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Traditional Network Residual Network

Conv. Layers
Dropout Reg.

Cost [m]
Test. Acc.

Prec./Recall
F1 Score

2 4
y y

27.5 383
0.925 0.94

0.93/0.93 0.94/0.94
0.93 0.94

*

5 13
y n

5080 1094
0.93 0.90

0.7/0.53 0.74/0.66
0.39 0.64

Table 1: Traditional CNN Architecture versus Residual Net-
work Architecture [2]. All configurations are compared
using the same parameters. Our final choice (indicated by *)
trains relatively fast and performs better.

1. Classifier
1.1. Architecture

We explored different architectures for the convolutional
neural network (CNN) for split error detection. We compare
traditional CNN architectures versus residual networks [2]
(Tab. 1). The traditional architecture with dropout regular-
ization generalized better than residual networks on unseen
testing data.

1.2. Training Parameters

We performed a limited brute force parameter search to
tune the split error classifier (Tab. 2). This resulted in 3240
different CNN configurations which were evaluated on 10%
of our training data. Learning rate and momentum ranges
are defined linearly across 2000 epochs.

1.3. Automatic Method Threshold pt

For automatic selection, we observed a threshold pt =
0.95 as stable when evaluating on previously unseen testing
data (Mouse S1 AC3 Open Connectome Project dataset).

∗Corresponding author, haehn@seas.harvard.edu

Parameter Search Space

Filter size:
No. Filters 1:
No. Filters 2-4:
Dense units:
Learning rate:
Momentum:
Mini-Batchsize:

3x3, 5x5, 9x9, 13x13
32, 48, 64
32, 48, 64
256, 512
0.00001, 0.0001, 0.001, 0.01, 0.03-0.00001
0.9, 0.95, 0.9-0.999
10, 100, 128

Table 2: Brute force parameter search for the split error
classifier. The final parameters are highlighted.
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Figure 1: Observations of probability thresholds pt during
automatic selection on three different subvolumes of pre-
viously unseen testing data. The dashed lines show when
pt = 0.95 is reached.

This means that automatic selection stops once all borders
with pt ≥ 0.95 were proofread. Figure 1 shows split error
classification on three randomly selected subvolumes (700×
700×2 voxels) of AC3. In all cases, the threshold pt = 0.95
reduces VI.
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1.4. Input channel contributions

All four input channels help to reduce VI (Table 3). As
identified by Bogovich et al. [1], image data adds intracel-
lular structures (e.g., vesicles) to the decision process, and
membrane probabilities include global knowledge of the
staining protocol to highlight cell membranes. Then, the la-
bel channel provides knowledge about neuron shapes while
the dilated mask of the border covers the gap of extra-cellular
space. Adding the dilated mask of the border decreases VI.

Input channels VI reduction

Image + Prob. -0.094
Prob. + Border -0.080
Image + Prob. + Border -0.045
Label + Border -0.008
Image + Prob. + Label 0.038
Prob. + Label + Border 0.041
Image + Prob. + Label + Border 0.065

Table 3: Automatic selection on the AC4 subvolume with
pt = 0.95 using the guided proofreading classifier; median
VI reduction in ascending order. The combination of all four
input channels performs best.

1.5. Merge Error Detection Pseudo Code

We provide pseudo code on how we detect merge errors
to foster understanding of the reported algorithm (Alg. 1).
In our experiments, we use N = 50 iterations.

Algorithm 1 Merge Error Detection for a label l
1: ld = dilate(l, 20)
2: invImage = invert(image)
3: for N iterations do
4: s1, s2 = randomSeedsOnBoundary(ld)
5: wsImage = watershed(invImage, ld, s1, s2)
6: border = border(wsImage)
7: p = rank(border)
8: pmerge = 1− p

9: find(max pmerge)

1.6. Limitations

Guided proofreading works on 2D image sections. This
enables error correction without a computationally expen-
sive alignment process. However, the output requires an
additional (block-)merging step prior to 3D analysis. Several
software packages exist for this purpose.

As described in Section 5, the guided proofreading clas-
sifier has to be retrained if used on a different species than
mouse. In our experiments, parameters did not need to be
changed.

Figure 2: The five different datasets we use for evaluation.
The top row shows the first slice of the AC4 and L. Cylinder
mouse brain datasets as reported in the paper. The bot-
tom row shows the first slice of the CREMI A/B/C fruit fly
datasets which we used for additional experiments.

2. Automatic Segmentation Pipeline
We create a dense automatic segmentation of electron

microscopy data using a combination of a U-net [6] and
the GALA agglomeration method [4]. To not bias, these
classifiers are trained on different data than GP (Tab. 4).

Training Set
U-Net / GALA

Training Set
GP

Test Set
GP

AC3+AC4
(1024× 1024× 175vx)

L. Cylinder
(2048× 2048× 250vx)

L. Cylindertest
(2048× 2048× 50vx)

AC4 excl. test
(1024× 1024× 90vx)

L. Cylinder
(2048× 2048× 250vx)

AC4test subvolume
(400× 400× 10vx)

AC3+AC4
(1024× 1024× 175vx)

CREMI A/B/C
(1250× 1250× 300vx)

CREMI A/B/Ctest
(1250× 1250× 15vx)

Table 4: Training data of membrane detection (U-Net /
GALA) vs. training data of GP vs. test data.

GALA uses a random forest classifier to agglomerate
segments. We use an agglomeration level of 0.3 (after a grid
search). We follow the method by Knowles-Barley et al. as
described in [3].

3. L. Cylinder Results
We report experiments and results on the L. Cylinder

dataset in the paper. Figure 3 and 4 visualize the reported
results measured as variation of information (VI). We com-
pare automatic selection with threshold and selection oracle
using focused proofreading and guided proofreading.

Best possible VI. The selection oracle using guided proof-
reading does not reach the best possible VI score. We cal-
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Figure 3: Performance comparison of Plaza’s focused proof-
reading and our guided proofreading on the L. Cylinder
dataset as reported in the paper. All measurements are shown
as median VI, the lower the better. We compare automatic
selection with threshold (pt = 0.95, green line) and the se-
lection oracle for accepting or rejecting corrections using
each method. Guided proofreading yields better results faster
with fewer corrections.

Figure 4: VI distributions of guided proofreading (GP)
and focused proofreading (FP) output across slices of the
L. Cylinder dataset, with different error correction ap-
proaches. The variation resulting from performance of FP
with automatic selection is 7.8× higher than GP ( ), with
median VI of 2.75 and SD = 0.789.

culate this score by intersecting the initial segmentation and
the ground truth. In theory, the classifier should be able to
reach this lower bound. However, due to the classification
patch size, the membrane probability maps we used included
a 30 pixel frame region. Guided proofreading ignores all
segments within this frame region, and so cannot reach the
best possible VI in some datasets.

4. Confirmatory Data Analysis
We use a single factor between-subject design with the

factor being the proofreading method (GP, FP, or Dojo). Our
hypothesis is that VI reduction is significantly better with GP
than with other tools. For this, we treat VI as a continuous
variable and use analysis of variance (ANOVA [7]) followed
by parametric tests (Welch’s t-test [8]).

AC4 subvolume. For novice performance, we observe
a significant effect (α = 0.05) of which proofreading
tool is used for the three conditions GP, FP, and Dojo
[F (2, 27) = 6.446, p = 0.005] when comparing the mean
VI outcome. Post hoc comparisons (after Bonferroni cor-
rection) indicate that the mean VI for GP is significantly
lower than for FP [t27 = −2.7696, p = 0.0168], and that
the mean VI for GP is significantly lower than for Dojo
[t27 = −4.407, p < 0.001]. This means that novices using
GP perform significantly better than using FP and Dojo. A
similar trend is visible when comparing the expert perfor-
mance between GP and FP as the change in mean VI of
GP is significantly better ([F (1, 18) = 7.054, p = 0.016]
and [t18 = −2.6559, p = 0.0216]). For automatic se-
lection with threshold, the difference in mean VI is very
large and GP also performs significantly better ([F (1, 18) =
89.902, p < 0.001] and [t18 = 9.482, p < 0.001]). The fi-
nal VI scores of the selection oracle with GP and FP are very
similar and the difference between them is not significant
[F (1, 18) = 0.795, p = 0.384]. However, the VI reduction
rate of GP is much higher (Fig. 6, main paper, right).

L. Cylinder. The automatic selection with threshold yields
similar results as on the AC4 dataset, and we observe
a significant improvement when using GP instead of FP
([F (1, 98) = 26.676, p < 0.001], post hoc comparison
[t98 = 5.1648, p < 0.001]). The selection oracles of GP and
FP result in very similar final VI scores and the difference
is not significant [F (1, 98) = 0.071, p = 0.790], but GP
reaches minimum VI faster in 10, 000 corrections versus FP
in 26, 170 corrections.

5. Additional Experiments
CREMI A/B/C. As part of the MICCAI 2016 challenge
on circuit reconstruction from electron microscopy images
(CREMI), six ssTEM datasets were made publicly avail-
able1, each 1250 × 1250 × 125 voxels. Since only three
datasets include manually-labeled ‘ground truth’, we use
these three volumes for our experiments. The volumes are
part of an adult fruit fly (Drosophila melanogaster) brain.
The resolution of all three datasets is 4× 4× 40 nm3/voxel.
We evaluate error detection and correction on subvolumes
of CREMI A/B/C with the dimensions 1250 × 1250 × 5

1http://www.cremi.org

http://www.cremi.org


0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Guided Proofreading: CREMI A

Focused Proofreading: CREMI A

Guided Proofreading: CREMI B

Focused Proofreading: CREMI B

Guided Proofreading: CREMI C

Focused Proofreading: CREMI C

Figure 5: Receiver Operating Characteristic curves com-
paring focused proofreading and guided proofreading auto-
matic correction on the CREMI A/B/C fruit fly subvolumes.
Guided proofreading performs better on all three datasets.

voxels. The subvolumes were cut from the last 25 sections
of each of the three datasets and unseen during training. We
compare focused proofreading and guided proofreading with
automatic selection (pt = 0.95) and selection oracle.

Retraining. Since the CREMI data is a different species,
we simply retrain our split error classifier as well as focused
proofreading by Plaza [5]. For this, we use the first 100
sections of each of the three CREMI datasets combined
as training data. All parameters are unchanged and left as
reported in the paper.

Classification Performance. Figure 5 compares the fo-
cused proofreading and guided proofreading classifiers on
the CREMI A/B/C datasets. Our method exhibits higher
sensitivity and lower fall-out.

5.1. CREMI A

Figure 6 and 7 compare Plaza’s focused proofreading and
guided proofreading on the five sections of CREMI A.

Selection oracle. With focused proofreading, the selection
oracle reduces median VI to 0.928, SD = 0.043 from an
initial median VI of 1.06 (SD = 0.055). 532 corrections out
of 3707 were accepted. Guided proofreading does not reach
the best possible VI, however, reduces VI faster with less
corrections to 0.941 (SD = 0.04). Out of 4463 corrections,
1275 were accepted.
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Figure 6: Performance comparison of Plaza’s focused proof-
reading and our guided proofreading on 5 sections of the
CREMI A dataset. All measurements are reported as median
VI, the lower the better. The threshold for automatic selec-
tion is pt = 0.95 (green line). The slope of the selection
oracle shows that guided proofreading reduces VI faster.

Figure 7: VI distributions of guided proofreading (GP) and
focused proofreading (FP) output across slices of the CREMI
A dataset, with different error correction approaches. The
variation resulting from performance of FP with automatic
selection is 5.4× higher than GP ( ), with median VI of 5.32
and SD = 0.009. GP does not reach the best possible VI as
discussed in the text.

Automatic selection with threshold. Not surprisingly, fo-
cused proofreading performs poorly when ran automatically
(VI of 5.32, SD = 0.009). Guided proofreading is able to
reduce VI to 0.989 (SD = 0.043) with pt = 0.95.

5.2. CREMI B

Figure 8 and 9 show the results on the CREMI B dataset.

Selection oracle. Focused proofreading is able to reduce
median VI to 1.29, SD = 0.031 from an initial median VI of
1.63 (SD = 0.025). Out of 1959 corrections, the selection
oracle accepted 517. With guided proofreading, the median
VI is reduced to 1.30, SD = 0.03 while accepting 1111
corrections out of 3073.
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Figure 8: Split error correction by Plaza’s focused proofread-
ing and our guided proofreading compared on the CREMI
B dataset. All measurements are reported as median VI, the
lower the better. Automatic selection with threshold (green
line) yields reasonable performance using guided proofread-
ing.

Figure 9: VI distributions of guided proofreading (GP) and
focused proofreading (FP) output across 5 sections of the
CREMI B dataset. We compare automatic selection and
oracle selection. The variation resulting from performance
of FP with automatic selection is 3× higher than GP ( ),
with median VI of 4.25 and SD = 0.07.

Automatic selection with threshold. Focused proofread-
ing results in a VI of 4.25 (SD = 0.07). Guided proofread-
ing reduces median VI to 1.43 (SD = 0.038).

5.3. CREMI C

The results of split error correction using focused proof-
reading and guided proofreading on the CREMI C subvol-
ume are shown in Figure 10 and 11.

Selection oracle. With focused proofreading, the initial
median VI of 1.75 (SD = 0.086) is reduced to 1.45 (SD =
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Figure 10: Performance comparison of Plaza’s focused
proofreading and our guided proofreading on the CREMI C
dataset. Lower VI scores are better. Guided proofreading
corrects the initial segmentation faster with less corrections
than focused proofreading. The green line shows the auto-
matic threshold pt = 0.95.

Figure 11: VI distributions of guided proofreading (GP)
and focused proofreading (FP) output across the CREMI C
subvolume, with different error correction approaches. The
variation resulting from performance of FP with automatic
selection is 3× higher than GP ( ), with median VI of 4.81
and SD = 0.08.

0.056) with 670 accepted corrections out of 2694. Guided
proofreading is able to reduce the VI to 1.47 (SD = 0.06).
Here, the oracle accepted 1531 out of 4332 corrections.

Automatic selection with threshold. Focused proofread-
ing results in a VI of 4.81 (SD = 0.03). Guided proof-
reading with pt = 0.95 reduces median VI to 1.57 (SD =
0.081).
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Figure 12: Participants were recruited with this flyer.

6. Forced Choice User Experiment

6.1. Recruitment and Participation

Novice participants were recruited via flyer (figure 12).
An anonymized listing of all participants including demo-
graphic information is shown in table 5.

6.2. User Interface

We integrate guided proofreading into an existing large
data connectomics workflow. The web-based system is de-
signed with a novice-friendly user interface (Fig. 5 in the
paper, and the supplemental video). We show the current la-
beling of a cell boundary outline and its proposed correction
overlayed on EM image data. The user cannot distinguish
the current labeling from the proposed correction to avoid
selection bias. We also show a solid overlay of the current
and the proposed labeling. In addition, we show the image
without overlays to provide an unoccluded view. User inter-
action is simple and involves one mouse click on either the
current labeling or the correction. After interaction, the next
potential error is shown.

Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High

Figure 13: The NASA-TLX workload index to record sub-
jective responses.

6.3. Example Classifications

During the user study, participants were asked to accept
or reject potential errors and their corrections — some more
difficult than others. Figure 14 shows a selection of potential
errors and their corrections.

6.4. Subjective Responses

After the experiment, we acquired subjective responses
using the NASA-TLX task load index (Figure 13). We per-
formed ANOVA to test for statistical significance [7]. Men-
tal, physical, and temporal demands were reported slightly
higher for participants using focused proofreading but the
analysis did not yield any significance. This is unsurprising
as the user interface was the same for both groups.



ID Sex Age Classifier

S38 F 20 FP
S57 F 30 FP
S32 M 38 FP
S34 F 21 FP
S21 F 65 FP
S9 M 33 FP
S45 M 28 FP
S31 M 27 FP
S24 F 21 FP
S6 F 38 FP
S28 M 32 GP
S36 F 19 GP
S35 M 26 GP
S25 M 26 GP
S54 F 30 GP
S53 M 29 GP
S52 M 27 GP
S51 M 31 GP
S200 F 37 GP
S3 F 30 GP

Table 5: The novice participants (N = 20) of the forced
choice user experiment. The table shows sex (20 female),
age (M = 30) and the randomly assigned classifier (focused
proofreading as FP, guided proofreading as GP).

A

B

C
*

*

*

Figure 14: A selection of suggested errors and potential cor-
rections during the forced choice user experiment. The star
(*) indicates which choice reduces VI. While all participants
were able to correctly choose for patch A, only few were
able to correctly choose for patch B and C.

• Mental Demand. Participants using focused proof-
reading stated a higher mental demand M = 11.5
(SD = 2.098) than with guided proofreading M = 8.1
(SD = 2.003). This was not statistically significant
(F1,18 = 3.2574, p = 0.3695).

• Physical Demand. While naturally physical demand
was rated low, participants using focused proofreading
stated it slightly higher M = 5.4 (SD = 2.26) than
with guided proofreading M = 2.9 (SD = 1.76). This
was not statistically significant (F1,18 = 1.7507, p =
0.5454).

• Temporal Demand. For temporal demand, partici-
pants using focused proofreading M = 8.4 (SD =
1.95) reported almost equal to guided proofreading
M = 8.3 (SD = 1.99). This was not statistically
significant (F1,18 = 0.0033, p = 0.9987).

• Performance. Here, participants were asked to rate
their own performance. All participants rated their
performance as pretty well (the lower, the better). For
focused proofreading M = 6.8 (SD = 1.97) and for
guided proofreading M = 7.8 (SD = 2.04). This
was not statistically significant (F1,18 = 0.3091, p =
0.8878).

• Effort. Participants using focused proofreading stated
higher effort M = 13.0 (SD = 2.336) than with
guided proofreading M = 10.6 (SD = 2.127). This
was not statistically significant (F1,18 = 1.1459, p =
0.6599).

• Frustration. Participants overall reported low frustra-
tion. Reported were M = 5.0 (SD = 1.90) using
focused proofreading and M = 5.9 (SD = 185) using
guided proofreading. This was not statistically signifi-
cant (F1,18 = 0.3271, p = 0.8818).
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