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1. Estimating illumination coefficients
We describe in detail the techniques employed to detect

the illumination spectra coefficients for varying number of

light sources, N . As suggested in the paper, source separa-

tion is not interesting for a single light source, i.e., N = 1
and not feasible when N > 4. So, the discussion below is

centered around the two interesting cases of N = 2 and 3.

Two light sources (N = 2). When there are two light

sources in the scene, the set G lies on an arc on S
2. We use

RANSAC to robustly estimate the arc on S
2 with maximum

inliers. In particular, we are interested in the end points

of this arc, which are associated with the illuminant coeffi-

cients; as noted in the paper, this estimate will correspond

to the true coefficients if there were “pure pixels” in the no-

flash photograph for each of the light sources.

To estimate the parameters of the arc, we first rotate all

the pruned points on G by aligning the center of these points

to the north pole. Next, we project the rotated points Grot

to the 2D plane by finding the intersecting on the tangent

surface at the north pole (see Figure 1). Finally, we fit the

line for all the projected points Gproj via RANSAC and find

the start and ending points for the line with maximum in-

liers. Note that we need to invert the process of rotation

and projection to determine the corresponding locations in

the space of G. The pseudo code for this is provided Algo-

rithm 1.

Algorithm 1 Two lights coefficients estimation

Input: The set G, the set H histogram of G
Parameters: cutoff value T
Output: Estimated coefficients g1 and g2

Algorithm begin:
Step 1: Pruning the set G

G ← G(H > T )
Step 2: Rotating to north pole

c0 ← findCenter(G)
R ← rotate-to-northPole(c0/‖c0‖)
Grot ← R ∗ G

Step 3: Projecting on the 2D surface

Gz ← z component of Grot

α ← 1./Gz

Gproj ← α. Grot

Step 4: Fitting a line for the projected points

params ← fit-line-RANSAC(Gproj)
Step 5: Finding the ending points {p1,p2}
[p1,p2] ← find-end-points(Gproj , params)

Step 6: Converting vertices back to G
[g1, g2] ← R� ∗ [p1/‖p1‖, p2/‖p2‖]
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Figure 1. Schematic of rotation and projection of the points in the

set G in estimating the illumination coefficients.

Three light sources (N = 3). Similar to two light sce-

nario, we first process the points by rotating the set G and

then projecting them on the tangent plant at north pole (see

Figure 1). Next, we use the method in Parvu et al. [9] to de-

termine the minimum triangle enclosing all the points and

to find the associated vertices p1, p2, p3. Finally, we con-

vert the vertices to the corresponding points in the set the

set G.

Algorithm 2 Three lights coefficients estimation

Input: The set G, the set H histogram of G
Parameters: cutoff value T
Output: Estimated coefficients g1, g2 and g3

Algorithm begin:
Step 1: Pruning the set G

G ← G(H > T )
Step 2: Rotating to north pole

c0 ← mean(G)
R ← rotate-to-northPole(c0/‖c0‖)
Grot ← R ∗ G

Step 3: Projecting on the 2D surface

Gz ← z component of Grot

α ← 1./Gz

Gproj ← α. Grot

Step 4: Fitting the minimum triangle

[p1, p2, p3] ← fit-minimum-triangle(Gproj)
Step 5: Converting vertices back to G
[g1, g2, g3] ← R� ∗ [p1/‖p1‖, p2/‖p2‖, p3/‖p3‖]

2. Uniqueness of solution
In this section, we explain why source separation is not

feasible for more than three light sources in the scene.

To recall, the problem of interest here is to estimate the

relative shading terms {zi(p), i = 1, . . . , N} at a pixel p
given the reflectance invariant Γ(p) ∈ R

3 and the lighting

coefficients {b̂i, i = 1, . . . , N}. This can be obtained by

solving the following system:

Γ(p) =

N∑
i=1

zi(p)b̂i s.t ∀i, zi(p) ≥ 0.

The expression above is simply the hull constraint and sug-

gests that Γ(p) lies in the cone defined by the lighting coef-

ficients. Note that the non-negativity of the relative shading

implies there is no feasible solution if Γ(p) lies outside the

cone of the lighting coefficients. Finally, observe that since

Γ(p) ∈ R
3, there are three constraints on the unknowns;

however, the number of unknowns is equal to N , the num-

ber of light sources. Clearly, the system is under-determined

if N > 3 and as a consequence there are multiple solutions

and we have no way to identify the correct relative shading

among these. This implies that source separation is not fea-

sible — barring the introduction of additional constraints —

for scenes with more than three light sources.

3. Light source separation

In this section, we describe in detail our evaluation of the

lighting separation technique. We start with an evaluation

of various choices in the reflectance and illumination bases

and how they affect the performance of estimated illumina-

tion spectra as well as source separation. Subsequently, we

provide synthetic evaluation of source separation as well as

additional real results.

3.1. Selection of reflectance and illumination bases

We used the measured database for reflectance [5] and

illumination [1] to learn two three-dimensional subspaces,

one each for reflectance and illumination. There are many

suitable approaches for learning such bases.

• PCA. PCA learns the best 3-dimensional subspaces on

the given input spectra. This is the classical choice

that maximizes representation of the spectra using a 3-

dimensional subspaces. However, it does not take camera

responses into account.

• Weighted PCA. To account for camera spectral response,

we use a weighted PCA approach. We define the col-

lection of reflectance and lighting spectra as R and L,

respectively, with one each column denoting a measured

spectra in the database. We perform SVD on the term

defined as Mk
R = RSk, where Sk is a diagonal matrix

with the spectra of the camera response in the k-channel.

Given the rank 1 approximation for each color channel in

Mk
R, we concatenate them with column-wise as a matrix

and compute the orthogonal bases. Similarly, we return

the bases for the lighting spectra for the measurements

defined as Mk
L = LSk.
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(a)SNR on image separation (b) SNR on lighting spectra

(c) PCA (d) Joint learning (e) Weighted PCA (f) Ground truth

Figure 2. Evaluation of the choice in the reflectance and illumination bases. For the rendered 22 images with two illuminants, we plot

the approximation accuracy along with the descending order of weighted PCA in showing the results in (a) and (b). We also visualize

comparison of PCA, joint learning method and weighted PCA for one selected scene against ground truth.

• Joint learning of subspaces. A third alternative to con-

sider is to jointly learn illumination and reflectance sub-

spaces, under the camera spectral response [4]. Intu-

itively, the idea behind this method is that we want sub-

spaces that allow for best rendition of image intensities.

Given a reflectance spectra r and an illumination spectra

l — both column vectors — the image intensity under a

camera response Sk is given as

r�Skl.

We can now learn bases BR and BL such that the image

intensity value are preserved.

In Figure 2, we characterize the performance on the syn-

thetic database for different basis choices. We showcase

the approximation accuracy for 22 rendered images with

two different illuminants in Signal-to-Noise Ratio (SNR)

on both the estimation of separated images as well as the

lighting spectra. As can be seen here, the weighted PCA

method returns best performance on the separated images

while produces results close to the joint estimation, which

is one of the most accurate techniques for optimal basis on

color constancy [4]. We also evaluate the choice of basis

on the real world scenes with ground truth in Figure 3. The

performance of the different basis on this dataset closely

parallels the results we observed in the synthetic dataset.

Given these observations, we use the weighted PCA basis

for all results in the paper.

3.2. Evaluation on two-light scenario

Synthetic experiment. We evaluate the source separation

technique on realistically-rendered scenes using the MIT-

SUBA rendering engine [8]. Specifically, when we simulate

the scene, we select two light spectra from [1] and compute

the errors for both separated images, as well as the light co-

efficients, against the ground truth. For the scene with two

lights, we report these errors as a function of varying angu-

lar difference for the ground truth spectra in Figure 4. We

observe that the SNR values of the source separation are

larger than 30dB for most of the lighting spectra, even for

the worst case, i.e. (1◦ in the angular difference), the SNR

value can still be achieved at 16dB, suggesting the robust-

ness of our technique. We also showcase the angular error

against the ground truth coefficients. Note that the angu-

lar error increases with the difference between the lighting

spectra. This is due to the fact that there is a decrease of

the conic hull characterized by Γ as we moved one light-

ing spectra away from the other. In particular, the potential

region characterized the estimation errors also shrinks with

the increase similarity in lighting spectra.



(a) No-flash/flash images (b) PCA (c) Joint learning (d) Weighted PCA (e) Ground truth

Figure 3. Evaluation of different bases choice for the source separation on the real-world scenes. We compare the results for different bases

choices against ground truth capture. We also show the close-up appearance for the separated images. Note that all the methods produce

similar shading estimates in the resulting images. However, the method of PCA produces inaccuracy illuminant color estimates for the

separated images, while joint learning method induces the artifacts in the scene appearance (see the close-up in (c)). In contrast, weighted

PCA is able to return the faithful results that are most close to the ground truth images.
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Figure 4. Evaluation of the two-light source separation on syn-

thetic dataset. For each scene (source credit to [2]), we pick two

measured illuminant spectra from LSPDD database. We plot the

errors measured against the ground truth constituent images as a

function of angular difference between ground truth lighting coef-

ficients.

Real world results. We have also tested our algorithm

on real-world scenes with two illuminants. In Figures 5

and 6, we demonstrate our technique on the scene with two

lights sources and compare with ground truth captures. We

compare against a simple non-negative matrix factorization

(NNMF) as well as the technique proposed in Hsu et al.

[6]. Note that the scene in Figures 5 exhibits complex scene

geometries as well as intricate interactions of objects and

light rays. As can be seen, naively applying NNMF to the

no-flash image leads to the loss of the colors. Hsu et al.

[6] focused on estimating relative contribution of the light

source from no-flash image at the expense of introducing

restrictive assumptions on the scene as well as the colors of

the illuminants. This naturally leads to the visual artifacts

in the estimation results by violating these assumptions. In

contrast, our method showcases the robustness and effec-

tiveness by returning the results that closely resemble to the

ground truth.

We also include the additional results on lighting sepa-

ration in Figures 7 and 8. Our technique is able to attribute

both the color and the shading variations to the correspond-

ing manner of the lighting sources.

3.3. Evaluation on three-light scenario

We now discuss evaluation of three-light sources sce-

nario using synthetic and real data.

Synthetic experiment. To evaluate the performance on

the scene with three lights, we characterize the performance

on the synthetic dataset by using the MITSUBA rendering

engine [8]. Specifically, we select three measured lighting

spectra from the dataset [1] and make sure the smallest an-

gular difference of the illumination coefficients for these se-

lected lighting spectra is larger than 20◦ in degrees. In Fig-

ure 9, we report the errors against the ground truth for 26
rendered flash/no-flash image pairs. As can be seen, our al-

gorithm is able to return the results larger than 20 dB for

all the datasets. We also include the visual results for two

selected samples in Figure 9. As can be seen, our algorithm

is able to capture the color and shadings for each illuminant

as well as produce the results very close to the ground truth.

Real world results. In Figure 10, we characterize the per-

formance of our technique on the real-world scenes against

the ground truth captures. Our lighting separation scheme

produces visually pleasing results with shadows and shad-

ings that are consistent with those observed in the ground

truth. In Figure 11, we showcase our separation results for



(a) Input images (b) Matrix factorization (c) Hsu et al. [6] (d) Our results (e) Ground truth

SNR 5.96 dB SNR 3.13 dB SNR 16.78 dB

Figure 5. We separate a no-flash image (a) into two components and compare with non-negative matrix-factorization (b) and and Hsu et

al. [6] (c). Compared to the ground truth images (e), we can see that matrix factorization produces noisy colors loss (see the top row (b)),

while Hsu et al. [6] produce an incorrect estimate of light color and shading (c). Our result (d) closely mimics the actual captured results.

(a) Input images (b) Matrix factorization (c) Hsu et al. [6] (d) Our results (e) Ground truth

SNR 7.68 dB SNR 4.20 dB SNR 18.15 dB

Figure 6. We compare our results against ground truth on the real-world scenes. As can be seen here, naive applying that matrix factorization

leads to the loss of the colors (b). The method of Hsu et al. [6] produces artifacts due to the restrictive assumptions on the scene (c). In

contrast, our technique produces results that are very close to the ground truth, and significantly better than all other techniques.

the scene under complex light transport. The scene is il-

luminated by the outdoor illuminant but the curtain on the

window introduces a second light source that is tinged with

red. In addition to these two sources, the ceiling light is

also turned on in the room. While the scene features com-

plex shadows (under the chair, around the small table, near



(a) Input images (b) Matrix factorization (c) Hsu et al. [6] (d) Our results

(a) Input images (b) Matrix factorization (c) Hsu et al. [6] (d) Our results

(a) Input images (b) Matrix factorization (c) Hsu et al. [6] (d) Our results
Figure 7. We include more results on real-world scenes with two illuminants. As can be seen here, the performance of our technique on

these datasets closely parallels the results we observed in previous synthetic and real-world dataset.

the red curtain, to name a few) caused by different type of

illuminants, our lighting separation scheme is able to group

these regions into the associated separated photographs and

produce visually pleasing results.

4. White balancing

One of the applications enabled by our technique is white

balancing under mixed illumination. The vast majority of

white-balance algorithms assume that the scene is lit by a

single dominant light source. In contrast, we are able to



(a) Input images (b) Matrix factorization (c) Hsu et al. [6] (d) Our results
Figure 8. Additional results on real-world scenes with two illuminants. Note that the colors of the illuminants in the scene are very close

to the colors of the reflectance (see the chair and couch), making both the matrix factorization and the method of Hsu et al. [6] failed.

In contrast, our method relies on the Hull constraint, which is reflectance invariant, and is still able to isolate the reflectance and produce

visually appealing results.
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Figure 9. Evaluation of the three-light source separation. For each

generated scene, we illuminated it by three lighting spectra picked

from LSPDD database. We plot the measured errors against the

ground truth constituent images for 26 rendered scenes.

estimate and remove the effect of spatially-varying lighting

by using the Hull constraint. There are two approaches to

achieve this.

• Approach I. We can simply adjust the illumination coef-

ficients in each separated images. In particular, we sub-

stitute the estimated coefficients b̂j in (3) with the coef-

ficients corresponding to the neutral light spectra. How-

ever, this approach requires us to estimate the light source

coefficients and their relative shading, which can only be

performed for 3 or fewer light sources.

• Approach II. We provide an alternative solution that pro-

vides the ability to handle any number of light sources

in the scene, albeit under some assumptions on their

colors. Specifically, we assume that ‖∑N
i=1 ηibi‖2 ≈

‖∑N
i=1 ηi‖2. That is,

∑
i �=j ηiηjbibj ≈ ∑

i �=j ηiηj ,

or equivalently, bibj ≈ 1. In essence, we have con-

strained the lighting spectra close to each other in the

low-dimensional model.

Now, recall that the no-flash intensity is

Iknf(p) = ‖ap‖
(

αT
p

‖αp‖

)
Ek

N∑
i=1

ηi(p)bi, (1)

the white balancing results at pixel p can be expressed as

Ikwb(p) = ‖ap‖
(

αT
p

‖αp‖

)
Ek bwb

N∑
i=1

ηi(p), (2)



(a) No-flash image (b) Our estimated separated images (SNR: 15.13dB)

(c) Flash image (d) Captured photograph

(a) No-flash image (b) Our estimated separated images (SNR: 12.46dB)

(c) Flash image (d) Captured photograph

(a) No-flash image (b) Our estimated separated images (SNR: 11.21dB)

(c) Flash image (d) Captured photograph

Figure 10. We evaluate our technique on scenes with mixtures of three lights and compare with the ground truth image. Our technique is

able to capture both the color and the shading for each of these sources and produce results similar to the ground truth.



(a) No-flash image (b) Flash image (c) Our estimated separated images
Figure 11. We evaluate our technique on scenes with mixtures of three lights. In the top row, we capture an image under warm indoor LED

lights and outdoor lighting that percolates through a red curtain. The outdoor light that is transmitted through the curtain gets colored red,

while some of it bounces off the curtains white backing and diffuses into the scene as blue light. Our technique is able to estimate separated

results that capture this complex light transport.

where bwb is the neutral light coefficients.

Given ‖∑N
i=1 ηibi‖2 ≈ ‖∑N

i=1 ηi‖2, we can substitute

‖β(p)‖ to express (2) as

Ikwb(p) =

(
αT
p

‖αp‖

)
Ek‖β(p)‖bwb

Our results are shown in Figures 12. We compare our results

with those from two algorithms that are designed to handle

spatially-varying mixed illumination — Hsu et al. [6] and

Hui et al. [7]. Hsu et al. require that the color of the il-

luminants and assume that only two light sources present

in the scene. While we manually specified this as input to

their technique, their result is not able to deal with extreme

illumination (see Fig. 12). Similar to our work, Hui et al.

use a flash camera and can generalize to an arbitrary num-

ber of scene illuminants. While Hui et al. [7] produces the

results of similar quality, their underlying image formation

model is not physically accurate; in particular, their method

completely ignores the image formation model in (1) of the

main paper and instead uses an empirical model that does

not account for camera spectral response.

5. Camera editing

Another unique capability of the proposed method is its

ability to edit camera spectral response. We can achieve this

as follows. Given the estimate of the separated image as

Îksep,j(p) = ‖β‖α�
pE

kẑj(p)b̂j . (3)

and

Ek(i, j) =

∫
λ

ρ̃i(λ)S
k(λ)�̃j(λ)dλ,

we are able to change the camera spectral response Sk(λ)

with a novel spectral distribution function Ŝk(λ). Specif-

ically, we change the captured no-flash image with novel

camera response function and show the results in Figure 13.

6. Additional results on photometric stereo
In Figure 14, we showcase more results on the flash/no-

flash photometric stereo. For each object, we compute av-

erage angular error (compared to the ground truth) as indi-

cated below the results. We evaluate our method against sin-

gle shot photometric stereo method [3]. While our method

relies on extra captured flash image, it is always one shot

effort for most of the consumer cameras but producing the

results better in orders of magnitude.

7. Limitations
Inter-reflections In Figure 15, we showcase the lighting

separation results for two-light on the synthetic scene with

different number of light bounces. To do that, we use the

MITSUBA rendering engine [8] by changing the longest

path depth in the generated output image, which charac-

terizes the number of bounces for the illumination in the

scene. As shown in Figure 15, the inter-reflection effects

can be seen as indicated by the orange boxes. As we in-

crease the number of light bounces, the shadows on the side

of the boxes become brighter due to the scattering interac-

tions with the walls. We showcase the approximation ac-

curacy for five depths (i.e. 2, 10, 20, 50, 100,∞) with two

different illuminants in Signal-to-Noise Ratio (SNR) on the

estimation of separated images against the ground truth. We

also include the and relative estimation errors in the bot-

tom row. As can be seen here, the performance degrades

with the increased number of light bounces, since each in-

terreflection can be treated as a new light source potentially



of a new color since the albedo of an object multiplies with

spectrum. To this end, interrelections produce little of dif-

fuse shadows, which are hard to latch on via our conic hull

methods.

Shinny objects In Figure 16, We showcase the perfor-

mance of our source separation technique on synthetic ob-

jects when imaged for the materials with different rough-

ness. We use the MITSUBA rendering engine [8] to sim-

ulate the materials and adjust the parameters to change the

roughness of the materials (as visualized in the bottom of

the plot). In particular, we render the object under two il-

luminants and gradually increase the roughness parameter

defined from .1 to 1. We showcase the approximation accu-

racy in SNR on the estimation of separated images against

the ground truth. As can be seen here, the performance

of our algorithm varies as the roughness; this is because

the violation of our Lambertian assumption makes about

the scene. However, the incorrect results will be localized

to the objects since the processing is largely per-pixel and

the conic hull processing is inherently robust to outliers via

theuse of RANSAC and other pre-processing techniques, as

indicated by the visualized errors in the bottom row. Hence,

our technique is still able to return visually pleasing results

even for very shinny objects.
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(a) No-flash image (b) Flash image

(c) Hsu et al. [6] (d) Hui et al. [7] (e) Our result (I) (f) Our result (II)

(Mean error = 3.58◦) (Mean error = 0.88◦) (Mean error = 0.85◦) (Mean error = 0.92◦)

(a) No-flash image (b) Flash image

(c) Hsu et al. [6] (d) Hui et al. [7] (e) Our result (I) (f) Our result (II)

(Mean error = 1.76◦) (Mean error = 1.07◦) (Mean error = 0.87◦) (Mean error = 0.90◦)

(a) No-flash image (b) Flash image

(c) Hsu et al. [6] (d) Hui et al. [7] (e) Our result (I) (f) Our result (II)

(Mean error = 1.12◦) (Mean error = 0.12◦) (Mean error = 0.21◦) (Mean error = 0.36◦)
Figure 12. We evaluate our white balance method on a no-flash/flash pair (a/b) from Hui et al. [7]. We show the white balance results and

the associated kernels (insets). (c) Hsu et al. [6] require the light colors to be manually specified but fail on the extreme illumination in this

scene. (d) Hui et al. use a flash image to improve results but rely on inaccurate physical model. (e) Our method (both approach I (e) and

approach II (f)) produces the result which can achieve the same performance in terms of both visual quality and angular error. Note that

approach (II) is able to produces visual appealing results as well as similar angular error measurements, making our method applicable to

arbitrary number of light sources in the scene.



Nikon D700 Canon 5D Point Grey Grasshopper2 Nokia N900

Hasselblad H2 Olympus E-PL2 Phase One Sony Nex 5N

Nikon D700 Canon 5D Point Grey Grasshopper2 Nokia N900

Hasselblad H2 Olympus E-PL2 Phase One Sony Nex 5N
Figure 13. Results on camera response editing. We show estimated rendering results for different camera models.



(a) RGB image (b) Flash image (c) Ground truth normals (d) Chakrabarti et al. [3] (e) Our result

(Mean error: 15.96◦) (Mean error: 0.41◦)

(a) RGB image (b) Flash image (c) Ground truth normals (d) Chakrabarti et al. [3] (e) Our result

(Mean error: 22.91◦) (Mean error: 0.63◦)

(a) RGB image (b) Flash image (c) Ground truth normals (d) Chakrabarti et al. [3] (e) Our result

(Mean error: 16.42◦) (Mean error: 0.90◦)
Figure 14. Results on two-shot captured photometric stereo of real objects. We show both estimated normal map and recovered 3D surfaces

for our technique as well as those of single-shot method of Chakrabarti et al. [3]. We also include the mean of the angular errors for the

estimated surface normals. Our technique produces surface normals with very low angular errors.
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Figure 15. Evaluation of the inter-reflection effects on our two-light source separation technique. For the rendered images with two

illuminants, we gradually increase the number of light paths to simulate different inter-reflection effects as can be seen from the orange

boxes. We plot the accuracy for different simulated image pairs and compare the estimated source separation results with the ground truth.
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Figure 16. Evaluation of the effects of non-Lambertian material roughness on our two-light source separation technique. For the rendered

images with two illuminants, we gradually increase the roughness of the materials (visualized in the bottom of the plot) to simulate different

shinny objects effects. We plot the accuracy for different simulated image pairs and compare the estimated source separation results with

the ground truth.


