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1. Proofs

Proposition 3. If a minimiser T of a faithful convex under-
approximation F,,,, of G + ¢ meets & € C, it is also a
global minimiser of G + §¢.

Proof. Assume that our statement is false. Then there exists
az € C with G(z) < G(Z). However, since Fiopy is faith-
ful, we have G(Z) = Fiony(Z) as well as G(z) = Fiony ().
We conclude Foony () < Feony(Z) which contradicts & be-
ing a minimiser of Fqpy. |
Proposition 4. If F}  and F2, are two convex Lmderap—
proximations of G + 8¢, where FL,  is faithful and F,
not, then F2

2 v cannot be tighter than F) .

( ony

Proof. Since F2,,, is not faithful, there exists a z € C for
which F2

2 (@) # G(x). Because F2,, is still an under-

conv
approximation of G + d¢, it must hold that F2  (z) <
G(x) = F} (), which shows that F2_, cannot be tighter

conv conv

than F1 [ |

conv*

Proposition 5. Let X € P,, and v = vec(X). Forany d €
R"™, Dy, Dy € R™¥" it holds that f(z) = f(x; D1, D, d).

Proof. With X € P,,, we have X7 X = I, and therefore

(I, Dy) = (X" X, Dy), (1
=(XD;,X) = (vec(XD1),vec(X)), (2

= (D @ L)z, x), 3)
=2T(D;®1,)z. %)

Similarly (I,,, Ds) = 27 (I, ® Ds)xz. Moreover, since
X € P,, we have that X;; = ij foralli,j =1,...,n
Thus, z” diag(d)z = d”z. Combining the above shows
that f(x) — f(x; D1, Ds,d) = 27(D; ® I, + 1, @ Dy +
diag(d))z — dTz — (I,, Dy + Ds) = 0. n

Lemma6. Let D, D’

n e R™*"™ be symmetric and let d, d’ €
R™". Define D = D' —

D. Ifd; <d.foralli=1,...,n%
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as well as Dy; — max;j;(max(D;;,0)) > 0 for all i =
1,...,n, then it holds for all x € vec(DS,,)

f(z;D,e,0) < f(z;D',0,0), (5)
f(z;0,D,0) < f(z;0,D',0),and (6)

f(x;0,0,d) < f(x;0,0,d), (7

where o € R"*" o € R"*" and o € R™.

Proof. We have

f(z;D,e,0) — f(x; D', e,0) (8)
=27 (—Z(D,e,0) + Z(D',e,0))z — (I,, D) )
=2T(D' @1, — DI,z — (1,,D) (10)
=2T((D' = D)@ L)z — (I,, D) 11
=(XTX,D) - (1,,D) (12)

—Z (XTX) s

1)Dii+Z(XTX)ijﬁij . (13)
J#i

We continue by looking at (13) for each ¢ separately:

(XTX)i — DDy + Y (XTX);; Dy (14)
J#i
J#i

<(1— (X" X)u)(—Dy)

+ <r?2$((max(Dij,O))> ;(XTX)M (16)
— (= (T0) (maxtmax(Dy,0) - D) ()

—_——
>0

<0 by assumption

<0. (18)

In the step from (16) to (17) we used that if X is doubly-
stochastic, then so is X7 X. Thus, using (13) it follows that



f(x; D,e,0) < f(x, D’,e,0). The case in (6) is analogous.
Note that tighter (but more complicated criteria) can be de-
rived by additionally considering the sum over ¢ and using
that (X7 X);; > % We skipped this analysis for the sake

of simplicity.
Moreover,
~(l"<>,.,d) _f( '07.7d/) (19)
=27 (~Z(0,0,d) + Z(0,e,d )z + (d—d) 'z (20)
=27 (diag(d) — diag(d))z + (d — d) "z (21)
sz(dla (d —d)x+(d—d)Tz (22)
— Z(d’ —d);x? + (d — d') sz (23)
i=1
= (d/ - d)ﬂ?? - (d/ - d)z.’L‘l (24)
i=1
=) (d —d);(z} —2;)<0. (25)
i=1
The last inequality follows from the assumption d; —d; > 0
and 72 — x; < 0 (using x € vec(DS,,)). [ ]

Proposition 7. The minimiser A among all A =
(D1, Dy, d) with symmetric Dy and Dy of
. 1
min - — tr(Z(A)) + -~ Z(Z(A))z] (26)
]
s.t. FT(W — Z(A)F >0,
0> —(D1)ii + mgxmax((Dﬂij, 0) Vi,
j#i

0 Z —(Dg)ii + mixmax((Dz)ij, 0) V’L,
V)

di > X5,

min v 7:7
yields a relaxation that is at least as tight as DS++. If
Z(A) # Xy Ln2, the above is tighter than DS++.

Proof. First of all, we observe that, in addition to Apg,, =
(MrinIn, 0,0), the DS++ relaxation is also obtained by
the choice Apg,, = (0,0,A5;,1,2). The constraints in
(26) are feasible as they are satisfied for the DS++ choice

Apg,y = (0 0 )\I*nm 2). Thus, a minimiser exists.

WntmgA (Dl,Dg,d) the convex constraints imme-
diately yield that
F(@; ML, 0,0) = F(250,0, M5, 1,,2)
< f(2;0,0,d)
< f(x;D1,0,d)
< f(a; D1, Dy, d) = f(;8)

holds for all z € vec(DS,,) based on Lemma 6.

Finally, one can compare f(z; A) with f(z; Apgy ) at
T = %1712 to see that the DS++ relaxation is strictly below
the relaxation given by (26) if DS++ does not happen to
yield a solution to (26) already. |

Lemma 8. Ler T'(dy,ds) have a smallest eigenvalue A,
of multiplicity 1, and let umin be a corresponding eigenvec-
tor with ||umin|| = 1. Then

(p1); = — min(Amin, 0) Z ,((Vec_l(FUmin))i’j)Qa

7

(p2)i = — min(Amin, 0) Z ,((Vecil(FUmin))i,j)Q

J

Va, (h o T)(dh d?)’ p2 = Vg, (h o T) (d1, d2)

Proof. The proof is based on the fact that (h o T') is a com-
position of four functions:

meet p1 =

(ho T)(dy,ds) = 5 min(g(A(T(d, d2))), 0)%

i.e. the affine function 7', a function Y — A(Y") determin-
ing the eigenvalues of Y, a function g(v) = min(v) se-
lecting the minimal element of a vector, and the function
z — 2 min(z, 0)2. The latter is continuously differentiable
with derivative min(z, 0).

Compositions of the form g(A(Y")) have been studied in
detail in [2], and according to [2, p. 585, Example of Cox
and Overton] it holds that
(g o N (Y) = conv{uu”

Yu = Anin(Y), [[ul| =1} .

@7

Note that (g o \) becomes differentiable if the smallest
eigenvalue of Y has multiplicity one, such that the corre-
sponding eigenspace is of dimension 1 and the above set
(g o M\)(Y) reduces to a singleton — also see [2, Theorem
2.1].

Thus, by the chain rule

min(Amin(Y), 0) Uminth;,

is a gradient of h at Y if Ai, (YY) has multiplicity 1.

Left to consider is the inner derivative coming from the
affine map 7. Let us consider the linear operator

T(dy) = —F" (diag(d1) ® I,)F

as the part of 7' that has a relevant inner derivative with
respect to d;. The gradient of a linear operator 7" is nothing
but its adjoint operator T, i.e. the operator for which

(T(d), A) = (d, T"(A))

holds for all d and all A. (In this case we could explicitly
prove this by vectorizing the entire problem, but the relation
holds in much more generality as the definition of general



(Gateaux) gradients utilises the Riesz representation theo-
rem, see e.g. [1, p. 40, Remark 2.55]). Since the adjoint of
Ty 075 is T o1, we can consider the operations separately
in a reverse order. The last thing T does is the multiplica-
tion with FT from the left and with F' from the right, which
means that the first thing the adjoint T* does is the multi-
plication with F' from the left and with F'7 from the right.

The operator diag(d;) ® I,, repeats the entries of dy n
times, and writes the result on the diagonal of an n? x n? di-
agonal matrix. The adjoint of writing a vector of length n?
on the diagonal of an n2 x n? diagonal matrix, is the extrac-
tion of the diagonal of such a matrix. Finally, the adjoint
of the repeat operation is the summation over the compo-
nents of those indices at which values were repeated. As an
illustrative example, note that

A= 00 1 1

1 0
1 0 « (1 1 0 0
0 1 = A*= ( )
0 1

sum over repeated components

repeat each component

If 7 is applied to an element Y = wul € R" *"’ the
first steps are left multiplication with F' and right multipli-
cation with F'T, leading to (Fu)(Fu)T. The extraction of
the diagonal of the resulting matrix yields a vector of length
n? with entries (F'u)?. By taking sums over n consecutive
entries, and multiplying with the remaining inner deriva-
tives (—1) and min(Apin, 0) we arrive at the formula for
V4, (hoT) as stated by Lemma 8. Determining the formula
for V4, (h o T') follows exactly the same computation with
a different final summation as the operator I,, ® diag(ds)
repeats the entries in a different order. ]

Lemma 9. Let v € R be defined as

1 =i
ifji=i+1, andlet 2" :=zx' @7 .
0 otherwise

) Zn—l,n—l] c RTLQX(TI—I)Q we

I, ®17
17'e1,|

With F = [2b1 212 ..
have that im(F') = ker(A) for A = {

Proof. The linear independence of all !, ... 2"~ ! implies
the linear independence of all 2%/ = z¢ ® 27 for i,j €
[n—1], from which we see that dim(im(F')) = rank(F') =
(n—1)? =n? — 2n + 1 = dim(ker(A)).

We proceed by showing that im(F') C ker(A). Let z €
im(F), so z = Z?;:ll a;;2"7 for some coefficients {a;; €
R}. By construction of the 2%, for i, j € [n—1] we have

(I, 1527 =0, and (1} ® 1,)2%7 = 0,,, (28)

which implies that
(I, ® 1Z)aijzi’j =0,, and (12 ® In)aijzi’j =0,. (29
Thus

(I,®1)2=0,and (17 ®1,)z = 0,,, (30)

from which we can see that z € ker(A). Combining
dim(im(F)) = dim(ker(A4)) and im(F') C ker(A) shows
that im(F") = ker(A). |
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