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1. Proofs

Proposition 3. If a minimiser x̃ of a faithful convex under-
approximation Fconv of G + δC meets x̃ ∈ C, it is also a
global minimiser of G+ δC .

Proof. Assume that our statement is false. Then there exists
a x ∈ C with G(x) < G(x̃). However, since Fconv is faith-
ful, we have G(x̃) = Fconv(x̃) as well as G(x) = Fconv(x).
We conclude Fconv(x) < Fconv(x̃) which contradicts x̃ be-
ing a minimiser of Fconv. �

Proposition 4. If F 1
conv and F 2

conv are two convex underap-
proximations of G+ δC , where F 1

conv is faithful and F 2
conv is

not, then F 2
conv cannot be tighter than F 1

conv.

Proof. Since F 2
conv is not faithful, there exists a x ∈ C for

which F 2
conv(x) 6= G(x). Because F 2

conv is still an under-
approximation of G + δC , it must hold that F 2

conv(x) <
G(x) = F 1

conv(x), which shows that F 2
conv cannot be tighter

than F 1
conv. �

Proposition 5. Let X ∈ Pn and x = vec(X). For any d ∈
Rn2

, D1, D2 ∈ Rn×n it holds that f(x) = f̃(x;D1, D2, d).

Proof. With X ∈ Pn, we have XTX = In and therefore

〈In, D1〉 = 〈XTX,D1〉, (1)
= 〈XD1, X〉 = 〈vec(XD1), vec(X)〉, (2)

= 〈(DT
1 ⊗ In)x, x〉, (3)

= xT (D1 ⊗ In)x. (4)

Similarly 〈In, D2〉 = xT (In ⊗ D2)x. Moreover, since
X ∈ Pn, we have that Xij = X2

ij for all i, j = 1, . . . , n.
Thus, xT diag(d)x = dTx. Combining the above shows
that f(x) − f̃(x;D1, D2, d) = xT (D1 ⊗ In + In ⊗D2 +
diag(d))x− dTx− 〈In, D1 +D2〉 = 0. �

Lemma 6. Let D,D′ ∈ Rn×n be symmetric and let d, d′ ∈
Rn2

. Define D̂ = D′ −D. If di ≤ d′i for all i = 1, . . . , n2,

as well as D̂ii − maxj 6=i(max(D̂ij , 0)) ≥ 0 for all i =
1, . . . , n, then it holds for all x ∈ vec(DSn)

f̃(x;D, •, ◦) ≤ f̃(x;D′, •, ◦) , (5)

f̃(x; �, D, ◦) ≤ f̃(x; �, D′, ◦) , and (6)

f̃(x; �, •, d) ≤ f̃(x; �, •, d′) , (7)

where � ∈ Rn×n, • ∈ Rn×n and ◦ ∈ Rn2

.

Proof. We have

f̃(x;D, •, ◦)− f̃(x;D′, •, ◦) (8)

=xT (−Z(D, •, ◦) + Z(D′, •, ◦))x− 〈In, D̂〉 (9)

=xT (D′ ⊗ In −D ⊗ In)x− 〈In, D̂〉 (10)

=xT ((D′ −D)⊗ In)x− 〈In, D̂〉 (11)

=〈XTX, D̂〉 − 〈In, D̂〉 (12)

=
∑
i

((XTX)ii − 1)D̂ii +
∑
j 6=i

(XTX)ijD̂ij

 . (13)

We continue by looking at (13) for each i separately:

((XTX)ii − 1)D̂ii +
∑
j 6=i

(XTX)ijD̂ij (14)

≤((XTX)ii − 1)D̂ii +
∑
j 6=i

(XTX)ij max(D̂ij , 0) (15)

≤(1− (XTX)ii)(−D̂ii)

+

(
max
j 6=i

(max(D̂ij , 0))

)∑
j 6=i

(XTX)ij (16)

= (1− (XTX)ii)︸ ︷︷ ︸
≥0

(
max
j 6=i

(max(D̂ij , 0))− D̂ii

)
︸ ︷︷ ︸

≤0 by assumption

(17)

≤0. (18)

In the step from (16) to (17) we used that if X is doubly-
stochastic, then so is XTX . Thus, using (13) it follows that



f̃(x;D, •, ◦) ≤ f̃(x;D′, •, ◦). The case in (6) is analogous.
Note that tighter (but more complicated criteria) can be de-
rived by additionally considering the sum over i and using
that (XTX)i,i ≥ 1

n . We skipped this analysis for the sake
of simplicity.

Moreover,

f̃(x; �, •, d)− f̃(x; �, •, d′) (19)

=xT (−Z(�, •, d) + Z(�, •, d′))x+ (d− d′)Tx (20)

=xT (diag(d′)− diag(d))x+ (d− d′)Tx (21)

=xT (diag(d′ − d))x+ (d− d′)Tx (22)

=

n2∑
i=1

(d′ − d)ix
2
i + (d− d′)ixi (23)

=

n2∑
i=1

(d′ − d)ix
2
i − (d′ − d)ixi (24)

=

n2∑
i=1

(d′ − d)i(x
2
i − xi) ≤ 0 . (25)

The last inequality follows from the assumption d′i−di ≥ 0
and x2

i − xi ≤ 0 (using x ∈ vec(DSn)). �

Proposition 7. The minimiser ∆̃ among all ∆ =
(D1, D2, d) with symmetric D1 and D2 of

min
∆

− tr(Z(∆)) +
1

n

∑
i,j

(Z(∆))ij (26)

s.t. FT (W − Z(∆))F � 0,

0 ≥ −(D1)ii + max
j 6=i

max((D1)ij , 0) ∀ i,

0 ≥ −(D2)ii + max
j 6=i

max((D2)ij , 0) ∀ i,

di ≥ λ?min ∀ i,

yields a relaxation that is at least as tight as DS++. If
Z(∆̃) 6= λ?minIn2 , the above is tighter than DS++.

Proof. First of all, we observe that, in addition to ∆DS++ =
(λ?minIn,0,0), the DS++ relaxation is also obtained by
the choice ∆′DS++ = (0,0, λ?min1n2). The constraints in
(26) are feasible as they are satisfied for the DS++ choice
∆′DS++ = (0,0, λ?min1n2). Thus, a minimiser exists.

Writing ∆̃ = (D̃1, D̃2, d̃), the convex constraints imme-
diately yield that

f̃(x;λ?minIn,0,0) = f̃(x;0,0, λ?min1n2)

≤ f̃(x;0,0, d̃)

≤ f̃(x; D̃1,0, d̃)

≤ f̃(x; D̃1, D̃2, d̃) = f(x; ∆̃)

holds for all x ∈ vec(DSn) based on Lemma 6.

Finally, one can compare f̃(x; ∆̃) with f̃(x; ∆′DS++) at
x = 1

n1n2 to see that the DS++ relaxation is strictly below
the relaxation given by (26) if DS++ does not happen to
yield a solution to (26) already. �

Lemma 8. Let T (d1, d2) have a smallest eigenvalue λmin

of multiplicity 1, and let umin be a corresponding eigenvec-
tor with ‖umin‖ = 1. Then

(p1)j = −min(λmin, 0)
∑

i
((vec−1(Fumin))i,j)

2 ,

(p2)i = −min(λmin, 0)
∑

j
((vec−1(Fumin))i,j)

2

meet p1 = ∇d1
(h ◦ T )(d1, d2), p2 = ∇d2

(h ◦ T )(d1, d2).

Proof. The proof is based on the fact that (h ◦ T ) is a com-
position of four functions:

(h ◦ T )(d1, d2) =
1

2
min(g(λ(T (d1, d2))), 0)2,

i.e. the affine function T , a function Y 7→ λ(Y ) determin-
ing the eigenvalues of Y , a function g(v) = min(v) se-
lecting the minimal element of a vector, and the function
x 7→ 1

2 min(x, 0)2. The latter is continuously differentiable
with derivative min(x, 0).

Compositions of the form g(λ(Y )) have been studied in
detail in [2], and according to [2, p. 585, Example of Cox
and Overton] it holds that

∂(g ◦ λ)(Y ) = conv{uuT : Y u = λmin(Y )u, ‖u‖ = 1} .
(27)

Note that (g ◦ λ) becomes differentiable if the smallest
eigenvalue of Y has multiplicity one, such that the corre-
sponding eigenspace is of dimension 1 and the above set
∂(g ◦ λ)(Y ) reduces to a singleton – also see [2, Theorem
2.1].

Thus, by the chain rule

min(λmin(Y ), 0) uminu
T
min

is a gradient of h at Y if λmin(Y ) has multiplicity 1.
Left to consider is the inner derivative coming from the

affine map T . Let us consider the linear operator

T̃ (d1) = −FT (diag(d1)⊗ In)F

as the part of T that has a relevant inner derivative with
respect to d1. The gradient of a linear operator T̃ is nothing
but its adjoint operator T̃ ∗, i.e. the operator for which

〈T̃ (d), A〉 = 〈d, T̃ ∗(A)〉

holds for all d and all A. (In this case we could explicitly
prove this by vectorizing the entire problem, but the relation
holds in much more generality as the definition of general



(Gateaux) gradients utilises the Riesz representation theo-
rem, see e.g. [1, p. 40, Remark 2.55]). Since the adjoint of
T1◦T2 is T ∗2 ◦T ∗1 , we can consider the operations separately
in a reverse order. The last thing T̃ does is the multiplica-
tion with FT from the left and with F from the right, which
means that the first thing the adjoint T̃ ∗ does is the multi-
plication with F from the left and with FT from the right.

The operator diag(d1) ⊗ In repeats the entries of d1 n
times, and writes the result on the diagonal of an n2×n2 di-
agonal matrix. The adjoint of writing a vector of length n2

on the diagonal of an n2×n2 diagonal matrix, is the extrac-
tion of the diagonal of such a matrix. Finally, the adjoint
of the repeat operation is the summation over the compo-
nents of those indices at which values were repeated. As an
illustrative example, note that

A =


1 0
1 0
0 1
0 1


︸ ︷︷ ︸

repeat each component

⇒ A∗ =

(
1 1 0 0
0 0 1 1

)
.︸ ︷︷ ︸

sum over repeated components

If T̃ ∗ is applied to an element Y = uuT ∈ Rn2×n2

the
first steps are left multiplication with F and right multipli-
cation with FT , leading to (Fu)(Fu)T . The extraction of
the diagonal of the resulting matrix yields a vector of length
n2 with entries (Fu)2

k. By taking sums over n consecutive
entries, and multiplying with the remaining inner deriva-
tives (−1) and min(λmin, 0) we arrive at the formula for
∇d1

(h◦T ) as stated by Lemma 8. Determining the formula
for ∇d2

(h ◦ T ) follows exactly the same computation with
a different final summation as the operator In ⊗ diag(d2)
repeats the entries in a different order. �

Lemma 9. Let xi ∈ Rn be defined as

(xi)j :=


1 if j = i

−1 if j = i+ 1

0 otherwise
, and let zi,j := xi ⊗ xj .

With F = [z1,1, z1,2, . . . , zn−1,n−1] ∈ Rn2×(n−1)2 , we

have that im(F ) = ker(A) for A =

[
In ⊗ 1T

n

1T
n ⊗ In

]
.

Proof. The linear independence of all x1, . . . xn−1 implies
the linear independence of all zi,j = xi ⊗ xj for i, j ∈
[n−1], from which we see that dim(im(F )) = rank(F ) =
(n− 1)2 = n2 − 2n+ 1 = dim(ker(A)).

We proceed by showing that im(F ) ⊆ ker(A). Let z ∈
im(F ), so z =

∑n−1
i,j=1 aijz

i,j for some coefficients {aij ∈
R}. By construction of the zi,j , for i, j ∈ [n−1] we have

(In ⊗ 1T
n )zi,j = 0n and (1T

n ⊗ In)zi,j = 0n , (28)

which implies that

(In ⊗ 1T
n )aijz

i,j = 0n and (1T
n ⊗ In)aijz

i,j = 0n . (29)

Thus

(In ⊗ 1T
n )z = 0n and (1T

n ⊗ In)z = 0n , (30)

from which we can see that z ∈ ker(A). Combining
dim(im(F )) = dim(ker(A)) and im(F ) ⊆ ker(A) shows
that im(F ) = ker(A). �

References
[1] H. Bauschke and P. Combettes. Convex Analysis and Mono-

tone Operator Theory in Hilbert Spaces. 2nd edition, 2017.
doi: 10.1007/978-3-319-48311-5. 3

[2] A. S. Lewis. Derivatives of spectral functions. Mathematics
of Operations Research, 1996. 2


