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In this supplementary material, we first provide details for the hyperparameter settings we use during training (Section 1)

and a detailed derivation of our proposed efficient All-Pairs Weighted Least Squares (APWLS) computation (Section 2). Then,

in Section 3, we provide additional details for our modified Shading Annotations in the Wild (SAW) evaluation metrics and

include a full precision-recall (PR) curve for all the methods we evaluated (see Section 6.2 of the main paper). Finally, we

provide additional qualitative prediction results on the IIW and SAW test sets from our BIGTIME-trained CNN (Section 4).

1. Hyperparameters Setting

For all experiments, we set our hyperparameters as follows. For the overall energy function defined in Equation 3 in the

main paper, we set w1 = 1, w2 = 6 and w3 = 2. For Equation 8 describing the affinity between pixels, we define a covariance

matrix Σ between reflectance feature vectors fp and fq as follows: we set Σ to be a diagonal matrix for simplicity, and define

Σ = diag(0.12, 0.12, 0.12, 0.0252, 0.0252). Lastly, for Equations 11 and 12 relating to shading smoothness, we set λmed = 20

and λmed = 4.

2. All-Pairs Weighted Least Squares (APWLS)

In this section, we provide a detailed derivation of our proposed All-Pairs Weighted Least Squares computation (APWLS),

as described in Section 5.5 of the main paper. Suppose that we have a image sequence with m images, and each image has n

pixels. Now suppose each image Ii is associated with two matrices P i and Qi and two predictions Xi and Y i. We then can

write APWLS as
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where ΣQ2 =
∑m

i=1
Qi ⊗ Qi; ΣP 2 = P i ⊗ P i; ΣP 2X2 =

∑m

i=1
P i ⊗ P i ⊗ Xi ⊗ Xi; ΣQ2Y 2 = Qi ⊗ Qi ⊗ Y i ⊗ Y i;

ΣP 2X = P i ⊗ P i ⊗Xi; ΣQ2Y = Qi ⊗Qi ⊗ Y i.
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Figure 1: Precision-recall curves for shading predictions on the SAW test set. Please see the main paper for a description

of each method.

3. Additional details for SAW evaluation metrics

In this section, we reiterate the two improvements we made to the metric used to evaluate results on SAW annotations

(described in Section 6.2 of the main paper) and provide more detailed explanations.

First, the original SAW error metric, as described by Kovacs et al. [2], is based on classifying a pixel p as having

smooth/nonsmooth shading based on the gradient magnitude of the predicted shading image, ||∇S||2, normalized to the range

[0, 1]. Instead, we measure the gradient magnitude in the log domain. We do this because of the scale ambiguity inherent

to shading and reflectance, and because it is possible to have very bright values in the shading channel (e.g., due to strong

sunlight), and in such cases if we normalize shading to [0, 1] then most of the resulting values will be close to 0. In contrast,

computing the gradient magnitude of log shading ||∇ logS||2 achieves scale invariance, resulting in fairer comparisons for

all methods. As in [2], we sweep a threshold τ to create a precision-recall (PR) curve that captures how well each method

captures smooth and non-smooth shading. PR curves for all methods described in the main paper are shown in Figure 1.

Second, Kovacs et al. [2] apply a 10× 10 maximum filter to the shading gradient magnitude image before computing PR

curves, because many shadow boundary annotations are not precisely localized. However, this maximum filter can result

in degraded performance for smooth shading regions. Consider adding 1% salt-and-pepper noise to the shading estimate.

Applying a maximum filter to this noisy gradient magnitude image would make it seem as if there are large changes everywhere.

Moreover, we found several annotated smooth regions are close to the boundaries of shading changes caused by depth/normal

discontinuities, and if we apply a maximum filter, we might integrate incorrect shading information out of annotated regions

into our evaluation. Instead, we create two maps, the original ||∇ logS||2, and the 10× 10 maximum filtered to ||∇ logS||2,

which we denote ||∇ logS||max

2
. We use ||∇ logS||2 to classify smooth shading annotations and ||∇ logS||max

2
to classify

non-smooth annotations.

4. Qualitative Results

In this section, we provide additional qualitative results on IIW/SAW test set and compare our network predictions with

two state-of-art intrinsic image decomposition algorithms, Bell et al. [1] and Zhou et al. [3]. These qualitative comparisons are

shown in Figure 2.
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Figure 2: Additional qualitative comparisons for intrinsic image decomposition on the IIW and SAW test sets. We

compare our network predictions with two state-of-art intrinsic image decomposition algorithms (Bell et al. [1] and Zhou et

al. [3]).
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