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1. SfSNet Architecture
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Figure 1: SfSNet Architecture.

The schematic diagram of our SfSNet is again shown in
Figure 1 for reference. Our input, normal and albedo is of
size 128× 128. Below we provide the details of each of the
blocks of SfSNet.

‘Conv.’: C64(k7) - C128(k3) - C*128(k3)
‘CN(kS)’ denotes convolution layers with N S × S filters
with stride 1, followed by Batch Normalization and ReLU.
‘C*N(kS)’ denotes only convolution layers with N S × S
filters with stride 2, without batch Normalization. The
output of ‘Conv’ layer produces a blob of spatial resolution
128× 64× 64.

‘Normal Residual Blocks’: 5 ResBLK - BN - ReLU
This consists of 5 Residual Blocks, ‘BesBLK’s, all of
which operate at a spatial resolution of 128 × 64 × 64,
followed by Batch Normalization (BN) and ReLU. Each
‘ResBLK’ consists of BN - ReLU - C128 - BN - ReLU -
C128.

‘Albedo Residual Blocks’: Same as ‘Normal Residual
Blocks’ (weights are not shared).

‘Normal Conv’.: BU - CD128(k1) - C64(k3) - C*3(k1)
‘BU’ refers to Bilinear up-sampling that converts
128 × 64 × 64 to 128 × 128 × 128.‘CN(kS)’ repre-
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Figure 2: SkipNet and SkipNet+ Network Architectures.

sents convolution layers with N S × S filters with stride
1, followed by Batch Normalization and ReLU. ‘C*N(kS)’
represents only convolution layer with N S × S filters with
stride 1. The network produces a normal map as output.

‘Albedo Conv.’: Same as ‘Normal Conv.’ (weights are not
shared).

‘Light Estimator’: It first concatenates the responses of
‘Conv’, ‘Normal Residual Blocks’ and ‘Albedo Residual
Blocks’ to produce a blob of spatial resolution 384 ×
64 × 64. This is further processed by 128 1 × 1 con-
volutions, Batch Normalization, ReLU, followed by Av-
erage Pooling over 64 × 64 spatial resolution to produce
128 dimensional features. This 128 dimensional feature
is passed through a fully connected layer to produce 27
dimensional spherical harmonics coefficients of lighting.
Our model and code is available for research purposes at
https://senguptaumd.github.io/SfSNet/.

2. SkipNet Architecture
The schematic diagram of SkipNet is shown in Figure

2(a). SkipNet is based on the network used in [3] with
more capacity and skip connections. Similar to SfSNet
the input is 128 × 128; ‘Normal Decoder’ and ‘Albedo
Decoder’ produces normal and albedo maps. Normal,
albedo and ‘light’ is also used to produce shading and the
reconstructed image similar to Figure 1. Since that part of
the architecture does not contain any trainable parameters
we omit them in the figure for clarity. Note that the skip
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connections between encoder and decoder exist, which
is also not shown in the figure. Details of SkipNet are
provided below:

Encoder: C*64(k4) - C128(k4) - C256(k4) - C256(k4) -
C256(k4) - fc256
‘CN(kS)’ represents convolution layers with N S×S filters
with stride 2, followed by Batch Normalization and ReLU.
‘C*N(kS)’ is‘CN(ks)’ without Batch Normalization. All
ReLUs are leaky with slope 0.2. ’fc256’ is a fully connected
layer that produces a 256 dimensional feature.
MLP: Contains a fully connected layer to take the response
of Encoder and separate it into 256 dimensional features
for ‘Normal Decoder’, ‘Albedo Decoder’ and ‘light’. For
‘Normal Decoder’ and ‘Albedo Decoder’ a 256 dimen-
sional feature is further up-sampled to form a blob of shape
256 × 4 × 4. For ’light’ the 256 dimensional feature is
passed through a fully connected network to produce 27 di-
mensional spherical harmonics coefficients.
Decoder (Normal and Albedo): CD256(k4) - CD256(k4)
- CD256(k4) - CD128(k4) - CD64(k4) - C*3(k1) Both
‘Normal Decoder’ and ‘Albedo Decoder’ consists of the
same architecture without weight sharing. ‘CDN(kS)’ rep-
resents a de-convolution layer with N S×S filters operated
with stride 2, followed by Batch Normalization and ReLU.
‘C*3(k1)’ consists of 3 1×1 convolution filters with stride 1
to produce Normal or Albedo. Skip connections are present
between encoders and decoders similar to [1, 2].

3. SkipNet+
SkipNet+ is very similar to SkipNet, but with larger ca-

pacity and without a fully connected bottleneck ‘MLP’ as
shown in Figure 2(b). The Details of the network are shown
below.
Encoder: Co64(k3) - Co64(k1) - C64(k3) - Co64(k1) -
C128(k3) - Co128(k1) - C256(k3) - Co256(k1) - C256(k3)
- Co256(k1) - C256(k3)
‘CN(kS)’ represents a convolution layer with N S×S filters
with stride 2, followed by Batch Normalization and ReLU.
‘CoN(kS)’ is similar to ‘CN(kS)’ but with stride 1. All Re-
LUs are leaky with slope 0.3. The output of the Encoder is
a feature of spatial resolution 256× 4× 4.
Decoder (Normal and Albedo): C256(k1) - CD256(k4)
- CD256(k4) - CD256(k4) - CD128(k4) - CD64(k4) -
C*3(k1)
‘CDN(kS)’ represents a de-convolution layer with N S × S
filters with stride 2, followed by Batch Normalization and
ReLU. ‘CN(kS)’ represents a convolution layer with N
S×S filters with stride 1, followed by Batch Normalization
and ReLU. ‘C*3(k1)’ consists of 3 1× 1 convolution filters
to produce Normal or Albedo. Skip-connections exists be-
tween ‘CN(k3)’ layers of encoder and ‘CDN(k4)’ layers of
decoder.

light: We perform Average pooling over 4 × 4 spatial res-
olution of the encoder output to produce a 256 dimensional
feature. This feature is then passed through a fully con-
nected layer to produce 27 dimensional spherical harmonics
lighting.

4. Spherical Harmonics
In this section, we define the image generation process

under lambertian reflectance following equation (??). Let
the normal be n(p) = [x, y, z]T at pixel p. Then the 9 di-
mensional spherical harmonics basis Y (p) at pixel p is ex-
pressed as:
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Then the intensity at pixel p is defined as:

I(p) = frender(A(p), N(p), L) = A(p)(Y (p)TL), (3)

whereA(p) is the albedo at pixel p, and L is the lighting pa-
rameter denoting coefficients of spherical harmonics basis.
Note that, the above equations are only for one of the RGB
channels and can be repeated independently for 3 channels.

Next we define the reconstruction loss. Let I(p) be the
original image intensity and Ñ(p), Ã(p) be the inferred nor-
mal and albedo by SfSNet at pixel p. Let L̃ be the 27 di-
mensional spherical harmonic coefficients also inferred by
SfSNet. The reconstruction loss is defined as:

Erecon =
∑
p

|I(p)− frender(Ã(p), Ñ(p), L̃)|. (4)

5. More Qualitative Comparisons
SfSNet on CelebA: In Figures 3 and 4 we present inverse
rendering results on CelebA images with our SfSNet. To
visualize the quality of the reconstructed normals, we use
directional lights with uniform albedo to produce ‘Relit’
images.

SfSNet vs Pix2Vertex: In Figure 5 we compare SfSNet to
Pix2Vertex [2]. These images contain non-ambient illumi-
nations and expressions, where surface normal recovery is



much more robust for SfSNet than for Pix2Vertex. Figures
6, 7 and 8 also compares performance of SfSNet and
Pix2Vertex on the images showcased by Sela et al. in [2].
Since these images mostly contain ambient illumination,
SfSNet performs comparable to Pix2Vertex.

SfSNet vs MoFA: We also provide more comparison
results with MoFA [4] on the images provided by the
authors in Figures 10, 11 and 12. MoFA aims to fit a
3DMM which is limited in its capability to represent real
world shapes and reflectance, but can produce a full 3D
mesh. Thus SfSNet reconstructs more detailed shape and
reflectance than MoFA.

SfSNet vs Neural Face: Similarly comparison with ‘Neu-
ral Face’ [3] in Figure 13 on the images showcased by the
authors, show that SfSNet obtains more realistic reconstruc-
tion than ‘Neural Face’.
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[4] A. Tewari, M. Zollöfer, H. Kim, P. Garrido, F. Bernard,
P. Perez, and C. Theobalt. MoFA: Model-based Deep Convo-
lutional Face Autoencoder for Unsupervised Monocular Re-
construction. In The IEEE International Conference on Com-
puter Vision (ICCV), 2017. 3, 11, 12, 13



Input Reconstruction Normal Albedo Shading Relit 1 Relit 2

Figure 3: Results of SfSNet on CelebA. ‘Relit’ images are generated by directional lighting and uniform albedo to highlight the quality
of the reconstructed normals. (Best viewed in color)
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Figure 4: Results of SfSNet on CelebA. ‘Relit’ images are generated by directional lighting and uniform albedo to highlight the quality
of the reconstructed normals. (Best viewed in color)
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Figure 5: SfSNet vs Pix2Vertex [2] on images selected by us with non-ambient illumination and expression. ‘Relit’ images are generated
by directional lighting and uniform albedo selected to highlight the quality of the reconstructed normals. (Best viewed in color)
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Figure 6: SfSNet vs Pix2Vertex [2] on the images showcased by Sela et al. in [2]. ‘Relit’ images are generated by directional lighting
and uniform albedo selected to highlight the quality of the reconstructed normals. (Best viewed in color)
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Figure 7: SfSNet vs Pix2Vertex [2] on the images showcased by Sela et al. in [2]. ‘Relit’ images are generated by directional lighting
and uniform albedo selected to highlight the quality of the reconstructed normals. (Best viewed in color)
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Figure 8: SfSNet vs Pix2Vertex [2] on the images showcased by Sela et al. in [2]. ‘Relit’ images are generated by directional lighting
and uniform albedo selected to highlight the quality of the reconstructed normals. (Best viewed in color)
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Figure 9: Light transfer. Our SfSNet allows us to transfer lighting of the ‘Source’ image to the ‘Target’ image to produce ‘Transfer’
image. ‘S’ refers to shading. (Best viewed in color)
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Figure 10: Inverse Rendering. SfSNet vs ‘MoFA’ [4] on the data provided by the authors. (Best viewed in color)
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Figure 11: Inverse Rendering. SfSNet vs ‘MoFA’ [4] on the data provided by the authors. (Best viewed in color)
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Figure 12: Inverse Rendering. SfSNet vs ‘MoFA’ [4] on the data provided by the authors. (Best viewed in color)
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Figure 13: Inverse Rendering. SfSNet vs ‘Neural Face’ [3] on the images showcased by the authors. (Best viewed in color)


