc. of IEEE Intl. Symposium on Safety, Security, and Res-
cue Robotics, 2016. 1, 3, 6

[22] A. D. Stewart and P. Newman. LAPS-Localisation using Ap-
pearance of Prior Structure: 6-DoF Monocular Camera Lo-
calisation using Prior Pointclouds. In Proc. of IEEE Intl.
Conf. on Robotics and Automation, 2012. 2

[23] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J.
Lilienthal. Fast and accurate scan registration through min-
imization of the distance between compact 3D NDT repre-
sentations. The Intl. Journal of Robotics Research, 31(12),
2012. 1

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. In Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems,. 5

[25] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics.
MIT press, 2005. 1, 4

[26] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. A. Wan.
The unscented particle filter. In Advances in neural informa-
tion processing systems, 2001. 4

[27] Q.-Y. Zhou and V. Koltun. Dense scene reconstruction with
points of interest. ACM Transactions on Graphics (TOG),
32(4). 5


