
Hashing as Tie-Aware Learning to Rank
Supplementary Material

A. Proof of Proposition 1
Proof. Our proof essentially restates the results in [3] using our notation. In [3], a tie-vector T = (t0, . . . , td+1) is defined,
where t0 = 0 and the next elements indicate the ending indices of the equivalence classes in the ranking, e.g. t1 is the ending
index of R(0), and so on. Using our notation, we can see that R(d) = (R1+td , . . . , Rtd+1

), and td = Nd−1 =
∑d−1

j=0 nj .
We first consider APT. In Section 2.4 of [3], the tie-aware AP at cutoff k is defined as

APT@k(R) =

∑k
j=1

n+
i

ni

(
N+

i−1 + (j − ti − 1)
n+
i −1

ni−1 + 1
)

1
j∑|S|

j=1Aq(j)
, (1)

where i is the index of the tie that item j is in. To derive APT in our formulation, we take k to be the maximum possible cutoff
|S|, and substitute by definition N+ =

∑|S|
j=1Aq(j), ti = Ni−1:

APT(R) =
1

N+

|S|∑
j=1

n+
i

ni

(
N+

i−1 + (j −Ni−1 − 1)
n+
i −1

ni−1 + 1
)

j
. (2)

It is clear that this sum decomposes additively over j. Therefore, we can explicitly compute the contribution from items in a
single tie R(d),

APT(R(d)) =
1

N+

Nd∑
j=Nd−1+1

n+
d

nd

(
N+

d−1 + (j −Nd−1 − 1)
n+
d −1

nd−1 + 1
)

j
, (3)

and this gives (6) in the paper.
Next, tie-aware DCG is given in Section 2.6 of [3] as

DCGT@k(R) =
∑
d

 1

nd

td+1∑
j=td+1

G(Aq(j))

min(td+1,k)∑
j=td+1

D(j)

 . (4)

Again, we consider a single tie R(d), take k = |S|, and make the substitution td = Nd−1:

DCGT(R(d)) =
1

nd

∑
j∈R(d)

G(Aq(j))

Nd∑
j=Nd−1+1

D(j) (5)

=
1

nd

∑
v∈V

nd,v︷ ︸︸ ︷∑
j∈R(d)

1[v = Aq(j)]G(v)

Nd∑
j=Nd−1+1

D(j) (6)

=
1

nd

∑
v∈V

G(v)nd,v

Nd∑
j=Nd−1+1

D(j). (7)

This completes the derivation for (7) in the paper.

1

B. Proof of Proposition 2
Proof. First, we denote the summand in the definition of APT (3) as βd(t), and rewrite it as

βd(t) =
N+

d−1 + (t−Nd−1 − 1)
n+
d −1

nd−1 + 1

t
=
n+
d − 1

nd − 1
+
N+

d−1 + 1− n+
d −1

nd−1 (Nd−1 + 1)

t
. (8)

It is of the form A+B/t where A,B are constant in t. We proceed with the summation over t in (3):

APT(R(d)) =
n+
d

ndN+

Nd∑
t=Nd−1+1

βd(t) (9)

=
n+
d

ndN+

n+
d − 1

nd − 1
nd +

(
N+

d−1 + 1−
n+
d − 1

nd − 1
(Nd−1 + 1)

) Nd∑
t=Nd−1+1

1

t

 . (10)

The main obstacle in the continuous relaxation is the finite sum in (10), which has in its limits Nd−1 and Nd, variables to
be relaxed. However, it is a partial sum of the harmonic series, which can be well approximated by differences of the natural
logarithm:

Nd∑
t=Nd−1+1

1

t
≈
∫ Nd

Nd−1

dt

t
= ln(Nd)− ln(Nd−1). (11)

In fact, (11) corresponds to the midpoint rule in approximating definite integrals by finite sums, but is applied in the reverse
direction. The relaxation of APT is then derived as follows:

APT(R(d)) ≈
n+
d

ndN+

[
n+
d − 1

nd − 1
nd +

(
N+

d−1 + 1−
n+
d − 1

nd − 1
(Nd−1 + 1)

)
ln

Nd

Nd−1

]
(12)

⇒ APr(R
(d)) =

c+d (c+d − 1)

(cd − 1)N+
+

c+d
cdN+

[
C+

d−1 + 1−
c+d − 1

cd − 1
(Cd−1 + 1)

]
ln

Cd

Cd−1
. (13)

Note that N+ =
∑

d n
+
d is a constant for a fixed query and fixed database, thus it is not affected by the relaxation.

Next, we consider DCGT, where the sum of logarithmic1 discount values similarly involves variables to be relaxed in its
limits. Thus, we employ the same approximation strategy using continuous integrals.

Nd∑
t=Nd−1+1

D(t) =

Nd∑
t=Nd−1+1

1

log2(t+ 1)
≈
∫ Nd

Nd−1

dt

log2(t+ 1)
= ln 2

∫ Nd+1

Nd−1+1

dt

ln t
. (14)

Combining with the definition of DCGT, we get its continuous relaxation:

DCGr(R
(d)) = ln 2

∑
v∈V

G(v)cd,v
cd

∫ Cd+1

Cd−1+1

dt

ln t
(15)

= ln 2
∑
v∈V

G(v)cd,v
cd

[Li(Cd + 1)− Li(Cd−1 + 1)] (16)

where Li is the logarithmic integral function: Li(x) =
∫ x

0
dx
ln x .

C. Approximation Error Analysis
We now analyze the approximation error when doing the continuous relaxations. We take APT as example, and note that

the analysis for DCGT is similar.

1Other types of discounts are also used in the literature, including linear discount: D(t) ∝ 1
t

. It is easy to see that our technique also applies.

2

The continuous relaxation for APT(R(d)) is given in (11), which replaces a finite sum with a defnite integral, where the
finite sum has Nd −Nd−1 = nd summands. First, we consider the case where there are no ties, or nd ∈ {0, 1}, i.e. the d-th
histogram bin is either empty or contains a single item. In this case, we can directly evaluate the lefthand side sum in (11) to
be either 0 or 1

Nd
, without using the integral approximation. Therefore, when there are no ties, there is no approximation error.

Next we consider nd ≥ 2. Let the N -th harmonic number be H(N) =
∑N

t=1
1
t , then the lefthand side of (11) is exactly

H(Nd)−H(Nd−1). It is well known that the harmonic number can be closely approximated as

H(N) = γ + ln(N) +
1

2N
+O

(
1

12N2

)
, (17)

where γ ≈ 0.5772 is Euler’s constant. A direct application of this approximation gives the following:

H(Nd) = γ + ln(Nd) +
1

2Nd
+O

(
1

12N2
d

)
(18)

H(Nd−1) = γ + ln(Nd−1) +
1

2Nd−1
+O

(
1

12N2
d−1

)
(19)

⇒ H(Nd)−H(Nd−1) = ln(Nd)− ln(Nd−1) +O

(
1

2Nd−1
− 1

2Nd

)
. (20)

Comparing (20) with (11), we see that the approximation error is

O

(
1

2Nd−1
− 1

2Nd

)
= O

(
nd

2Nd−1Nd

)
= O

(
nd

2Nd−1(Nd−1 + nd)

)
= O

(
nd

2N2
d−1

)
. (21)

The error is proportional to nd, the number of items in the d-th bin in the Hamming distance histogram. However, even if nd
is large, the error is in general still small, since it has N2

d−1 in the denominator. Note that (11) can be further tightened by
including the 1

2N term, or even higher order terms in the approximation of Harmonic numbers, but the approximation using
the first two terms (Euler’s constant and natural log) is already quite tight, and is in fact used widely.

D. Tightening the tanh Relaxation
As is common among relaxation-based hashing methods, we relax the binary constraints by replacing the discontinuous sgn

function with tanh. With this simple relaxation, the performance gains are mainly due to optimizing the proposed objectives.
Nevertheless, it is conceivable that the continuation method, e.g. as employed by HashNet [2], can tighten the relaxation and
lead to better results. To provide a concrete example, below we report improved results for TALR-AP on CIFAR-10 (setting 1),
when we increase the scaling α in tanh over time, instead of using a fixed value.

APT 12 bits 24 bits 32 bits 48 bits
α = 40 0.732 0.789 0.800 0.826
α→∞ 0.751 0.804 0.813 0.830

E. Efficient Minibatch Backpropagation
As mentioned in Sec. 4.2 in the paper, our models are trained using minibatch SGD. To maximally utilize supervision, we

use the following strategy: each example in the minibatch is used to query the rest of the batch (which acts as the database),
and the resulting objective values are averaged. Here, we detail the derivation of the backpropagation rules according to this
formulation. We take inspirations from [1] and [4], both of which similarly average listwise objectives designed for binary
affinities. Our technique can be seen as a direct generalization of [1] in that we support multi-level affinities.

Consider a minibatch of size M , {x1, . . . , xM}. We use a unified shorthandOi to denote the (relaxed) objective value when
xi is the query, which can either be APr or DCGr in our formulation. The overall minibatch objective is thenO = 1

M

∑M
i=1Oi.

For the entire minibatch, we group the relaxed hash mapping output into a b×M matrix,

Φ̂ =
[
Φ̂(x1) Φ̂(x2) · · · Φ̂(xM)

]
∈ Rb×M . (22)

3

We consider the multi-level affinity setup where affinity values are from a finite set V , which includes binary affinities as a
special case, i.e. when V = {0, 1}. The Jacobian of the minibatch objective with respect to Φ̂ can be written as

∂O
∂Φ̂

=
1

M

M∑
i=1

∂Oi

∂Φ̂
=

1

M

M∑
i=1

b∑
d=0

∑
v∈V

∂Oi

∂c
(i)
d,v

∂c
(i)
d,v

∂Φ̂
, (23)

where as defined in Sec. 4.1, c(i)d,v is the continuous relaxation of n(i)
d,v, the d-th bin in the distance histogram conditioned on

affinity level v. The superscript (i) indicates that the current query is xi.
Evaluating this Jacobian involves two steps. First, we need to compute the partial derivative ∂Oi/∂c

(i)
d,v,∀d,∀v. Note that

this is exactly the differentiation of APr and DCGr, and as we pointed out in Sec. 4.1, both can be evaluated in closed form.
We use variables α to denote these partial derivatives, omitting the details of derivation:

α
(i)
d,v =

∂Oi

∂c
(i)
d,v

. (24)

Next, we need to evaluate the Jacobian ∂c(i)d,v/∂Φ̂, which is essentially differentiating the soft histogram binning process.
Let us consider each column of this Jacobian. First, for ∀j 6= i, using chain rule,

∂c
(i)
d,v

∂Φ̂(xj)
=

∂c
(i)
d,v

∂d̂Φ(xi, xj)

∂d̂Φ(xi, xj)

∂Φ̂(xj)
= 1[Ai(j) = v]

∂δ(d̂Φ(xi, xj), d)

∂d̂Φ(xi, xj)

∂d̂Φ(xi, xj)

∂Φ̂(xj)
(25)

= 1[Ai(j) = v]δ′d(d̂Φ(xi, xj))
−Φ̂(xi)

2
(26)

∆
= βd,v(i, j)

−Φ̂(xi)

2
, (27)

where δ′d is the derivative of the single-argument function δ(·, d), and we define the shorthand

βd,v(i, j) = 1[Ai(j) = v]δ′d(d̂Φ(xi, xj)). (28)

Note that β is symmetric, i.e. βd,v(i, j) = βd,v(j, i), which follows from the fact that both the affinity A and the distance
function d̂Φ are symmetric.

For j = i, we have a similar result:

∂c
(i)
d,v

∂Φ̂(xi)
=
∑
k 6=i

∂c
(i)
d,v

∂d̂Φ(xi, xk)

∂d̂Φ(xi, xk)

∂Φ̂(xi)
=
∑
k 6=i

βd,v(i, k)
−Φ̂(xk)

2
. (29)

To unify these two cases, we require that βd,v(i, i) ≡ 0,∀i. We now have a unified expression for the j-th column in the
Jacobian ∂c(i)d,v/∂Φ̂:

∂c
(i)
d,v

∂Φ̂(xj)
= −1

2
βd,v(i, j)Φ̂(xi)−

1[j = i]

2

M∑
k=1

βd,v(i, k)Φ̂(xk). (30)

We now obtain a compact matrix form for ∂c(i)d,v/∂Φ̂. Let β(i)
d,v = (βd,v(i, 1), . . . , βd,v(i,M)) ∈ RM . Also, let ei be the

i-th standard basis vector in RM , i.e. the i-th element is 1 and all others are 0. We have that

∂c
(i)
d,v

∂Φ̂
= −1

2
Φ̂(xi)(β

(i)
d,v)> −

[
M∑
k=1

1

2
βd,v(i, k)Φ̂(xk)

]
e>i = −1

2

[
Φ̂(xi)(β

(i)
d,v)> + Φ̂β

(i)
d,ve

>
i

]
. (31)

4

Finally, we complete (23) using the result above. The main trick is to change the ordering of sums: we bring the sum over
i = 1, . . . ,M inside,

∂O
∂Φ̂

=
1

M

M∑
i=1

b∑
d=0

∑
v∈V

∂Oi

∂c
(i)
d,v

∂c
(i)
d,v

∂Φ̂
(32)

=
1

M

b∑
d=0

∑
v∈V

M∑
i=1

−1

2
α

(i)
d,v

[
Φ̂(xi)(β

(i)
d,v)> + Φ̂β

(i)
d,ve

>
i

]
(33)

= − 1

2M

b∑
l=0

∑
v∈V

[
M∑
i=1

α
(i)
d,vΦ̂(xi)(β

(i)
d,v)> + Φ̂

M∑
i=1

α
(i)
d,vβ

(i)
d,ve

>
i

]
. (34)

To further simplify this result, we define two M ×M matrices:

Ad,v = diag(α
(1)
d,v , . . . , α

(M)
d,v) ∈ RM×M , (35)

Bd,v =
[
β

(1)
d,v · · · β

(M)
d,v

]
=


βd,v(1, 1) βd,v(2, 1) · · · βd,v(M, 1)
βd,v(1, 2) βd,v(2, 2) · · · βd,v(M, 2)

...
...

. . .
...

βd,v(1,M) βd,v(2,M) · · · βd,v(M,M)

 ∈ RM×M . (36)

Then, we arrive at the following simplification of (34) and (23),

∂O
∂Φ̂

= − 1

2M

b∑
d=0

∑
v∈V

[
Φ̂Ad,v(Bd,v)> + Φ̂Bd,vAd,v

]
= − Φ̂

2M

b∑
d=0

∑
v∈V

(Ad,vBd,v +Bd,vAd,v) . (37)

Note that we have used the fact that Bd,v is a symmetric matrix (36), which is because β is symmetric, as mentioned earlier.
This operation can be implemented efficiently using only matrix multiplications and additions. Also, since Ad,v is a diagonal
matrix, multiplying it with Bd,v essentially scales the rows or columns of Bd,v, which is an O(M2) operation as opposed to
O(M3) as in general matrix multiplication. The entire time complexity is therefore O(b|V|M2).

At this point, we have completed the differentiation of the minibatch objective O with respect to the relaxed hash mapping
output, Φ̂. Further backpropagation is straightforward, since Φ̂ is obtained by applying a pointwise tanh function on the raw
activations from the previous layer.

References
[1] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff. Hashing with mutual information. arXiv preprint arXiv:1803.00974, 2018.

[2] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. HashNet: Deep learning to hash by continuation. In Proc. IEEE
International Conference on Computer Vision (ICCV), 2017.

[3] Frank McSherry and Marc Najork. Computing information retrieval performance measures efficiently in the presence of tied scores. In
Proc. European Conference on Information Retrieval, 2008.

[4] Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-shot learning through an information retrieval lens. In Advances in Neural
Information Processing Systems (NIPS), pages 2252–2262, 2017.

5

