
Supplementary material

Scale patch-level probability to avoid numerical un-
derflow

Notation pkij and 1−pkij represent a patch’s (the jth patch
of image i) positive and negative probabilities for class k.
Their values are always in [0, 1]. We consider the problem
of numerical underflow as follows. The product terms (

∏
)

in Eq.1 and Eq.2 can quickly go to 0 when many of the
terms in the product is small due to the limited precision of
float numbers. The log loss in Eq. 3 mitigates this for Eq. 1,
but does not help Eq. 2, since the log function can not di-
rectly affect its product term. This effectively renders Eq. 2
as a constant value of 1, making it irrelevant on updating
the network parameters. (The contribution of the gradient
from Eq. 2 will be close to 0.) Similar things happen at test
time. To do binary classification for an image, we deter-
mine its label by thresholding the image-level score (Eq. 2).
It is impossible to find a threshold in [0, 1] to distinguish the
image-level scores when the score (Eq. 2) is a constant of 1;
all the images will be labeled the same.

Fortunately, if we can make sure that the image-level
scores p(yk|xi,bbox

k
i )’s and p(yk|xi) spread out in [0, 1]

instead of congregating at 1, we then can find an appropri-
ate threshold for the binary classification. To this end, we
normalize pkij and 1−pkij from [0, 1] to [0.98, 1]. The reason
of such choice is as follows. In the actual system, we often
use single-precision floating-point number to represent real
numbers. It can represent a real number as accurate as 7
decimal digits [1]. If the number of patches in an image,
m = 16×16, a real number p ∈ [0, 1] should be larger than
around 0.94 (by obtaining p from p256 ≥ 10−7) to make
sure that the pm varies smoothly in [0, 1] w.r.t. p changes in
[0.94, 1]. To be a bit more conservative, we set 0.98 as our
lower limit in our experiment. This method enables valid
and efficient training and testing of our method. And in the
evaluation, the number of thresholds can be finite to calcu-
late the AUC scores, as the image-level probability score
is well represented using the values in [0, 1]. A downside
of our approach is that a normalized patch-level probability
score does not necessarily reflect the meaning of probability
anymore.

Disease Localization Results

Similarly, we investigate the importance of bounding
box supervision by using all the unannotated images and in-
creasing the amount of annotated images from 0% to 80%
by the step of 20% (Figure 1). without annotated images
(the most left bar in each group), the model is only super-
vised by image-level labels and optimized using probabilis-
tic approximation from patch-level predictions. The results
by unannotated images only are not able to generate accu-
rate localization of disease. As we increase the amount of

annotated images gradually from 0% to 80% by the step of
20% (from left to right in each group), the localization ac-
curacy for each type is increased accordingly.

Next, we fix the amount of annotated images to 80%
and increase the amount of unannotated images from 0% to
100% by the step of 20% to observe whether unannotated
images are able to help annotated images to improve the
performance (Figure 2). For some diseases, it achieves the
best accuracy without any unannotated images. For most
diseases, the accuracy experience an accuracy increase, a
peak score, and then an accuracy fall (from orange to green
bar in each group) as we increase the amount of unanno-
tated images. A possible explanation is that too many unan-
notated images overwhelm the strong supervision from the
small set of annotated images. A possible remedy is to
lower the weight of unannotated images during training.

Lastly, We use 80% annotated images and 50% unanno-
tated images to train the model and evaluate on the other
20% annotated images in each fold. Comparing with the
reference model [2], our model achieves higher localization
accuracy for various T(IoR) as shown in Table 1.
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Figure 1. Disease localization accuracy using IoU where T(IoU)=0.1. Training set: annotated samples, {0% (0), 20% (176), 40% (352),
60% (528), 80% (704)} from left to right for each disease type; unannotated samples, 100% (111, 240 images). The evaluation set is 20%
annotated samples which are not included in the training set. For each disease, the accuracy is increased from left to right, as we increase
the amount of annotated samples, because more annotated samples bring more bounding box supervision to the joint model.
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Figure 2. Disease localization accuracy using IoU where T(IoU)=0.1. Training set: annotated samples, 80% (704 images); unannotated
samples, {0% (0), 20% (22, 248), 40% (44, 496), 60% (66, 744), 80% (88, 892), 100% (111, 240)} from left to right for each disease
type. The evaluation set is 20% annotated samples which are not included in the training set. Using annotated samples only can produce
a model which localizes some diseases. As the amount of unannotated samples increases in the training set, the localization accuracy is
improved and all diseases can be localized. The joint formulation for both types of samples enables unannotated samples to improve the
performance with weak supervision.

T(IoR) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

0.1 ref. 0.62 1.00 0.80 0.91 0.59 0.15 0.86 0.52
ours 0.77± 0.06 0.99± 0.01 0.91± 0.04 0.95± 0.05 0.75± 0.08 0.40± 0.11 0.69± 0.09 0.68± 0.10

0.25 ref. 0.39 0.99 0.63 0.80 0.46 0.05 0.71 0.34
ours 0.57± 0.09 0.99± 0.01 0.79± 0.02 0.88± 0.06 0.57± 0.07 0.25± 0.10 0.62± 0.05 0.61± 0.07

0.5 ref. 0.19 0.95 0.42 0.65 0.31 0.00 0.48 0.27
ours 0.35± 0.04 0.98± 0.02 0.52± 0.03 0.62± 0.08 0.40± 0.06 0.11± 0.04 0.49± 0.08 0.43± 0.10

0.75 ref. 0.09 0.82 0.23 0.44 0.16 0.00 0.29 0.17
ours 0.20± 0.04 0.87± 0.05 0.34± 0.06 0.46± 0.07 0.29± 0.06 0.07± 0.04 0.43± 0.06 0.30± 0.07

0.9 ref. 0.07 0.65 0.14 0.36 0.09 0.00 0.23 0.12
ours 0.15± 0.03 0.59± 0.04 0.23± 0.05 0.32± 0.07 0.22± 0.05 0.06± 0.03 0.34± 0.04 0.22± 0.05

Table 1. Disease localization accuracy comparison using IoR where T(IoR)={0.1, 0.25, 0.5, 0.75, 0.9}. The bold values denote the best
results. Note that we round the results to two decimal digits for table readability. Using different thresholds, our model outperforms the
reference baseline in most cases and remains capability of localizing diseases when the threshold is big. The results for the reference
baseline are obtained from the latest update of [2].


